УДК 621.787:539.319

Злобин А.С., Вакулюк В.С., Селиванова Е.Е., Селищев П.А., Завязкин А.А.

МОДИФИЦИРОВАННОЕ УРАВНЕНИЕ ДЛЯ ВЫЧИСЛЕНИЙ СРЕДНЕИНТЕГРАЛЬНЫХ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ

Остаточные напряжения, возникающие под воздействием конструктивных, технологических и эксплуатационных факторов, оказывают существенное влияние на характеристики сопротивления усталости деталей авиационной техники. При этом в работах [1–3] было показано, что многоцикловая и малоцикловая усталость зависит не только от величины остаточных напряжений, но также от их глубины залегания и характера распределения. Таким образом, для корректного учёта влияния остаточных напряжений при оценке характеристик сопротивления усталости необходим комплексный критерий, учитывающий перечисленные факторы.

Такой критерий – среднеинтегральные остаточные напряжения $\overline{\sigma}_{\text{ост}}$, – был предложен [1, 2] кафедрой сопротивления материалов Самарского университета на основе решения задачи [4] о перераспределении остаточных усилий после нанесения надреза полуэллиптического профиля на упрочнённую поверхность. Это остаточные напряжения на дне трещины с точностью до постоянного коэффициента, зависящего от радиуса у дна трещины и её глубины.

На рис. 1 схематично изображена трещина усталости в резьбовой детали, где t — глубина трещины,

$$v = \arccos \frac{y}{t}$$
.

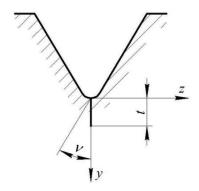


Рис. 1. Трещина усталости в резьбовой детали

Зная исходное (до образования трещины) распределение остаточных напряжений $\sigma_{\rm oct}(y)$ по глубине поверхностного слоя (в сечении z=0), среднеинтегральные остаточные напряжения можно вычислить по формуле:

$$\overline{\sigma}_{\text{ocr}} = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sigma_{\text{ocr}}(v) dv$$
 (1)

Выражение (1) позволяет оценить величину остаточных напряжений в вершине трещины глубиной t, на основе их исходного распределения в поверхностном слое детали до образования трещины. Это делает удобным использование критерия $\overline{\sigma}_{\text{ост}}$ для исследования влияния остаточных напряжений на характеристики многоцикловой [1, 2] и малоцикловой [3] усталости.

В монографии [5] для вычисления интеграла (1) предлагается использовать формулу Симпсона:

$$\int_{0}^{\frac{\pi}{2}} \sigma_{\text{oct}}(v) dv = \frac{\frac{\pi}{2} - 0}{6n} \left[\sigma_{\text{oct } 0} + \sigma_{\text{oct } 2n} + 2(\sigma_{\text{oct } 2} + \sigma_{\text{oct } 4} + \dots + \sigma_{\text{oct } 2n-2}) + (2) + 4(\sigma_{\text{oct } 1} + \sigma_{\text{oct } 3} + \dots + \sigma_{\text{oct } 2n-1}) \right].$$

Диапазон $\left[0;\frac{\pi}{2}\right]$ изменения угла ν условно разделяется на чёт-

ное количество равных частей, границы которых обозначаются как v_j , где $j=0,1,\ldots,2n$. Величины остаточных напряжений $\sigma_{\text{ост}\,j}$ в формуле (2) соответствуют глубинам поверхностного слоя $y_j=t\cdot\cos v_j$.

Однако, если требуется вычислить среднеинтегральные остаточные напряжения для трещины разной глубины t или установить зависимость $\overline{\sigma}_{\text{ост}} = f(t)$, использование формулы (2) будет весьма трудоёмким, поскольку для каждой величины t необходимо каждый раз заново определять значения 2n, v_j , y_j , и $\sigma_{\text{ост}\,j}$. В связи с этим вычисление $\overline{\sigma}_{\text{ост}} = f(t)$ с использованием формулы Симпсона (2) практически нельзя автоматизировать. Модифицируем выражение (1) для снижения трудоёмкости его использования.

В работе [3] показано, что зависимость остаточных напряжений от глубины поверхностного слоя детали удобно представлять в виде полинома:

$$\sigma(y) = \sum_{i=0}^{k} b_i \cdot y^i. \tag{4}$$

Коэффициенты b_i определяются с помощью аппроксимации экспериментальных данных методом наименьших квадратов. Тогда можно записать:

$$\sigma(v) = \sum_{i=0}^{n} b_i \cdot (t \cdot \cos v)^i.$$
 (5)

С учётом формулы (5) запишем выражение для вычисления среднеинтегральных напряжений в следующем виде:

$$\overline{\sigma}_{\text{oct}} = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sigma(v) dv = \frac{2}{\pi} \sum_{i=0}^{n} \int_{0}^{\frac{\pi}{2}} b_{i} \cdot t^{i} \cdot \cos^{i} v dv = \frac{2}{\pi} \cdot \sum_{i=0}^{n} b_{i} \cdot t^{i} \cdot I_{i}, (6)$$

где
$$I_i = \int_{0}^{\frac{\pi}{2}} \cos^i v dv.$$

В работе [3] показано, что в большинстве случаев k=6 обеспечивает достаточную точность аппроксимации. С учётом этого в табл. 1 приведены вычисленные аналитическим способом значения определённых интегралов I_i , где $i=0,1,\ldots,6$.

Таблица 1. Значения интегралов I_i

I_0	I_1	I_2	I_3	I_4	I_5	I_6
$\frac{\pi}{2}$	1	$\frac{\pi}{4}$	$\frac{2}{3}$	$\frac{3\pi}{16}$	$\frac{8}{15}$	$\frac{5\pi}{32}$

Используя данные табл. 1, запишем формулу зависимости среднеинтегральных остаточных напряжений от глубины трещины $\overline{\sigma}_{\text{ост}}(t)$ при известном исходном (до образования трещины) распределении остаточных напряжений по глубине поверхностного слоя (4):

$$\overline{\sigma}_{\text{ocr}} = b_0 + \frac{2}{\pi} \cdot b_1 \cdot t + \frac{1}{2} \cdot b_2 \cdot t^2 + \frac{4}{3\pi} \cdot b_3 \cdot t^3 + \frac{3}{8} \cdot b_4 \cdot t^4 + \frac{16}{15\pi} \cdot b_5 \cdot t^5 + \frac{5}{16} \cdot b_6 \cdot t^6$$
(7)

Полученное модифицированное выражение (7) позволяет напрямую, без выполнения дополнительных действий, вычислять среднеинтегральные остаточные напряжения для любого значения t и, следовательно, автоматизировать эту процедуру при исследовании влияния остаточных напряжений на характеристики усталости резьбовых деталей.

Библиографический список

1. Павлов, В.Ф. Влияние характера распределения остаточных напряжений по толщине поверхностного слоя детали на сопротивление усталости / В.Ф. Павлов // Известия вузов. Машиностроение. — 1987. — №7. — С. 3-6.

- 2. Павлов, В.Ф. О связи остаточных напряжений и предела выносливости при изгибе в условиях концентрации напряжений / В.Ф. Павлов // Известия вузов. Машиностроение. 1986. № 8. С. 29–32.
- 3. Злобин, А.С. Влияние остаточных напряжений на малоцикловую усталость резьбовых деталей: диссертация кандидата технических наук: 01.02.06 / Злобин Андрей Сергеевич. Самара, 2022. 138 с.
- 4. Иванов, С.И. Влияние остаточных напряжений на выносливость образцов с надрезом / С.И. Иванов, М.П. Шатунов, В.Ф. Павлов // Вопросы прочности элементов авиационных конструкций. Куйбышев: КуАИ, 1974. Вып. 1. С. 88–95.
- 5. Иванов, С.И. Остаточные напряжения и сопротивление усталости высокопрочных резьбовых деталей / С.И. Иванов, В.Ф. Павлов, Б.В. Минин и др. Самара: Издательство СНЦ РАН. 2015.-170 с.

УДК 621.787:4

Сургутанов Н.А., Сургутанова Ю.Н., Прохоров А.А., Яковлева П.С., Шеметов Н.А.

ИССЛЕДОВАНИЕ НАПРЯЖЁННОГО СОСТОЯНИЯ ВБЛИЗИ ФРОНТА УСТАЛОСТНОЙ ТРЕЩИНЫ

В современном авиамашиностроении одним из основных путей достижения высоких показателей по надёжности и ресурсу работы деталей является рациональное конструирование. Оптимизация конструкций приводит к наличию различных концентраторов напряжений, обычно являющихся местом локализации разрушений при циклическом нагружении. Основными методами, позволяю-