УДК 681.51

Любимов В.В., Мамедов Р.А.

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПРОСТРАНСТВЕННОГО ДВИЖЕНИЯ МАЛОГО КОСМИЧЕСКОГО АППАРАТА С ТОРМОЗНЫМ ВИНТОМ ПРИ СПУСКЕ В АТМОСФЕРЕ МАРСА

Введение. Следует отметить, что в настоящее время имеется большое число публикаций по тематикам моделирования и исследования спускаемого движения космических аппаратов (КА) в атмосферах планет земной группы. Из практики освоения космоса известно, что существует актуальная проблема интерпретации неоднозначных телеметрических данных. Кроме проблем с интерпретацией данных и негативным влиянием возмущающих факторов, критически важной задачей является эффективное уменьшение скорости неуправляемого движения КА при спуске в разреженной атмосфере Марса.

В представленном исследовании применяется известная математическая модель, описывающая неуправляемое пространственное движение КА в атмосфере Марса. Отличительной особенностью рассматриваемого модели движения КА является учёт расположения на его борту свободновращающегося винта, выполняющего роль тормозного устройства. Важно отметить, что последние эксперименты с управлением малым роботом-геликоптером на Марсе, показывали принципиальную возможность применения винтовых машин в атмосфере Марса [1].

Целью данной работы является количественный анализ данных компьютерного моделирования пространственного спускаемого движении центра масс КА в атмосфере Марса, имеющего на борту свободновращающийся тормозной винт. Математическая модель движения зонда. Нелинейная система уравнений плоского неуправляемого движения центра масс КА с свободновращающимся винтом при спуске в атмосфере Марса записывается в следующем виде [2]

$$\frac{dV}{dt} = -\frac{C_{xv}qS}{m} - g\sin\theta + \frac{F_p}{m}, \qquad (1)$$

$$\frac{dH}{dt} = V\sin\theta, \qquad (2)$$

$$\frac{d\theta}{dt} = \frac{C_{yv}Sq}{mV} - \frac{g\cos\theta}{V},$$
(3)

где C_{xv} , C_{yv} – аэродинамические коэффициенты КА в скоростной системе координат, V – скорость центра масс КА, H – высота полёта КА, θ – угол наклона траектории КА в атмосфере Марса, m – масса КА, g – ускорение свободного падения на рассматриваемой высоте H, $q = 0.5\rho V^2$ – скоростной напор, $\rho = \rho_0 e^{-kH}$ – плотность атмосферы Марса на заданной высоте H, ρ_0 – плотность атмосферы Марса на высоте H=0, k – известный коэффициент плотности атмосферы Марса, $F_p = 0.5c_p \rho A \omega^2 r^2$ – сила тяги винта, c_p – аэродинамический коэффициент тяги винта, A – площадь круга, формируемого при вращении винта, ω – угловая скорость вращения винта в системе координат, связанной с КА, r – длина одной лопасти винта.

Боковую дальность L_{δ} и боковую скорость V_{δ} полёта КА можно найти из численного решения системы уравнений [3]

$$\frac{dV_{\delta}}{dt} = C_{yv} Sq \sin\beta / m, \qquad (4)$$

$$\frac{dL_{\tilde{o}}}{dt} = V_{\tilde{o}},\tag{5}$$

где β – силовой угол крена, т.е. угол между вектором подъёмной силы и местной вертикальной плоскостью, проходящей через вектор скорости и центр планеты (этот угол считается постоянным).

При пространственной траектории движения КА изменение геоцентрической угловой дальности полёта η в плоскости развёртки находится из численного решения уравнения [3]

$$\frac{d\eta}{dt} = \frac{V\cos\theta}{H+R_0}.$$
(6)

Если боковая аэродинамическая сила $m \frac{dV_{\delta}}{dt} = c_{yv} Sq \sin\beta$ очень

мала, то траектория полёта КА представляет практически плоскую кривую. В этом случае продольную дальность полёта КА в атмосфере, измеряемую по поверхности планеты $L_n = \eta R_0$, можно найти из численного решения следующего уравнения

$$\frac{dL_n}{dt} = \frac{R_0 V \cos\theta}{H + R_0}.$$
(7)

Анализ численных результатов движения КА. Система уравнений (1)-(3) описывает плоское движение центра масс КА в атмосфере Марса. Данная динамическая система не имеет аналитических решений. При этом известно, что спуск КА в атмосфере занимает несколько минут. Традиционным подходом здесь является применение явного одношагового метода Рунге-Кутта для определения численных решений данной системы. Форма КА является сегментально-конической. При этом днище КА представляет собой сферический сегмент, как у большинства космических аппаратов, спускаемых на Марс. В процессе численного моделирования предполагается, что начальная скорость входа КА в атмосферу близка к первой космической скорости движения космических аппаратов на орбите Марса и равна V(0)=3,3 км/с. Начальная высота спуска соответствует верхней границе атмосферы Марса и равна H(0)=100 км. Площадь миделя равна s=1.5 м². Высота КА составляет 1,5 м. Анализ численных результатов интегрирования системы дифференциальных уравнений (1)-(3) начнём с рассмотрения задачи о влиянии величины начального угла входа на параметры движения центра масс КА. При этом предполагается, что КА производит спуск в атмосфере Марса при вращающемся тормозном винте. Винт имеет две симметричные лопасти. Длина одной лопасти равна 0,7 м. Масса КА принимается равной m=580 кг. На рис. 1 представлено изменение скорости движения КА (рис. 1а), угла наклона траектории (рис. 1b) и высоты полёта КА (рис. 1с) в зависимости от времени спуска зонда в атмосфере.

При этом сплошные кривые на рис. 1 были получены при численном интегрировании динамической системы (1)-(3) при $\theta(t) = -0,04$ рад. Штрих-пунктирные кривые были получены аналогично при $\theta(t) = -0,08$ рад. Пунктирные кривые были получены аналогичным образом при $\theta(t) = -0,12$ рад. Из данных, приведённых на рис.1, следует, что увеличение модуля угла наклона траектории приводит к более интенсивным ростом модуля угла наклона траектории и более интенсивным ростом модуля угла наклона траектории и более интенсивным уменьшением высоты полёта.

Отметим, что величина угла входа стабилизируется, достигая значения -1,6 рад. Например, если при $\theta(t) = -0,12$ рад скорость 1км/с достигается на 100 с полёта, то при $\theta(t) = -0,08$ рад скорость 1км/с достигается только приблизительно на 130 с, а при $\theta(t) = -0,04$ рад скорость 1км/с достигается приблизительно на 200 с полёта. Кроме того, КА достигает высоты 50 км при $\theta(t) = -0,12$ рад приблизительно за 220 с полёта. При этом КА достигает высоты 50 км при $\theta(t) = -0,08$ рад приблизительно за 250 с полёта, а при $\theta(t) = -0,04$ рад КА достигает высоты 50 км за 335 с полёта.

Рис. 1. Изменение характеристик плоского движения центра масс КА в атмосфере Марса при различных значениях угла наклона траектории

Кроме того, были произведены расчёты и получены графики изменения боковой скорости, боковой дальности и продольной дальности от времени полёта КА в атмосфере Марса. Некоторые численные результаты показаны на рис. 2.

Рис. 2. Изменение боковой скорости, боковой дальности и продольной дальности от времени при спуске КА атмосфере Марса

При этом начальная боковая скорость (рис. 2a) была равна 200 м/с, а начальные значения боковой и продольной дальности (рис. 2b, рис. 2c) равны нулю.

Заключение. В представленной работе представлены результаты количественного анализа численных данных, описывающих движение центра масс космического зонда с бортовым тормозным

устройством в виде двулопастного винта. Анализ полученных в работе численных результатов показал, что применение винта увеличивает скорость торможения космического зонда по сравнению с использованием конструкции, не содержащей винт. При этом применение свободновращающегося винта приводит (по сравнению с применением конструкции, не содержащей винт) к более быстрому уменьшению скорости КА. Увеличение размера лопасти винта усиливает силу тяги винта. В целом, анализ численных результатов показал, что применение конструкции КА, содержащей свободновращающийся винт, является эффективным и простым способом увеличения скорости торможения КА до требуемых на практике значений.

Кроме того, в работе анализировалось влияние величины начального значения угла наклона траектории и массы КА на изменение параметров его движения. Результаты численного моделирования показывают, что скорость V и угол наклона траектории θ при спуске КА в атмосфере Марса на интервалах своего существенного изменения близки к линейным зависимостям. В работе предполагается, что плотность атмосферы Марса совершает малые случайные флуктуации в процессе спуска зонда, подчиняющиеся нормальному закону распределения.

Следует отметить, что содержащиеся в данной работе численные результаты могут быть использованы при проектировании перспективных космических аппаратов, осуществляющих спуск в атмосфере Марса и имеющих на борту тормозной винт.

Библиографический список

1. L. Grossman, "Ingenuity is still flying on Mars. Here's what the helicopter is up to," Science News, December 10, 2021.

2. Ярошевский, В.А. Движение неуправляемого тела в атмосфере / В.А. Ярошевский. – Москва: Машиностроение, 1978. – 168 с. 3. Ярошевский, В.А. Вход в атмосферу космических летательных аппаратов / В.А. Ярошевский. – Москва: Наука. Физ.-мат. лит., 1988. – 336 с.

УДК 519.711.2

Селезнева Л.А., Крамлих А.В.

РЕАЛИЗАЦИЯ И ИССЛЕДОВАНИЕ АЛГОРИТМА ОПРЕДЕЛЕНИЯ ОРИЕНТАЦИИ НАНОСПУТНИКА НА ОСНОВЕ ФИЛЬТРА КАЛМАНА

Введение. В настоящее время особое внимание уделяется спутникам формата Cubesat (кубсат). Кубсаты, несмотря на свои небольшие размеры, позволяют многим университетам и частным компаниям реализовывать полноценные научные миссии. Так, например, в Самарском Университете на межвузовской кафедре космических исследований запущен наноспутник SamSat-ION. А наноспутники CubeSX HSE и CubeSX Sirius HSE стали платформой для испытаний сверхлёгкой оптики, разработанной на кафедре технической кибернетики.

Большинство наноспутников оснащено системой ориентации и управления движением, поскольку зачастую требуется привязка научных измерений к положению наноспутника в пространстве. В данной работе рассматривается построение алгоритма определения ориентации наноспутника по измерениям магнитометра и гироскопа с использованием расширенного фильтра Калмана.

Математическая модель движения наноспутника $f(x_k, t_k)$ описывается динамическими уравнениями Эйлера (с учётом гравитационного и аэродинамического моментов внешних сил), а также кинематическими соотношениями [1].