УДК 533.6

Кусюмов А.Н., Романова Е.В.

МОДЕЛИРОВАНИЕ ОБТЕКАНИЯ ВРАЩАЮЩЕГОСЯ ПЛОСКОГО ЦИЛИНДРА ПРИ ОКОЛОКРИТИЧЕСКИХ ЧИСЛАХ РЕЙНОЛЬДСА

Рассматривается задача обтекания вращающегося плоского кругового цилиндра потоком несжимаемой вязкой жидкости. Известно, что существует область чисел Рейнольдса, в которой происходит скачкообразное падение лобового сопротивления цилиндра (в литературе это явление называется кризисом сопротивления цилиндра). Число Рейнольдса определяется выражением $\text{Re} = \frac{V_{\infty}d}{v}$, где V_{∞} – скорость набегающего потока. d – диаметр цилиндра, v – коэффициент кинематической вязкости.

Число Рейнольдса, при котором наблюдается кризис сопротивления цилиндра, называется критическим числом Рейнольдса Re_{кр}. При числах Рейнольдса течения меньше чем Re_{кр}, пограничный слой на поверхности цилиндра является ламинарным. Ниже по потоку вследствие возникновения отрыва в области задней критической точки течение теряет устойчивость и имеется достаточно протяжённая область, где течение имеет турбулентный характер. При числах Рейнольдса течения, превышающих Re_{кр}, течение имеет турбулентный характер не только в следе за цилиндром, но и непосредственно около поверхности цилиндра.

В работе для расчёта обтекания врг егося цилиндра при числах Рейнольдса течения, близких к критическому, применяется коммерческий пакет Fluent 6.3.26

Пакет Fluent 6.3.26 предоставляет возможность использования четырёх моделей турбулентности: Spalart-Alimaras, k-є, k-ю, RSM (с различными пристеночными функциями).

Расчёты показывают, что при расчёте обтекания неподвижного цилиндра в обласги закритического числа Рейнольдса все основные модели турбулентности (Spalart-Allmaras, k-ε, k-ω) дают достаточно близкие результаты, которые неплохо соответствуют экспериментальным данным. Область докритических чисел Рейнольдса значительно сложнее поддаётся моделированию. По результатам расчёта характеристик течения в области докритических чисел Рейнольдса была выбрана k-є модель турбулентности.

Расчётная сетка была построена в препроцессоре Gambit и содержала 120000 элементов Границы области расчёта удалены от поверхности цилиндра на расстояние,

30

соответствующее 20 диаметрам цилиндра.

В докритическом режиме обтекания неподвижного цилиндра расчет проводился при числе Re = 136920 и получено значение коэффициента лобового сопротивления $c_{xa} = 0.818395$. В закритическом режиме обтекания коэффициент лобового сопротивления неподвижного цилиндра, полученный для числа Рейнольдса Re = 821523, имеет значение $c_{xa} = 0.354961$ (данные приведены для стационарного режима обтекания цилиндра).

Рассмотрим результаты расчёта обтекания вращающегося цилиндра. Для вращающегося цилиндра использовались те же модели турбулентности, что и для неподвижного цилиндра. Расчёты проводились в нестационарной постановке (до установления по времени). Окружная скорость вращения поверхности цилиндра задавалась с помощью безразмерной величины $\theta = \frac{\omega d}{2V_{\infty}}$, где ω – угловая скорость вращения цилиндра.

Для числа Рейнольдса Re = 136920 расчёт обтекания вращающегося цилиндра проводился при $\theta = 0,8$ и $\theta = 3,6$. На рис. 1, 2 представлено распределение коэффициента давления по поверхности вращающегося цилиндра, полученное в результате расчёта. Аэродинамические коэффициенты имеют следующие значения: $c_{yea} = 0,883$, $c_{xa} = 0,603$ ($\theta = 0,8$); $c_{ya} = 8,07$, $c_{xa} = 0,412$ ($\theta = 3,6$).

Рис. 2. Распределение коэффициента давления по поверхности вращающегося цилиндра при θ = 3,6

Для числа Рейнольдса Re = 547683 расчёт обтекания вращающегося цилиндра проводился при $\theta = 0.9$ и $\theta = 1.8$. На рис. 3, 4 представлено распределение коэффициента давления по поверхности вращающегося цилиндра. Аэродинамические коэффициенты имсют следующие значения: $c_{ya} = 2,333$, $c_{xa} = 0,3$ ($\theta = 0.9$); $c_{ya} = 5,066$, $c_{xa} = 0,188$ ($\theta = 1.8$). Отметим, что для $\theta = 0.9$ решение имело периодический во времени характер и поэтому представлены некоторые средние данные.

Рис. 3. Распределение коэффициента давления по поверхности вращающегося цилиндра при $\theta = 0.9$

В [1] приведены экспериментальные результаты обтекания вращающегося цилиндра с концевыми шайбами для докритических значений числа Рейнольдса (Re = (0,3+1,4)10⁵). Из данных, представленных в [1], следуст, что значения аэродинамических коэффициентов существенно зависят от диаметра концевой шайбы (максимальное отношение диаметра концевой шайбы к диаметру цилиндра не превышало величины, равной трем). При этом с ростом диаметра концевой шайбы наблюдалось значительное увеличение коэффициента подъёмной силы и уменьшение коэффициента лобового сопротивления. При максимальном отношении диаметра концевой шайбы к диаметру цилиндра аэродинамические коэффициенты согласно [1] имели значения: $c_{ya} = 0.8$, $c_{xa} = 0.4$ ($\theta = 0.8$); $c_{ya} = 11$, $c_{xa} = 1.3$ ($\theta = 3.6$).

по поверхности вращающегося цилиндра при 9 = 1,8

Из сравнения расчётных и экспериментальных данных следует, что при докритическом числе Рейнольдса Re = 136920 расчётные значения коэффициентов подъёмной силы и лобового сопротивления удовлетворительно согласуются с экспериментальными данными при относительно малой частоте вращения цилиндра ($\theta = 0,8$). При высокой частоте вращения цилиндра ($\theta = 3,6$) рассчитанные значения коэффициентов подъёмной силы и лобового сопротивления существенно отличаются от экспериментальных данных. Различие в результатах может объясняться, в частности, неадекватностью выбранной модели турбулентности при большой частоте вращения цилиндра и влиянием размера концевой шайбы.

При закритическом числе Рейнольдса Re = 547683 хорошее согласование между экспериментальным и расчётным значениями коэффициента подъёмной силы имеет место для относительно большого значения угловой частоты вращения (θ = 1,8).

Библиографический список

 N.M. Bychkov. Magnus wind turbine. 2. Characteristics of rotating cylinder. Thermophysics and Aeromechanics, 2005, Vol. 12, No. 1.