Баринова Е.В., Тимбай И.А.

АНАЛИЗ ВЛИЯНИЯ НАЧАЛЬНЫХ УСЛОВИЙ НА УГЛОВОЕ ДВИЖЕНИЕ СПУСКАЕМОГО АППАРАТА СЕГМЕНТАЛЬНО-КОНИЧЕСКОЙ ФОРМЫ ПРИ ВХОДЕ В АТМОСФЕРУ

Рассматривается пространственное движение неуправляемого осесимметричного спускаемого аппарата (СА) относительно центра масс на верхнем участке траектории спуска в атмосферу, когда можно пренебречь изменением скорости центра масс, угла наклона траектории, гравитационным моментом и аэродинамическим демпфированием. Анализируется влияние начальных условий утлового движения СА сегментально-конической формы на возникновение переходных режимов движения, под которыми понимаются случаи, когда в процессе снижения СА вращательное движение переходит в колебательное, «скачкообразно» изменяются характеристики колебательного движения. При этом СА может продолжить движение, как носовой так и хвостовой частью вперёд. Движение хвостовой частью вперёд может привести к таким нежслательным эффектам, как, например. прогар теплозащитного покрытия, рассеивание траскторий. нераскрытис парашюта.

Характер движения СА относительно центра масс во многом определяется формой зависимости восстанавливающего момента от угла атаки, которая является нечётной функцией и в общем случае аппроксимируется нечётным рядом Фурьс по углу атаки. В [1 - 4] рассмотрены переходные режимы движения СА с синусоидальной и бигармонической характеристиками восстанавливающего момента. У аппаратов сегментально-конической формы в зависимости от положения центра масс может быть от двух до четырёх балансировочных положений по углу атаки При наличии трёх балансировочных положений по углу атаки для удовлетворительной аппроксимации характеристики восстанавливающего момента необходимо удерживать не менее двух гармоник в разложении ряда Фурье. При наличии четырёх балансировочных положений – не менсе трёх гармоник.

В данной работе рассматривается движение СА, характеристика восстанавливающего момента $m_{\alpha}(\alpha)$ которого представляется в виде тригармонической зависимости:

$$m_{\alpha}(\alpha) = a(z)\sin\alpha + b(z)\sin 2\alpha + c(z)\sin 3\alpha$$
,

где а - пространственный угол атаки (угол между продольной осью СА и вектором

скорости центра масс); a(z), b(z), c(z) – коэффициенты характеристики восстанавливающего момента; z – медленно меняющийся параметр, переменность которого связана с медленным изменением плотности атмосферы в процессе спуска.

Коэффициенты характеристики восстанавливающего момента a(z), b(z), c(z),если зависимость плотности атмосферы от высоты аппроксимировать экспонентой, могут быть представлены в виде [3].

$$a = a_0 z$$
, $b = b_0 z$, $c = c_0 z$, $z = e^{\beta t}$,

$$a_{0} = -m_{a}Sl\rho_{0}\frac{V_{0}^{2}}{2I_{a}}, \quad b_{0} = -m_{b}Sl\rho_{0}\frac{V_{0}^{2}}{2I_{a}}, \quad c_{0} = -m_{c}Sl\rho_{0}\frac{V_{0}^{2}}{2I_{a}}, \quad \beta = \lambda V_{0}\left|\sin\theta_{0}\right|.$$

Здесь m_a, m_b, m_c – постоянные коэффициенты; S – характерная площадь; l – характерный размер; l_n – поперечный момент инерции СА; V_0 – начальная скорость; θ_0 – начальный угол наклона трасктории; ρ_0 – плотность атмосферы в начальный момент времени t = 0; λ – логарифмический градиент плотности атмосферы по высоте.

Рассмотрим влияние начальной ориентации и величины вектора кинетического момента на возникновение переходных режимов углового движения на примере ультралёгкого сегментально-конического СА со следующими характеристиками: $S = 0,1257 \ m^2$, $l = 0,4 \ m$, масса $m = 3 \ \kappa_z$, $I_a = 0,04 \ \kappa_z \ m^2$, продольный момент инерции $I_x = 0,035 \ \kappa_z \ m^2$. Для условий входа в атмосферу: $V_0 = 7830 \ m/c$, $\theta_0 = -1,5^0$, $\lambda = 1/7000 \ m^{-1}$, начальная высота $H_0 = 150000 \ m$. Зависимости коэффициента характеристики восстанавливающего момента относительно центра масс от угла атаки при различных положениях центра масс \overline{x}_T для СА сегментально-конической формы были взяты из [4] (рис. 1). Пунктиром приведена аппроксимация тригармонической зависимостью, в таблице 1 – соответствующие значения коэффициентов m_a, m_b, m_c .

Рис 1 Зависимости коэффициента характеристики восстанавливающего момента от угла атаки

Таблица 1 — Значения коэффициентов m_o, m_b, m_c при различных положениях

центра	масс
--------	------

\overline{x}_{T}	m _o	mb	m _c
0,33	-0,0991	0,0122	-0,0241
0,37	-0.0624	0	-0,0224
0,41	-0,0183	-0,0106	-0,0253
0,45	0,0141	-0,0201	-0,0280
0,49	0,0527	-0,0264	-0,0335

По графику характеристики восстанавливающего момента можно определить число балансировочных положений по углу атаки в случае плоского движения (характеристика восстанавливающего момента принимает нулевые значения), а также сделать вывод об их устойчивости. Если характеристика меняет знак с положительного на отрицательный, то положение равновесия устойчивое, если с отрицательного на положительный – неустойчивое. Когда СА закручен вокруг продольной оси (пространственное движение), он может иметь или одно устойчивое балансировочное положение по углу атаки или два устойчивых и одно неустойчивое балансировочных положения по углу атаки. Причём два устойчивых положения равновесия в случае пространственного движения могут появляться только у СА, имеющих два устойчивых положения равновесия в случае плоского движения [6]

Как видно на рисунке 1, при относительном положении центра масс $\bar{x}_7 = 0,33$ или $\bar{x}_7 = 0,37$ СА имеет только одну устойчивую балансировку при $\alpha = 0$. Поэтому как в случае плоского, так и в случае пространственного движения он будет совершать коле-

бания относительно вектора скорости носовой частью.

Если при наличии двух устойчивых балансировок СА совершает колебания в окрестности одного из устойчивых балансировочных положений в начальный момент времени, то и при дальнейшем движении он будет совершать колебания в окрестности этого балансировочного положения. Это справедливо как для плоского, так и для пространственного случаев движения. Обеспечить колебания СА в окрестности одного из устойчивых положений равновесия в начальный момент времени можно заданием начальных условий движения. В случае пространственного движения – ориентацией всктора кинетического момента.

Когда СА имеет две устойчивые балансировки и при этом совершает колебания с большой амплитудой относительно неустойчивого положения равновесия или вращается, то при переходных режимах возникает вопрос: продолжит СА совершать движение носовой или хвостовой частью относительно вектора скорости. В случае плоского движения для вычисления отношения вероятности движения носовой части P_1 к движению хвостовой части P_2 можно использовать интегральную формулу, приведённую в [2]:

где α . – неустойчивое балансировочное положение по углу атаки, α_1 – переменная интегрирования.

Если аппроксимировать характеристику восстанавливающего момента тригармонической зависимостью, то вместо интегральной формулы для вычисления вероятности можно использовать аналитические выражения, приведённые в [5]. Расчётом по этим формулам были получены следующие результаты: при положении центра масс \bar{x}_{T} =0,41 вероятность колебаний носовой частью относительно вектора скорости в случае плоского движения равна 82,4 %, при \bar{x}_{T} =0,45 – 27,7 %, при \bar{x}_{T} =0,49 – 13,1 %.

В [6] получены аналитические выражения для вычисления всроятности в случае пространственного движения при аппроксимации характеристики восстанавливающего момента тригармонической зависимостью, а также формула для вычисления минимальной начальной всличины кинетического момента, при которой не реализуются переходные режимы углового движения СА в процессе снижения.

В таблицах 2*a*, 3*a*, 4*a* приведены вероятности реализации колебаний носовой частью относительно вектора скорости при различных углах α_{κ} , α_{ν} , которые характеризуют соответственно положение вектора кинетического момента относительно продольной оси СА и относительно вектора скорости центра масс на границе атмосферы Значения вероятности были посчитаны по формулам, приведённым в [6]. Значения «100» и «0» поставлены в тех случаях, когда обеспечивается движение только носовой или хвостовой частью СА, соответственно, то есть задача выбора области продолжения движения не возникает.

Для случаев, когда исключить переходные режимы движения заданием начальной ориентации вектора кинетического момента не представляется возможным, предлагается увеличивать начальную величину кинетического момента. В таблицах 26, 36, 46 по формуле, приведённой в [6], для различных углов α_{κ} , α_{ν} посчитаны значения минимальной начальной величины кинетического момента, при которой не реализуются переходные режимы относительного движения СА в процессе снижения. Прочерк поставлен там, где исключение переходных режимов движения обеспечено начальной ориентацией вектора кинетического момента.

Таблица 2 – Определение начальных условий движения при $\bar{x}_r = 0,41$

 а) вероятность колебаний (в процентах) нособой части относительно вектора скорости

б) минимальная начальная всличина кинетического момента (в кг м²/с)

ar	0	0,2	0,4	0,6	0,8	1	1,2	1,4	ar	0	0,2	0,4	0,6	0,8	1	1,2	1,4
0	100	100	100	100	100	100	100	0	0		-	-	-		-	-	
0,2	100	100	100	100	100	100	100	91,7	0,2	-		-	~	-	-	-	0,201
0,4	100	100	100	100	100	100	100	83,1	0,4	-	-		-	-	-	~	0,207
0,6	100	100	100	100	100	100	100	79,4	0,6	-	~		-	-		-	0,208
0,8	100	100	100	100	100	100	100	78,5	0,8		-			-	-	~	0,220
1,0	100	100	100	100	100	100	78,0	78,8	1.0	-	-	-		-	-	0,169	0,246
1,2	100	100	100	100	100	78,0	78,5	79.9	1,2		-	-	-	-	0,169	0,207	0,300
1.4	0	91,7	83.1	79.4	78,5	78,8	79.9	81,1	1,4	-	0,201	0,207	0,208	0,220	0,246	0,300	0,441
1.6	Û	0	0	84,7	81,8	81,4	82,3	82,4	1,6	-	-		0,219	0,219	0,279	0,403	0,781
1,8	0	0	0	99,9	89,0	85,5	87,3	83.1	1,8		-	-	0,166	0,174	0,199	0,257	0,381
2,0	0	0	0	0	100	89,9	88,2	83,7	2,0	-	-	-			0,158	0,194	0,261
2.2	0	0	0	0	100	95,9	89.7	84,6	2,2	-	-	-	-	-	0,134	0,160	0.203
2,4	0	0	Û	0	0	0	100	87.7	2,4	-	-	-	-	-	-	-	0,170
2,6	0	0	0	0	0	0	0	0	2,6	-	-		-	-	-	-	-
2,8	0	0	0	0	0	Û	0	0	2,8	-	~	-	~	-		-	-
3.0	0	0	0	0	0	0	0	0	3.0	~	~	-		-	-		-

Таблица 3 – Определение начальных условий движения при $\bar{x}_r = 0,45$

а) вероятность колебаний (в процентах) носовой части относительно вектора

б) минимальная начальная величина кинетического момента (в $\kappa_2 \cdot M^2/c$)

скорости

																and the second s	
ar	٥	0,2	0,4	0,6	0,8	1	1,2	1,4	ar	0	0,2	0,4	0,6	0,8	1	1,2	1,4
0	100	100	100	100	100	100	0	0	0	-	-	-	-	-	-	-	-
0,2	100	100	100	100	100	100	0	0	0,2	-		-	-	-	-	-	-
0,4	100	100	100	100	100	17,4	0	0	0,4		-	-	-	-	0,232	-	-
0,6	100	100	100	100	100	25,4	25,2	0	0,6	-	-		-	-	0,229	0,143	-
0,8	100	100	100	100	23,5	27,8	27,7	22,5	0,8	-	-		-	0,206	0,239	0,214	0,118
1,0	100	100	17,4	25,4	27,8	28,3	28,8	28,0	1.0	~	-	0,232	0,229	0,239	0,263	0,343	0,171
1.2	0	0	0	25,2	27,7	28,8	28.6	28,4	1,2	-	-	-	0,143	0,214	0,343	0,395	0,352
1,4	0	0	0	0	22,5	28,0	28,4	27,6	1,4	-	-	-	-	0,118	0,171	0,352	0,842
1,6	0	0	0	0	0	10,0	26,2	27.4	1,6	-	-	-		-	0,107	0,155	0,304
1,8	0	0	0	0	0	0	0	27	1.8	-	-	-	-	-			0,152
2,0	0	0	0	0	0	0	0	0	2,0		-	-	-	-	-	-	
2,2	0	0	0	0	0	0	0	0	2.2	-		-	-	-	-		-
2,4	C	0	0	0	0	0	0	Ō	2,4	-		-	-	-	-	-	-
2,6	Ó	0	0	0	0	0	0	0	2,6	-	-	-	-	-	-	-	-
2,8	0	0	0	0	Û	0	0	0	2.8	-	-	-	-	-	-	-	
3,0	Û	0	0	0	0	0	0	0	3.0	-	- 1	-	-	-	-	-	-

Таблица 4 – Определение начальных условий движения при $\bar{x}_r = 0,49$

а) вероятность колебаний (в процентах) б) минимальная начальная величина кинетиносовой части относительно вектора скорости

ческого момента (в $\kappa c \cdot m^2/c$)

				- P													
ar	0	0,2	0,4	0,6	0,8	1	1,2	1,4	ar	0	0,2	0,4	0,6	0,8	1	1,2	1,4
0	100	100	100	100	100	0	0	0	0	-	- 1	-	-	-		-	-
0,2	100	100	100	100	100	0	0	0	0,2	-		-		-	-	-	-
0,4	100	100	100	100	0,6	0	0	0	0,4	-		-	-	0,353	-		-
0,6	100	100	100	0,7	6,4	8,5	0	0	0,6	-	***	-	0,337	0,369	0,436	-	-
0,8	100	100	0,6	6,4	9,2	11,2	0	0	0,8		-	0,353	0,369	0,399	0,459	-	-
1.0	0	0	0	8,5	11,2	12,0	11,7	0	1.0	-	-	-	0,436	0,459	0,511	0,653	-
1,2	0	0	0	0	0	11,7	13,0	14,1	1,2	~	-	-	-	-	0,653	0,767	0,420
1.4	0	Û	0	0	0	0	14,1	12,9	1.4	-	-	-	-	-	-	0,420	1,632
1.6	0	0	0	0	0	0	0	12,6	1,6	-	-	-	-	-	-	-	0,375
1.8	0	0	0	0	0	0	0	0	1,8	-	-	-	-	-		-	-
2,0	0	0	0	0	0	0	0	0	2,0			-	-	-	-	-	-
2,2	0	0	0	Û	0	0	0	0	2,2			~	-	-	-	-	-
2,4	0	0	0	0	0	0	0	Ô	2,4	-	-	-	-	-	-		-
2,6	0	Û	0	0	0	0	0	0	2,6	-	~		-	-	-	-	-
2,8	0	0	0	0	0	0	0	0	2,8	-	-	~		-	-	-	-
3,0	0	0	0	0	θ	0	0	0	3,0		-	-		-			-

Таким образом, в работс проведён анализ влияния начальных условий движения на возникновение переходных режимов углового движения СА сегментальноконической формы на начальном участке траектории в атмосфере. Показано, что исключить переходные режимы движения, то есть обеспечить заданное движение СА. можно путём выбора положения центра масс, заданием начальной ориентации вектора кинетического момента или заданием начальной величины всктора кинетического момента.

Работа выполнена в рамках гранта Российского фонда фундаментальных исследований (№ 11-08-00644-а).

Библиографический список

- Кузмак Г.Е. Динамика неуправляемого движения летательных аппаратов при входе в атмосферу [Текст]/Г.Е. Кузмак – М.: Наука, 1970.
- Ярошевский В.А. Движение неуправляемого тела в атмосфере [Текст]/ В А. Ярошевский – М.: Машиностроение, 1978.
- Асланов В.С., Тимбай И.А. Переходные режимы углового движения КА на верхнем участке траектории спуска [Текст]/В.С Асланов, И.А. Тимбай// Космические исследования 2001. Т. 35. № 3. с. 279 – 286.
- 4 Асланов В.С. Пространственное движение тела при спуске в атмосфере. [Текст]/ В С. Асланов – М.: ФИЗМАТЛИТ, 2004.
- 5. Баринова Е. В , Тимбай И. А. Исследование плоского движения относительно центра масс спускаемого аппарата с тригармонической моментной характеристикой при входе в атмосферу [текст] // Вестник Самарского государственного аэрокосмического университета имени академика С. П. Королёва (национального исследовательского университета). Самара: СГАУ, 2010. № 1 (21). с. 9 19.
- 6. Баринова Е. В., Тимбай И. А. Исследование пространственного движения относительно центра масс спускаемого аппарата с тригармонической моментной характеристикой при входе в атмосферу [текст] // Вестник Самарского государственного аэрокосмического университета имени академика С П. Королёва (национального исследовательского университета). – Самара: СГАУ, 2010. – № 4 (24). – с. 11 – 19.