МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ
«САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ
УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА»
(САМАРСКИЙ УНИВЕРСИТЕТ)

В.А. АЛЯКИН, Р.Ф. УЗБЕКОВ

ТЕСТЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

Рекомендовано редакционно-издательским советом федерального государственного автономного образовательного учреждения высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева» в качестве практикума для обучающихся по основной образовательной программе по специальности 01.05.01 Фундаментальные математика и механика

С А М А Р А Издательство Самарского университета 2023

УДК 517.1(075) ББК В161я7 А604

Рецензенты: канд. физ.-мат. наук, доц. М. Е. Φ е д и н а, канд. физ.-мат. наук, доц. Е. А. С а в и н о в

Алякин, Владимир Алексеевич

А604 Тесты по математическому анализу. Кратные и криволинейные интегралы: практикум / В.А. Алякин, Р.Ф. Узбеков. – Самара: Издательство Самарского университета, 2023. – 128 с.

ISBN 978-5-7883-1888-2

Практикум состоит из краткой теории и тестовых заданий по курсу «Математический анализ». Каждый тест содержит по 20 заданий. В основном к каждой теме приводится по четыре теста. Для типичных и трудных задач в начале каждой темы приводятся схемы для решений или указания к решениям.

Предназначен для обучающихся второго курса специальности 01.05.01 Фундаментальные математика и механика.

Подготовлен на кафедре функционального анализа и теории функций.

УДК 517.1(075) ББК В161я7

ОГЛАВЛЕНИЕ

Тема 1. Функции с ограниченной вариацией	1
Тема 2. Интеграл Римана-Стилтьеса	3
Тема 3. Криволинейные интегралы I и II рода	
и их приложения 40	3
Тема 4. Кратные интегралы	3
Тема 5. Замена в кратных интегралах 89	5
Тема 6. Формулы Грина, Остроградского, Стокса	7
Примечания	3
Список литературы	5

Тема 1. Функции с ограниченной вариацией

Tect 1

1. Пусть

$$f(x) = \begin{cases} x, & 0 \le x < 1, \\ 0, & x = 1. \end{cases}$$

Р-произвольное разбиение отрезка [0,1]. Чему равна $V_P(f)$? Выберите правильный вариант ответа.

- a. $2x_{n-1}$
- b. 1 c. x_{n-1} d. 0

2. Пусть

$$g(x) = \begin{cases} 0, & x = 0, \\ 1 - x, & 0 < x < 1, \\ 3, & x = 1. \end{cases}$$

Р-произвольное разбиение отрезка [0,1]. Чему равна $V_P(f)$? Выберите правильный вариант ответа.

- a. $2(x_{n-1}-x_1)+3$ b. 5 c. $(x_{n-1}-x_1)+3$
- d. 7

3. Установите соответствие между функциями и значениями их полных вариаций на отрезке [0, 1]. Заполните таблицу.

$$f(x) = \begin{cases} x, & 0 \le x < 1, \\ 0, & x = 1; \end{cases}$$

$$g(x) = \begin{cases} 0, & x = 0, \\ 1 - x, & 0 < x < 1, \\ 3, & x = 1. \end{cases}$$

1. 2 2. 5 3. 3

f(x)	g(x)

- 4. Укажите свойство, которым функции с ограниченной вариацией не обладают.
- a° . Теорема об арифметике.
- b° . Аддитивность.
- c° . Ограниченность.
- d° . Линейность.
- 5. Укажите функции, являющиеся ФОВ на заданных промежутках. Если все функции являются ФОВ, в ответе напишите 4.

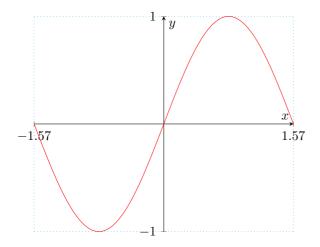
a.
$$f(x) = \frac{1}{x}, \quad x \in (0; 15)$$

b.
$$f(x) = |x|, x \in [-5; 5]$$

c.
$$f(x) = 3^x$$
, $x \in [0, 2]$

$$\begin{array}{ll} \text{a. } f(x) = \frac{1}{x}, & x \in (0;15) \\ \text{b. } f(x) = |x|, & x \in [-5;5] \\ \text{c. } f(x) = 3^x, & x \in [0;2] \\ \text{d. } f(x) = x^2 - 2, & x \in [0;4] \end{array}$$

- 6. Выберите верное утверждение.
- а. Непрерывная на отрезке [a;b] функция f(x) имеет ограниченную вариацию на том же отрезке.
- b. Ограниченная на отрезке [a;b] функция f(x) имеет ограниченную вариацию на том же отрезке.
- с. Определённая на отрезке [a;b] функция f(x) имеет ограниченную вариацию на том же отрезке.
- d. Монотонная на отрезке [a;b] функция f(x) имеет ограниченную вариацию на том же отрезке.
 - 7. Используя график функции определите значение $\int_{-\pi}^{\frac{\pi}{3}} f$.



- 8. Укажите функции с одинаковой полной вариацией.
- a. $f(x) = \ln x$, $x \in [1; e]$ b. $f(x) = x^2$, $x \in [0; 1]$

- c. $f(x) = \sqrt{x}$, $x \in [4; 9]$ d. f(x) = x, $x \in [2; 3]$
- 9. Установите соответствие между функциями и значениями их вариаций на отрезках. Заполните таблицу.
- a. $f(x) = |\cos x|, \quad x \in [0; 4\pi]$ b. $f(x) = |1 x^2|, \quad x \in [-2; 2]$
- 1.8
- 2.4
- 3. другой ответ

a	b

- 10. Укажите функции с одинаковой полной вариацией на [1;e]. Если все функции имеют одинаковую вариацию на заданном промежутке, то в ответе укажите ее значение.
- a. $f(x) = \ln x$
- b. $f(x) = -\ln x$
- c. $f(x) = \frac{1}{2} \ln x^2$

d.
$$f(x) = \ln(2x - e)$$

11. Для какой функции её полная вариация на заданном отрезке равна 12?Перечислите все функции в ответе.

$$\begin{array}{ll} \text{a. } f(x) = \cos x, & x \in [0; 2\pi] \\ \text{b. } f(x) = \operatorname{sign} \sin x, & x \in [0; 6\pi] \\ \text{c. } f(x) = |\sin x|, & x \in [0; 2\pi] \\ \text{d. } f(x) = \cos^2 x, & x \in [0; 4\pi] \end{array}$$

12. Дана функция

$$f(x) = \begin{cases} -x - 1, & x \in [-1; 0], \\ x - x^2, & x \in (0; 1]. \end{cases}$$

Какова её полная вариация на отрезке [-1;1]? a. 4,5 b. 2 c. 2,5 d. 6

13. Продолжите предложение.

"Для того, чтобы f(x) была функцией с ограниченной вариацией на отрезке [a;b] необходимо и достаточно, чтобы f(x) была бы представима в виде разности двух..."

- а. монотонно возрастающих функций.
- b. монотонно убывающих функций.
- с. монотонных функций.
- d. функций.
- 14. Функция f(x) = |x-2| с ограниченной вариацией на отрезке [0;4] представлена в виде разности двух возрастающих функций, т.е f(x) = g(x) h(x). Восполните пробелы. Заполните таблицу.

$$f(x) = \begin{cases} x, & x \in [0; 2], \\ a)..., & x \in (2; 4]; \end{cases}$$

$$h(x) = \begin{cases} b)..., & x \in [0; 2], \\ -2, & x \in (2; 4]. \end{cases}$$

1. x-2 2. 2x+2 3. x-4 4. 2x+4

b \mathbf{a}

15. Определите значение полной вариации данной функции на отрезке [-2;1],если

$$f(x) = \begin{cases} x^3, & x \in [-2; 0), \\ -2, & x = 0, \\ -x^2, & x \in (0; 1]. \end{cases}$$

16. Пусть в задании 15 значение в точке x = 0 равно a. Чему должно быть равно a, чтобы $\dot{V}_2 f$ была бы наименьшей ?

$$f(x) = \begin{cases} x^3, & x \in [-2; 0), \\ a, & x = 0, \\ -x^2, & x \in (0; 1]. \end{cases}$$

- 17. Представьте функцию $f(x) = x e^{-x}, x \in [0, 3]$ с ограниченной вариацией в виде разности двух возрастающих функций.
 - 18. Доказать, что $f \notin BV([0;1])$, если

$$f(x) = \begin{cases} x \sin \frac{\pi}{x}, & x \in (0; 1], \\ 0, & x = 0. \end{cases}$$

19. Пусть кривая l задана параметрически

$$l: \begin{cases} x = \cos^3 t, \\ y = \sin^3 t; \end{cases}$$

 $t \in [0; 2\pi]$. Является ли данная кривая спрямляемой? Ответьте да или нет. Ответ обоснуйте.

20. Докажите, что произведение двух функций f(x) и g(x) с ограниченной вариацией на отрезке [a;b] есть функция с ограниченной вариацией на том же отрезке.

Tect 2

1. Пусть

$$f(x) = \begin{cases} x^6, & 0 \le x < 1, \\ 0, & x = 1; \end{cases}$$

Р-произвольное разбиение отрезка [0,1]. Чему равна $V_P(f)$? Выберите правильный вариант ответа.

a. -1 b.
$$(x_n)^6$$
 c. $2(x_{n-1})^6$ d. 1

2. Пусть

$$g(x) = \begin{cases} 0, & x = 0, \\ 2 - x, & 0 < x < 2, \\ 4, & x = 2. \end{cases}$$

Р-произвольное разбиение отрезка [0,2]. Чему равна $V_P(f)$? Выберите правильный вариант ответа.

a.
$$2(x_{n-1}-x_1)+4$$
 b. 4 c. $(x_{n-1}-x_1)+4$ d. 6

3. Установите соответствие между функциями и значениями их полных вариаций. Заполните таблицу.

 $\int x^6 \quad 0 < x < 1$

$$f(x) = \begin{cases} x^6, & 0 \le x < 1, \\ 0, & x = 1; \end{cases}$$

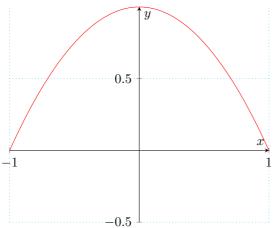
$$g(x) = \begin{cases} 0, & x = 0, \\ 2 - x, & 0 < x < 2, \\ 4, & x = 2. \end{cases}$$

1. 2 2. 1 3. 6

f(x)	g(x)

- 4. Укажите свойство, которым обладают функции с ограниченной вариацией.
- a° . Линейность.
- b° . Теорема о среднем.
- c° . Аддитивность.
- d° . Транзитивность.
- 5. Укажите функции, являющиеся ФОВ на заданных промежутках. Если все функции являются ФОВ, в ответе напишите 4.
- a. $f(x) = \frac{x-2}{x+1}$, $x \in [10; 25]$
- b. f(x) = x, $x \in [0; 10]$ c. f(x) = [x], $x \in [0; 15]$
- d. $f(x) = \ln x$, $x \in [e; 20]$
 - 6. Выберите неверное утверждение.
- а. Кусочно-монотонная на отрезке [a;b] функция f(x) имеет ограниченную вариацию на том же отрезке.
- b. Ограниченная на отрезке [a; b] функция f(x) имеет ограниченную вариацию на том же отрезке.
- с. Липшицева на отрезке [a;b] функция f(x) имеет ограниченную вариацию на том же отрезке.
- d. Монотонная на отрезке [a;b] функция f(x) имеет ограниченную вариацию на том же отрезке.

7. Используя график функции определите значение $\stackrel{1}{V}_{\downarrow}f$.



- 8. Укажите функции с одинаковой полной вариацией.

- a. $f(x) = 2^x$, $x \in [0; 1]$ b. $f(x) = 4^x$, $x \in [0; \frac{1}{2}]$ c. $f(x) = e^x$, $x \in [\ln 2; \ln 4]$
- d. $f(x) = x^4$, $x \in [1; 2]$
- 9. Установите соответствие между функциями и значениями их вариаций на отрезках. Заполните таблицу.

a.
$$f(x) = \sin x$$
, $x \in [0; 2\pi]$
b. $f(x) = |\sin x|$, $x \in [0; 10\pi]$

- 1. 4
- 2. 20
- 3. 0

a	b

10. Укажите функции с одинаковой полной вариацией на [0; 2]. Если все функции имеют одинаковую вариацию на заданном промежутке, то в ответе укажите ее значение.

a.
$$f(x) = (2x - 4)^2$$

b.
$$f(x) = x^2 - 4$$

c.
$$f(x) = -x^2 + 4$$

d.
$$f(x) = x + 2$$

11. Для какой функции её полная вариация на заданном отрезке равна 8?

Перечислите все функции в ответе.

a.
$$f(x) = \cos x, \qquad x \in [0; 2\pi]$$

b.
$$f(x) = sign \sin x, \quad x \in [0; 6\pi]$$

c.
$$f(x) = |\sin x|$$
, $x \in [0; 2\pi]$
d. $f(x) = \cos^2 x$, $x \in [0; 4\pi]$

d.
$$f(x) = \cos^2 x$$
, $x \in [0; 4\pi]$

12. Дана функция

$$f(x) = \begin{cases} |x+1|, & x \in [-2; 0), \\ -x+3, & x \in [0; 2]. \end{cases}$$

Какова ее полная вариация на отрезке [-2;2]?

c. 3.5 a. 4.5 b. 1 d. 6

- 13. Продолжите предложение.
- "Для того чтобы f(x) была функцией с ограниченной вариацией на отрезке [a;b] необходимо и достаточно, чтобы f(x) была бы представима в виде..."
- а. разности монотонно убывающих функций
- суммы монотонно возрастающих функций
- с. разности монотонно возрастающих функций
- d. суммы монотонно убывающих функций
- 14. Функция $f(x) = 9 x^2$ с ограниченной вариацией на отрезке [-3; 3] представлена в виде разности двух возрастающих функций, т.е f(x) = q(x) - h(x). Восполните пробелы. Заполните таблицу.

$$g(x) = \begin{cases} 9 - x^2, & x \in [-3; 0], \\ a)..., & x \in (0; 3]; \end{cases}$$

$$h(x) = \begin{cases} b)..., & x \in [-3; 0], \\ 2x^2, & x \in (0; 3]. \end{cases}$$

2.
$$9 + x^2$$
 3. 0 4. $9 - x^2$

4.
$$9 - x^2$$

15. Определите значение полной вариации данной функции на отрезке [0; 2],если

$$f(x) = \begin{cases} x^2, & x \in [0; 1), \\ 0, & x = 1, \\ x - 1, & x \in (1; 2]. \end{cases}$$

16. Пусть в задании 15 значение в точке x=1 равно a.Чему должно быть равно a, чтобы $V_0^2 f$ была бы наименьшей?

$$f(x) = \begin{cases} x^6, & x \in [0; 1), \\ a, & x = 1, \\ x - 1, & x \in (1; 2]. \end{cases}$$

17. Представьте функцию с ограниченной вариацией в виде разности двух возрастающих функций, если

$$f(x) = \ln(x^2 + 4), \qquad x \in [-4; 4].$$

18. Доказать, что $f \notin BV([0;1])$, если

$$f(x) = \begin{cases} 0, & x = 0, \\ \operatorname{sign} \sin \frac{\pi}{x}, & x \in (0; 1]. \end{cases}$$

19. Пусть кривая l задана параметрически

$$l: \begin{cases} x = t(2-t), \\ y = t^2(2-t); \end{cases} \quad t \in [-16; 16]$$

Является ли данная кривая спрямляемой? Ответьте да или нет. Ответ обоснуйте.

20. Доказать, что частное двух функций f(x) и q(x)с ограниченной вариацией на отрезке [a;b] есть функция с ограниченной вариацией на том же отрезке.

Тест 3

- 1. Является ли функция $f(x) = 2^{-x}$ на отрезке [1;4] функцией с ограниченной вариацией?
- а. да, так как функция монотонно возрастает на данном отрезке.
- b. нет, так как функция не представима в виде разности.
- с. да, так как функция является непрерывной на данном отрезке.
- d. нет, так как функция ограничена на данном отрезке.
 - 2. Даны функции

$$f(x) = \begin{cases} \sqrt{x}, & x \in [4; 9), \\ 0, & x = 9, \end{cases}$$

на отрезке [4, 9];

$$g(x) = \begin{cases} x^2, & 0 \le x < 1, \\ 0, & x = 1, \end{cases}$$

на отрезке [0,1].

Определите значения $V_P(f)$ и $V_P(q)$.

Выберите правильные варианты ответа и укажите их в следующем порядке: сначала значение для f(x), затем значение для g(x).

1.
$$(x_{n-1})^2$$

2.
$$2\sqrt{x_{n-1}}$$

$$2. \ 2\sqrt{x_{n-1}}$$
 $3. \ 2(x_{n-1})^2$ $4. \ 2(x_{n-1})$

4.
$$2(x_{n-1})$$

3. Определите значение полной вариации функции f(x) на отрезке [0; 4], если

$$f(x) = \begin{cases} -x^4, & x \in [0; 2), \\ 0, & x = 2, \\ 4, & x \in (2; 4]. \end{cases}$$

Выберите правильный вариант ответа.

- a. 36
- c. $\overline{2}(x_{n-1}-x_1)^4+4$
- d. 42

4. Какие равенства или неравенства выполняются для определённых классов функции с ограниченной вариацией?

a.
$$V_a^b f = |f(b) - f(a)|,$$

- b. $V f \leq K(b-a), \quad K, a, b \in \mathbb{R},$
- c. $V f = V f + V f, \quad a < c < b,$
- - 5. Пусть дана функция

$$g(x) = \begin{cases} 0, x = 0, \\ x - 1, 0 < x < 1, \\ -3, x = 1. \end{cases}$$

на отрезке [0, 1]. Р-произвольное разбиение отрезка [0, 1]. Чему равна $V_P(f)$? Выберите правильный вариант ответа.

a.2
$$(x_{n-1} - x_1) + 3$$
 b. 5
c. $(x_{n-1} - x_1) + 3$ d.3

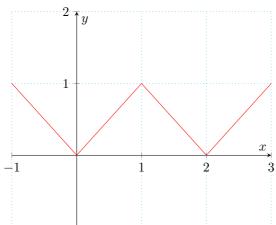
6. Найдите 1. $\stackrel{1}{\sqrt{x}}$. 2. $\stackrel{4}{\sqrt{x}}(x-2)^2$. 3. $\stackrel{1}{\sqrt{y}}9^x$.

В ответе укажите сумму трёх чисел.

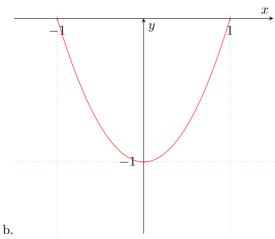
7. Являются ли функции $f(x) = e^{\frac{1}{x}}, x \in [-1; \ln 4]$ и $f(x) = \frac{1}{x^2}, x \in (-4, 4)$ функциями с ограниченной вариацией?

Ответ обоснуйте.

8. Установите соответствие между графиками функций и значениями полной вариации этих функций. Заполните таблицу.



a.



2. 4 1. 3

3. 2

4. 1

- 9. Заполните пропуск: $|f(x)| \in BV[a;b]$... $f(x) \in BV[a;b]$.
- $2. \Leftarrow$ $1. \Rightarrow$
- 10. Функция f(x) = |x+1| с ограниченной вариацией на отрезке [-2;0] представлена в виде разности двух возрастающих функций. Восполните пробелы. Заполните таблицу.

$$f(x) = \begin{cases} x, & x \in [-2; -1], \\ a)..., & x \in (-1; 0]; \end{cases}$$

$$h(x) = \begin{cases} b \\ \dots, & x \in [-2; -1], \\ 1, & x \in (-1; 0]. \end{cases}$$

- 1. x + 2 2. 2x + 2 3. -x 1 4. 2x + 1

a	b

- 11. Выберите верное утверждение.
- а. Полная вариация функции $f(x) = \operatorname{sign} \sin x$ на отрезке $[0; 6\pi]$ равна 6.
- b. Полная вариация функции $f(x) = \cos 2x$ на отрезке $\left[0; \frac{\pi}{4}\right]$ равна
- с. Полная вариация функции $f(x)=\sin\frac{x}{2}$ на отрезке $[0;\pi]$ равна 1. d. Полная вариация функции $f(x)=\cos^2 x$ на отрезке $[0;4\pi]$ равна 16.
- 12. Какая из приведённых функций имеет ограниченную вариацию на промежутке и является липшицевой?

a.
$$f(x) = x^2 + x + 1$$
, $x \in (-1, 1)$

a.
$$f(x) = x^2 + x + 1$$
, $x \in (-1; 1)$ b. $f(x) = \sin \frac{x}{2}$, $x \in (-\pi; \pi)$

- 13. Определите полную вариацию функций

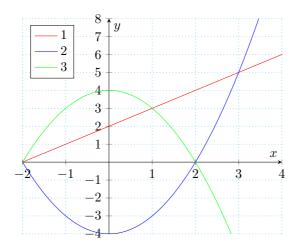
a.
$$f(x) = (x-9)^2$$
, $x \in [0;3]$ b. $f(x) = (8x)^{\frac{1}{3}} + 5$, $x \in [2;38]$ c. $f(x) = -3^{2x}$, $x \in [1;2]$ d. $f(x) = x^2 - 9$, $x \in [0;3]$

c.
$$f(x) = -3^{2x}, \quad x \in [1; 2]$$

d.
$$f(x) = x^2 - 9$$
, $x \in [0; 3]$

Ответьте на вопрос: есть ли среди них функции, значения полной вариации которых равны? В ответе укажите это значение.

14. Определите по графикам, какие функции имеют одинаковую полную вариацию на [0;2]. В ответе укажите номера графиков этих функций.



15. Представьте данную функцию в виде разности двух возрастающих функций на отрезке [0;4].

.

$$f(x) = \begin{cases} -x^4, & x \in [0; 2) \\ 0, & x = 2 \\ 4, & x \in (2; 4] \end{cases}$$

16. Пусть дана функция

$$f(x) = \begin{cases} x^2, & x \in [0; 1), \\ a, & x = 1, \\ x - 1, & x \in (1; 2]. \end{cases}$$

Чему должно быть равно a, чтобы $\bigvee_{0}^{2} f$ приняла значение равное 9?

- 17. Какое утверждение справедливо для функций с ограниченной вариацией?
- а. Функция, имеющая на концах отрезка [a;b] производную, ограниченную на [a;b], является функцией с ограниченной вариацией.
- b. Функция, имеющая во всех точках отрезка [a;b] производную, ограниченную на [a;b], является функцией с ограниченной вариацией.
- с. Функция, имеющая на концах отрезка [a;b] производную, положительную на [a;b], является функцией с ограниченной вариацией.
- d. Функция, имеющая во всех точках отрезка [a;b] производную, положительную на [a;b], является функцией с ограниченной вариацией.
 - 18. Докажите, что функция

$$f(x) = \begin{cases} 0, & x = 0\\ x^2 \cos \frac{\pi}{x}, & x \neq 0 \end{cases}$$

имеет ограниченную вариацию на отрезке [0; 1].

19. Пусть

$$f(x) = \begin{cases} x^{\alpha} \cos x^{\beta}, & x \in (0; 1], \\ 0, & x = 0, \end{cases}$$

где $\alpha \in \mathbb{R}, \beta \geq 0$. При каких значениях параметров α и β функция f(x) принадлежит пространству BV[0;1]?

20. Докажите, что монотонная на отрезке [a;b] функция f(x) имеет ограниченную вариацию на том же отрезке.

Тест 4

- 1. Является ли функция $f(x) = 2^x$ на отрезке [0;6] функцией с ограниченной вариацией ?
- а. да, так как функция является непрерывной на данном отрезке.
- b. нет, так как функция ограничена на данном отрезке.
- с. да, так как функция монотонно возрастает на данном отрезке.

d. нет, так как функция не представима в виде разности.

2. Даны функции

$$f(x) = \begin{cases} \ln x, & x \in [1; e), \\ 0, & x = e; \end{cases}$$

$$g(x) = \begin{cases} x^4, & 0 \le x < 1, \\ 0, & x = 1. \end{cases}$$

Определите значения $V_P(f)$ и $V_P(q)$.

Выберите правильные варианты ответа и укажите их в следующем порядке: сначала значение для f(x), затем значение для g(x).

- 1. $2\ln(x_{n-1})$
- 2. $2(x_{n-1})^4$ 3. $\ln(x_{n-1})$ 4. $(x_{n-1})^2$

3. Определите значение полной вариации функции f(x) на отрезке [0; 2], если

$$f(x) = \begin{cases} x^6, & x \in [0; 1), \\ 0, & x = 1, \\ x - 1, & x \in (1; 2]. \end{cases}$$

Выберите правильный вариант ответа.

- a. $6 2x_{k+1}$ b. 15
- c. 3

4. Какие равенства или неравенства не выполняются для определённых классов функции с ограниченной вариацией?

a.
$$V_a^b f = f(b) - f(a),$$

b.
$$\overset{b}{\underset{a}{V}} f \geq K(b-a), \quad K, a, b \in \mathbb{R},$$
 c.
$$\overset{b}{\underset{a}{V}} f = \overset{c}{\underset{a}{V}} f + \overset{b}{\underset{a}{V}} f, \quad a < c < b,$$

- d. все из приведённых

5. Пусть дана функция

$$g(x) = \begin{cases} 0, x = 0 \\ x - 2, 0 < x < 2 \\ -4, x = 2. \end{cases}$$

на отрезке [0, 2].Р-произвольное разбиение отрезка [0, 2]. Чему равна $V_P(f)$?

a.
$$2(x_{n-1} - x_1) + 4$$
 b. 4

c.
$$(x_{n-1} - x_1) + 4$$
 d. 6

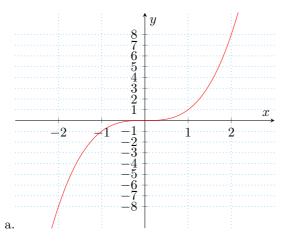
1.
$$\overset{1}{V}3^{x}$$
.

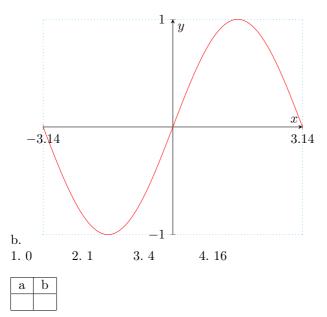
3.
$$V_{0}^{7}x$$

В ответе укажите произведение трёх чисел.

7. Являются ли функции $f(x) = x - [x], x \in [-12; 12]$ и $f(x) = \lg x, x \in [0; \pi]$ функциями с ограниченной вариацией? Ответ обоснуйте.

8. Установите соответствие между графиками функций и значениями полной вариации этих функций. Заполните таблицу.





9. Заполните пропуск: BV[a;b] ... C[a;b].

- 1. ⊂
- $2.\supset$

10. Функция $f(x) = x^2 - 36$ с ограниченной вариацией на отрезке [-6;6] представлена в виде разности двух возрастающих функций. Восполните пробелы. Заполните таблицу.

$$f(x) = \begin{cases} -x^2 + 36, & x \in [-6; 0] \\ a)..., & x \in (0; 6] \end{cases}$$

$$h(x) = \begin{cases} b \\ 0, & x \in [-6; 0] \\ 0, & x \in (0; 6] \end{cases}$$

1.
$$-2x^2 + 72$$
 2. $x^2 + 36$ 3. $2x^2 + 52$ 4. $x^2 - 36$

$$2. x^2 + 36$$

$$3. 2x^2 + 52$$

4.
$$x^2 - 36$$

a	b

11. Выберите верное утверждение.

а. Полная вариация функции $f(x)=\lg 2x$ на отрезке $\left[0;\frac{\pi}{6}\right]$ равна 6. b. Полная вариация функции $f(x) = |\sin x|$ на отрезке $[0, 2\pi]$ равна

12.

с. Полная вариация функции $f(x) = \operatorname{ctg} \frac{x}{2}$ на отрезке $[0; \frac{\pi}{3}]$ равна

d. Полная вариация функции $f(x) = \cos x$ на отрезке $[0; 2\pi]$ равна 16.

12. Какая из приведённых функций не имеет ограниченную вариацию на промежутке и является неограниченной функцией?

a.
$$f(x) = \operatorname{tg} \frac{\pi x}{2}, \quad x \in (-1; 1)$$

a.
$$f(x) = \operatorname{tg} \frac{\pi x}{2}, \quad x \in (-1; 1)$$
 b. $f(x) = \sqrt{1 - x^2}, \quad x \in (-1; 1)$

13. Определите полную вариацию функций.

a.
$$f(x) = 16^{\frac{x}{2}}, \quad x \in [1; 4]$$

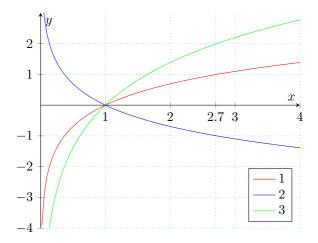
a.
$$f(x) = 16^{\frac{x}{2}}, \quad x \in [1;4]$$
 b. $f(x) = x^4 - 256, \quad x \in [1;4]$ c. $f(x) = -3^{2x}, \quad x \in [1;2]$ d. $f(x) = x^2 - 9, \quad x \in [0;3]$

c.
$$f(x) = -3^{2x}, \quad x \in [1; 2]$$

d.
$$f(x) = x^2 - 9$$
, $x \in [0, 3]$

Ответьте на вопрос: есть ли среди них функции, значения полной вариации которых равны? Если есть, то в ответе укажите это значение. В ином случае, напишите "нет".

14. Определите по графикам, какие функции имеют одинаковую полную вариацию на [1;e]. В ответе укажите номера графиков этих функций.



15. Представьте данную функцию в виде разности двух возрастающих функций на отрезке [0; 2]:

.

$$f(x) = \begin{cases} x^6, & x \in [0; 1), \\ 0, & x = 1, \\ x - 1, & x \in (1; 2]. \end{cases}$$

16. Пусть

$$f(x) = \begin{cases} x^4, & x \in [0; 2), \\ a, & x = 2, \\ x - 2, & x \in (2; 4]. \end{cases}$$

Чему должно быть равно a, чтобы $\bigvee_{0}^{4} f$ приняло значение равное 16?

- 17. Укажите неверное утверждение.
- а. Если функция f(x) имеет ограниченную вариацию на [a;b], то ее абсолютная величина |f(x)| также имеет ограниченную вариацию на [a;b].
- b. Пусть f(x)- непрерывная на [a;b] функция. Если |f(x)| имеет ограниченную вариацию на [a;b], то и функция f(x) имеет ограниченную вариацию на [a;b].
- с. Если |f(x)| имеет ограниченную вариацию на [a;b], то и функция

f(x) имеет ограниченную вариацию на [a; b].

- d. Функция, имеющая во всех точках отрезка [a;b] производную, ограниченную на [a;b], является функцией с ограниченной вариацией.
 - 18. Докажите, что функция

$$f(x) = \begin{cases} 0, & x = 0\\ x^2 \sin \frac{\pi}{x}, & x \neq 0 \end{cases}$$

имеет ограниченную вариацию на отрезке [0;1].

19. Пусть

$$f(x) = \begin{cases} x^{\alpha} \sin x^{\beta}, & x \in (0; 1], \\ 0, & x = 0, \end{cases}$$

где $\alpha \in \mathbb{R}, \beta \geq 0$. При каких значениях параметров α и β функция f(x) принадлежит пространству BV[0;1]?

20. Докажите, что кусочно-монотонная на отрезке [a;b] функция f(x) имеет ограниченную вариацию на том же отрезке.

Тема 2. Интеграл Римана-Стилтьеса

Tecr 1

- 1. Как связаны интеграл Римана $\int_a^b f(x) dx$ и интеграл Стилтьеса $\int_a^b f(x) dg(x)$?
- а) интеграл
 Римана частный случай интеграла Стилтьеса, если f(x)=x;
 - б) они не связаны;
- в) интеграл Римана частный случай интеграла Стилтьеса, если g(x)=x.
- 2. Может ли из существования интеграла Стилтьеса по всему отрезку следовать существование интегралов Стилтьеса по частям этого отрезка?
 - а) да, может, но не наоборот;
 - б) нет, не может.
- 3. Что следует из существования одного из следующих интегралов $\int_a^b f(x) dg(x)$ и $\int_a^b g(x) df(x)$?
- а) если существует один, то существует и другой, а также выполняется следующее: $\int_a^b f(x)dg(x) = f(x)g(x)|_a^b - \int_a^b g(x)df(x)$;
 - б) данные интегралы не могут быть связаны, ничего не следует.
- 4. Какая из следующих сумм является интегральной суммой Стилтьеса?
- а) $\sum_{i=1}^n f(\xi_i)(x_i-x_{i-1}), \, \xi_i$ произвольная точка $[x_i;x_{i-1}],\, x_i$ произвольная тоска отрезка [a;b];
- б) $\sum_{i=1}^n f(\xi_i)(g(x_i)-g(x_{i-1})),\ \xi_i$ произвольная точка $[x_i;x_{i-1}],\ x_i$ произвольная тоска отрезка [a;b].
- 5. Выберите ниже определение интеграла Стилтьеса $(s)\int f(x)dg(x)$:

- а) $\lim_{\lambda(\Pi)\to 0}\sum_{i=1}^n f(\xi_i)(g(x_i)-g(x_{i-1})), \xi_i\in [x_i;x_{i-1}],\Pi:a=x_0< x_1<\ldots< x_n=b$ произвольное разбиение отрезка [a;b];
- $x_1 < \ldots < x_n = b$ произвольное разбиение отрезка [a;b]; б) $\lim_{\lambda(\Pi) \to 0} (S(\Pi) s(\Pi)) = 0, \Pi: a = x_0 < x_1 < \ldots < x_n = b$ произвольное разбиение отрезка [a;b].
- 6. Сформулируйте и докажите любое свойство интеграла Стилтьеса.
- 7. Сформулируйте критерий существования интеграла Стилтьеса, используя понятие колебания функции на отрезке.
 - 8. Существует ли интеграл $(s) \int_{-1}^{1} f(x) dg(x)$? Где

$$f(x) = \begin{cases} 0, & x \in [-1; 0], \\ 1, & x \in (0; 1]. \end{cases}$$

$$g(x) = \begin{cases} 0, & x \in [-1; 0), \\ 1, & x \in [0; 1] \end{cases}.$$

- 9. Вычислить $(s) \int_0^2 x^2 d(\ln(x+1))$.
- 10. Вычислить $(s) \int_0^\pi cosxd(sinx)$.
- 11. Сведите интеграл Стилтьеса к интегралу Римана:

$$(s) \int_a^b f(x) d(tgx).$$

- 12. Сведите интеграл Римана к интегралу Стилтьеса: $\int_a^b \frac{f(x)}{x} dx$
- 13. Вычислить $\int_0^{2\pi} cosxd(sin^2x)$.
- 14. Соотнесите интегралы Стилтьеса в левом столбце с интегралами Римана в правом столбце:

$$\begin{array}{ll} 1) \int x^2 d(x^2) & \text{a)} \int \frac{3 sinx}{x} dx \\ 2) \int sinx d(ln(x^3)) & \text{6)} \int \frac{tgx}{1+x^2} dx \\ 3) \int tgx d(arctgx) & \text{B)} \int 2x^3 dx \end{array}$$

- 15. Сформулируйте теорему о среднем как свойство интеграла Стилтьеса.
 - 16. Вычислить $\int_0^2 x^2 dg(x)$,

$$g(x) = \begin{cases} x - 1, & x \in [0; 1), \\ 10, & x = 1, \\ x^2, x > 1. \end{cases}$$

- 17. Вычислить $\int_0^2 (x+1)d[x]$, где [x] целая часть числа $x \in R$.
- 18. Вычислить $\int_{-1}^{3} x dg(x)$, где

$$g(x) = \begin{cases} 0, & x = -1, \\ 1, & x \in (-1, 2), \\ -1, & x \in [2, 3]. \end{cases}$$

19. Вычислить $\int_{a}^{b} f(x) d\rho(x)$, a < c < b,

$$\rho(x) = \begin{cases} 0, & x \le c, \\ 1, & x > c. \end{cases}$$

20. Вычислить $\int_0^2 (x^2+2) d\{x\}$, где $\{x\}$ - дробная часть числа $x \in R$.

Tect 2

1. Какой из интегралов Стилтьеса а) - б) не существует, если

$$f(x) = \begin{cases} 0, & x \in [-1; 0], \\ 1, & x \in (0; 1]. \end{cases}$$

$$g(x) = \begin{cases} 0, & x \in [-1;0), \\ 1, & x \in [0;1] \end{cases}$$

- a) $\int_{-1}^{0} f(x)dg(x);$
- 6) $\int_{0}^{1} f(x)dg(x);$
- в) $\int_{-1}^{1} f(x) dg(x)$.
- 2. Какое условие, помимо того, что $f(x) \in C[a;b]$, должно выполняться для g(x), чтобы интеграл $\int_a^b f(x) dg(x)$?
 - a) $g(x) \in C[a;b]$; 6) $g(x) \in R[a;b]$; B) $g(x) \in BV[a;b]$.
- 3. Формула $(S) \int_a^b f(x) dg(x) = (R) \int_a^b f(x) g'(x) dx$ для вычисления интеграла Стилтьеса используется в случае, если g(x):
 - а) непрерывная; б) разрывная; в) любая.
- 4. Справедливо ли следующее равенство: $\alpha \int_a^b f_1(x) dg(x) + \beta \int_a^b f_2(x) dg(x) = \int_a^b (\alpha f_1(x) + \beta f_2(x)) dg(x) \ \alpha, \beta \in R?$
 - а) да;
 - б) нет.
- 5. Можно ли сказать, что из существования $\int_a^c f(x)dg(x)$, $\int_c^b f(x)dg(x)$ вытекает из существования $\int_a^b f(x)dg(x)$?
 - а) нет;
 - б) да.
 - 6. Сформулируйте определение интеграла Стилтьеса.
- 7. Составьте интегральную сумму Стилтьеса для следующего интеграла $\int_{\alpha}^{\beta}g(x)df(x).$
- 8. Сформулируйте и докажите свойство аддитивности интеграла Стилтьеса.
 - 9. Вычислить $(S) \int_0^{\frac{\pi}{2}} x d(sinx)$.

- 10. Сформулируйте достаточный признак существования интеграла Стилтьеса $\int_a^b f(x)dg(x)$, где f(x) непрерывна на [a;b].
- 11. Сведите, не вычисляя, интеграл Стилтьеса к интегралу Римана: $\int_a^b f(x)d(x^2lnx)$.
- 12. Сведите, не вычисляя, интеграл Римана к интегралу Стилтьеса: $-\int_a^b f(x) sinx dx$.
- 13. Соотнесите интегралы Стилтьеса в левом столбце и их значения в правом столбце:

1)
$$\int_{-1}^{1} xd(3x^{2}op);$$
 а) нет решения; 2) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} xd(\frac{x}{cosx}).$ б) 0.

14. Вычислить $\int_{-2}^{2} x dg(x)$,

$$g(x) = \begin{cases} x+2, & x \in [-2; -1], \\ 2, & x \in (-1; 0), \\ x^2+3, & x \in [0; 2]. \end{cases}$$

- 15. Вычислить $\int_0^{2\pi} cosxd(sin^2x)$.
- 16. Вычислить $\int_0^2 (x+1)d < x>$, где < x> дробная часть числа $x \in R$.
 - 17. Вычислить $\int_0^2 x^2 dg(x)$,

$$g(x) = \begin{cases} -1, & x \in [0; \frac{1}{2}), \\ 0, & x \in [\frac{1}{2}; \frac{3}{2}), \\ 2, & x = \frac{3}{2}, \\ -2, & x \in (\frac{3}{2}; 2]. \end{cases}$$

18. Вычислить $\int_{a}^{b} f(x) d\rho(x-c), \ a < c < b,$

$$\rho(x-c) = \begin{cases} 0, & x \le c, \\ 1, & x > c. \end{cases}$$

19. Вычислить $\int_0^{2\pi} sinxdg(x)$,

$$g(x) = \begin{cases} x+1, & x \in [0; \pi], \\ e^x, & x > \pi. \end{cases}$$

20. Вычислить $\int_0^{2\pi} sinxd(cos^2x)$.

Тест 3

- 1. Какой из следующих признаков существования интеграла Стилтьеса $\int_a^b f(x)dg(x)$ является достаточным?
- а) Если $f(x) \in C[a;b]$ и $g(x) \in BV[a;b]$, то $\int_a^b f(x)dg(x)$ существует;
- б) Если $f(x) \in C[a;b]$ и $g(x) \in C[a;b], g(x) \in BV[a;b],$ то $\int_a^b f(x) dg(x)$ существует.
- 2. Какое условие, помимо того, что g(x) липшицева функция на [a;b], должно выполняться, чтобы интеграл Стилтьеса $\int_a^b f(x) dg(x)$ существовал?
 - a) $f(x) \in R[a;b]$;
 - б) $f(x) \in C[a;b];$
 - в) $f(x) \in BV[a;b].$
- 3. Справедливо ли равенство: $\alpha \int_a^b f(x) dg_1(x) + \beta \int_a^b f(x) dg_2(x) = \int_a^b f(x) d(\alpha g_1(x) + \beta g_2(x))$?
 - а) да;
 - б) нет.
- 4. Какой вид будет иметь интеграл Стилтьеса $\int_a^b x d(sinx)$, при сведении его к интегралу Римана:
 - a) $\int_a^b \sin x dx$;

- б) $\int_a^b x d(\cos x)$;
- $(B)\int_{a}^{b}xcosxdx.$
- 5. Сформулируйте следствие из теоремы о среднем для интеграла Стилтьеса $\int_a^b f(x)dg(x)$, если функция f(x) непрерывна на [a;b].
 - 6. Составьте и запишите интегральную сумму Стилтьеса.
- 7. Сформулируйте какой-нибудь достаточный критерий существования интеграла Стилтьеса.
- 8. Запишите формулу вычисления интеграла Стилтьеса $\int_a^b f(x) dg(x)$ в том случае, когда g(x) разрывная функция на [a;b].
 - 9. Вычислить $(S) \int xd(arctgx)$.
 - 10. Как связаны интеграл Стилтьеса и интеграл Римана?
 - 11. Вычислить $(S) \int_0^2 x^2 d(\frac{x^2}{2})$.
 - 12. Сведите интеграл Стилтьеса к интегралу Римана: $\int_a^b kx d(\frac{x}{\cos x})$.
- 13. Сведите интеграл Римана к интегралу Стилтьеса: $\int_a^b (k+\frac{c}{x}),$ где $c,k\in R$
- 14. Ниже представлены условия теоремы. Запишите названия этих теорем.
- 1) $\forall \epsilon > 0 \ \exists \delta(\epsilon) \ \forall \Pi | \lambda(\Pi) < \delta \Rightarrow |S(\Pi) s(\Pi)| < \epsilon,$ $\Pi: a=x_0 < x_1 < ... < x_n=b$ произвольное разбиение отрезка [a;b] ;
 - 2) $\forall \epsilon > 0 \ \exists \delta(\epsilon) \ \forall \Pi | \lambda(\Pi) < \delta \Rightarrow \sum_{i=1}^{n} \omega_i(f)(g(x_i) g(x_{i-1})) < \epsilon$,
- $\Pi: a = x_0 < x_1 < \dots < x_n = b$ произвольное разбиение отрезка [a;b];
- 3) $\forall \epsilon > 0 \ \exists \delta(\epsilon) \ \forall f(x) | x', x'' \in [x_i; x_{i-1}], |x' x''| < \delta \Rightarrow |f(x') f(x'')| < \epsilon.$

15. Вычислить $\int_{-2}^{2} x^2 dg(x)$, где

$$g(x) = \begin{cases} x+2, & x \in [-2; -1], \\ 2, & x \in (-1; 0), \\ x^2+3, & x \in [0; 2]. \end{cases}$$

- 16. Вычислить $\int_0^{\pi} sinxd(e^x)$.
- 17. Вычислить $\int_a^b f(x) d\rho(c-x)$, a < c < b,

$$\rho(c-x) = \begin{cases} 0, & x \ge c, \\ 1, & x < c. \end{cases}$$

- 18. Вычислить $\int_0^3 (x+3) d\{x\}$, где $\{x\}$ дробная часть числа $x \in R$.
 - 19. Вычислить $\int_0^1 sinxdg(x)$,

$$g(x) = \begin{cases} 0, & x < \frac{1}{2}, \\ x^2, & x \ge \frac{1}{2}. \end{cases}$$

20. Вычислить $\int_{-1}^{2} (x-1)dg(x)$,

$$g(x) = \begin{cases} -x, & x \in (-1; 1], \\ 10, & x = -1, \\ x + 3, & x \in (-1, +\infty). \end{cases}.$$

Тест 4

- 1. Какой из следующих признаков существования интеграла Стилтьеса является достаточным?
- а) Если $f(x) \in C[a;b]$ и $g(x) \in BV[a;b]$, то $\int_a^b f(x)dg(x)$ существует;

- б) Пусть $f(x) \in R[a;b]$, а g(x) непрерывная функция на [a;b]. Тогда $\int_a^b f(x)dg(x)$ существует.
- 2. Какая формула используется для вычисления интеграла Стилтьеса $\int_a^b f(x)dg(x)$, если g(x) непрерывная функция на [a;b]?
 - 3. Какое из равенств верное?

a)
$$\int_a^b f_1(x)d(g_1(x)) + \int_a^b f_2(x)d(g_2(x)) = \int_a^b (f_1(x) + f_2(x))d(g_1(x) + g_2(x));$$

$$6) \int_{a}^{b} f_{1}(x)d(g_{1}(x)) + \int_{a}^{b} f_{2}(x)d(g_{1}(x)) + \int_{a}^{b} f_{1}(x)d(g_{2}(x)) + \int_{a}^{b} f_{2}(x)d(g_{2}(x)) = \int_{a}^{b} (f_{1}(x) + f_{2}(x))d(g_{1}(x)) + \int_{a}^{b} (f_{1}(x) + f_{2}(x))d(g_{2}(x)) = \int_{a}^{b} f_{1}(x)d(g_{1}(x) + g_{2}(x)) + \int_{a}^{b} f_{2}(x)d(g_{1}(x) + g_{2}(x)).$$

- 4. Какое условие нужно для справедливости следующего равенства: $\int_a^b f(x) dg(x) = f(x) g(x)|_a^b \int_a^b g(x) df(x)$?
 - a) $f(x), g(x) \in C[a; b];$
 - б) существование одного из интегралов $\int_a^b f(x)dg(x), \int_a^b g(x)df(x).$
- 5. Какой вид будет иметь интеграл Стилтьеса $\int_a^b sinxd(x^2)$ после сведения его к интегралу Римана?
 - a) $\int_a^b 2x sinx dx$;
 - б) $\int_a^b cosxd(x^2)$:
 - $B)\int_a^b 2sinxdx.$
- 6. Сформулируйте достаточный признак существования интеграла Стилтьеса $\int_a^b f(x)dg(x)$, где $g(x)=\int_a^b \phi(t)dt+C$.
 - 7. Вычислить $\int_{-1}^{1} xd(arctgx)$.
- 8. Сформулируйте критерий существования интеграла Стилтьеса.
 - 9. Вычислить $\int e^x d(x+x^2)$.

- 10. Сведите интеграл Стилтьеса к интегралу Римана: $\int_a^b k \cdot x^k d(arctg(kx)).$
- 11. Сведите интеграл Римана к какому-нибудь интегралу Стилтьеса, если это возможно: $\int_a^b 2kx dx$.
 - 12. Вычислить $\int x d(\sqrt[3]{x})$.
- 13. Сформулируйте и докажите свойство линейности по f(x) интеграла Стилтьеса $\int_a^b f(x) dg(x)$.
- 14. Соотнесите интегралы Стилтьеса в левом столбце с интегралами Римана в правом столбце:

$$\begin{array}{ccc} 1) \int x d(thx); & \text{a)} \int \frac{-dx}{shx}; \\ 2) \int \sqrt{1+x^2} dx; & \text{6)} \int \frac{x}{ch^2x} dx; \\ 3) \int shx d(thx). & \text{B)} \int (1-x^2) d(arcsinx). \end{array}$$

15. Вычислить $\int_{-2}^{2} (x^2 + 1) dg(x)$, где

$$g(x) = \begin{cases} x+2, & x \in [-2;-1], \\ 2, & x \in (-1;0), \\ x^2+3, & x \in [0;2]. \end{cases}$$

16. Вычислить $\int_0^\pi sinxdg(x)$, где

$$g(x) = \begin{cases} x, & x \in [0; \frac{\pi}{2}), \\ 2, & x \in \{\frac{\pi}{2}, \pi\}, \\ x - \frac{\pi}{2}, & x \in (\frac{\pi}{2}, \pi). \end{cases}$$

17. Вычислить $\int_0^1 x^3 dg(x)$, где

$$g(x) = \begin{cases} 0, & x < \frac{1}{2}, \\ x^2, & x \ge \frac{1}{2}. \end{cases}$$

18. Вычислить $\int_0^\pi cosxdg(x)$, где

$$g(x) = \begin{cases} x - 2, & x \in [0; \pi], \\ e^x, & x > \frac{\pi}{2}. \end{cases}$$

- 19. Вычислить $\int_0^3 x^2 d(x-[x])$, где [x] целая часть числа $x \in R$.
- 20. Найдите какую-либо функцию $g(x) \in BV[-1;1]$ для произвольной $f(x) \in C[-1;1]$ и чтобы $\int_{-1}^1 f(x) dg(x) = f(0)$.

Тест 5

1. Если $\Pi : a = x_0 < x_1 < ... < x_n = b$ — произвольное разбиение отрезка [a;b].

Даны функции

$$f: [a;b] \longrightarrow \mathbb{R},$$

 $g: [a;b] \longrightarrow \mathbb{R},$

где g(x) — монотонно возрастающая функция на [a;b].

Пусть

$$[x_{i-1},x_i]$$
 - частичное отрезок разбиения $\Pi,i=\overline{1,n}$

 $\lambda\left(\Pi\right)$ — параметр разбиения

$$\lambda(\Pi) \to 0$$
, где $\lambda(\Pi) = max |x_i - x_{i-1}|$

 $\xi \in [x_{i-1},x_i]$ - произвольная точка

Выберите формулу, в которой верно описано определение интеграла Стилтьеса.

$$a. \int_{a}^{b} f(x)dg(x) = \lim_{\lambda(\Pi) \to 0} \sum_{i=1}^{n} f(\xi_{i}) (g(x_{i-1}) - g(x_{i})).$$

b.
$$\int_{a}^{b} f(x)dg(x) = \lim_{\lambda(\Pi) \to 0} \sum_{i=1}^{n} f(\xi_i) (g(x_i) - g(x_{i-1}).$$

$$c. \int_{a}^{b} f(x)dg(x) = \sum_{i=1}^{n} \lim_{\lambda(\Pi) \to 0} f(\xi_{i}) (g(x_{i-1}) - g(x_{i})).$$

$$d. \int_{a}^{b} f(x)dg(x) = \sum_{i=1}^{n} \lim_{\lambda(\Pi) \to 0} f(\xi_{i}) (g(x_{i-1}) - g(x_{i})).$$

- 2. Каким свойством обладает интеграл Стилтьеса?
- а. Линейность по функции f(x).
- b. Симметричность.
- с. Интегрируемость модуля.
- d. Транзитивность.
- 3. Продолжите фразу. Если поменять местами пределы интегрирования, интеграл Римана-Стилтьеса...
- а. Увеличит свое значение в два раза.
- b.Ничего не изменится.
- с.Уменьшит свое значение в два раза.
- Поменяет свой знак.
- 4. Выберите, какой формулой задается свойство линейности интеграла Стилтьеса по f(x).

$$a. \int_{a}^{b} (\alpha f_{1}(x) + \beta f_{2}(x)) dg(x) = \alpha \int_{a}^{b} f_{1}(x) dg(x) + \beta \int_{a}^{b} f_{2}(x) dg(x)$$

$$b. \int_{a}^{b} f(x) d(\alpha g_{1}(x) + \beta g_{2}(x)) = \alpha \int_{a}^{b} f(x) dg_{1}(x) + \beta \int_{a}^{b} f(x) dg_{2}(x)$$

$$c. \int_{a}^{b} f(x) dg(x) = \int_{a}^{c} f(x) dg(x) + \int_{c}^{b} f(x) dg(x)$$

5. Пусть $\Pi: a = x_0 < x_1 < \ldots < x_n = b$ — произольное разбиение отрезка [a;b]. Даны функции:

$$f: [a; b] \longrightarrow \mathbb{R},$$

 $g: [a; b] \longrightarrow \mathbb{R},$

где g(x) — монотонно возрастающая функция на [a;b].

 $[x_{i-1},x_i]$ - частичный отрезок разбиения $\Pi,i=\overline{1,n}.$

Пусть

$$m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$$
 $i = \overline{1, n},$

$$M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$$
 $i = \overline{1, n}$.

Какая формула определяет верхнюю сумму Дарбу

a.
$$S(\Pi) = \sum_{i=1}^{n} M_i (g(x_{i-1}) - g(x_i))$$
.
b. $S(\Pi) = \sum_{i=1}^{n} m_i (g(x_{i-1}) - g(x_i))$.
c. $S(\Pi) = \sum_{i=1}^{n} M_i (g(x_i) - g(x_{i-1}))$.
d. $S(\Pi) = \sum_{i=1}^{n} m_i (g(x_i) - g(x_{i-1}))$?

- 6. Сформулируйте хотя бы одно свойство сумм Дарбу-Стилтьеса
- 7. Сопоставьте интегралы в левом столбце с их значениями в правом столбце:

1)
$$\int_{1}^{2} x^{2} d \ln(x);$$
 $a) \frac{e^{4}}{2} - \frac{1}{2};$
2) $\int_{0}^{2} e^{x} de^{x};$ $b) 39;$
3) $\int_{2}^{5} x^{3} d \ln(x);$ $c) \frac{3}{2};$
4) $\int_{1}^{4} 2x d\sqrt{x}.$ $d) \frac{14}{3}.$

- 8. Запишите формулу для вычисления интеграла Стилтьеса, если g(x) непрерывная функция.
 - 9. Вычислите и выберите правильный ответ:

$$\int_{-1}^{1} x \, d \, \operatorname{arcctg}(x).$$

$$a) \frac{\ln(5)}{4}, \qquad b) - \frac{\ln(5)}{2}, \qquad c) \frac{2}{\ln(5)}.$$

10. Какой интеграл больше

$$\int_{2}^{5} x^{2} dt g(x)$$

$$\int_{0}^{7} x^{3} dct g(x) ?$$

или

11. Определите знак интеграла

$$\int_0^{\pi} \cos(x) \, d\sin(x).$$

12. Вычислите интеграл

$$\int_0^2 x^4 \, d \, \ln(1+x).$$

13. Существует ли интеграл

$$\int_0^1 tg(x) \ dsin(x) \ ?$$

14. Пусть дан интеграл

$$\int_{a}^{b} f(x)dg(x)$$

и известно, что функция g(x) -функция с ограниченной вариацией на [a;b]. Какой должна быть функция f(x), чтобы интеграл существовал?

- 15. Напишите формулу интегрирования по частям для $\int_a^b f(x) dg(x)$.
- 16. Вставьте пропущенное слово в предложении : Если f(x) непрерывна на [a;b], а g(x)является ... , то существует интеграл $\int_a^b f(x)dg(x).$
- 17. С помощью интегрирования по частям вычислить интеграл Стилтьеса

$$\int_0^{\pi} \sin(x) \ de^x.$$

- 18. Запишите условие критерия существования интеграла Стилтьеса $\int_a^b f(x)dg(x)$.
- 19. Вставьте пропущенное слово в предложении : Если f(x) R-интегрируема на [a;b], а g(x)является ... , то существует интеграл $\int_a^b f(x)dg(x)$.
 - 20. Вычислить $\int_0^{2\pi} sin(x) dcos^2(x).$

Тест 6

1. Пусть $\Pi: a = x_0 < x_1 < ... < x_n = b$ — произвольное разбиение отрезка [a;b]. Даны функции:

$$f: [a; b] \longrightarrow \mathbb{R},$$

 $g: [a; b] \longrightarrow \mathbb{R},$

где g(x) — монотонно возрастающая функция на [a;b].

Выражения вида

$$s(\Pi) = \sum_{i=1}^{n} m_i (g(x_i) - g(x_{i-1})),$$

$$S(\Pi) = \sum_{i=1}^{n} M_i(g(x_i) - g(x_{i-1})),$$

где

$$m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$$
 $i = \overline{1, n},$

$$M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$$
 $i = \overline{1, n}$

называют

- а. Верхним и нижним разбиениями отрезка.
- b. Верхней и нижней суммами Дарбу.
- с. Верхней и нижней суммами Дарбу-Стилтьеса.
- d. Значениями в точках разрыва.
 - 2. Каким свойством не обладает интеграл Стилтьеса?
- а. Линейность функции по f(x).

- Теорема о среднем.
- с. Транзитивность.
- d. Аддитивность.
- 3. Пусть $\Pi: a = x_0 < x_1 < ... < x_n = b$ произвольное разбиение отрезка [a;b]. Даны функции:

$$f:[a;b]\longrightarrow \mathbb{R},$$

$$g:[a;b]\longrightarrow \mathbb{R},$$

где g(x) — монотонно возрастающая функция на [a;b].

 Π усть $[x_{i-1}, x_i]$ - частичное отрезок разбиения Π , $i = \overline{1, n}$.

$$s(\Pi) = \sum_{i=1}^{n} m_i (g(x_i) - g(x_{i-1})),$$

$$S(\Pi) = \sum_{i=1}^{n} M_i(g(x_i) - g(x_{i-1})),$$

где

$$m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$$
 $i = \overline{1, n},$

$$M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$$
 $i = \overline{1, n}$

Какая формула определяет верхний интеграл Дарбу?

a.
$$I^* = \sup_{\Pi} S(\Pi)$$
.

b.
$$I^* = \inf_{\Pi} S(\Pi)$$
.

$$c. \quad I^* = \sup_{\Pi} s(\Pi).$$

$$d. \quad I^* = \inf_{\Pi} \ s(\Pi).$$

4. Вычислите интеграл и выбрать правильный ответ

$$\int_0^{\pi} x^2 \, dsin(x).$$

- $a.2\pi$ $b.\frac{3\pi}{2}$ $c.-2\pi$ $d.4\pi$.
- 5. Выберите ответы для пропущенных промежутков в следующем предложении .

При измельчении разбиения П верхняя сумма Дарбу ..., а нижняя сумма Дарбу....

- а. Не увеличивается, не уменьшается.
- Увеличивается, уменьшается.
- 6. Запишите формулу вычисления интеграла Стилтьеса, если $\mathbf{g}(\mathbf{x})$ не является разрывной функцией на [a;b].
- 7. Сопоставьте интегралы в левом столбце с их значениями в правом столбце :

$$1) \int_{3}^{6} 2x \sqrt{1 - x^{2}} d \arcsin(x); \qquad \qquad a) \frac{e^{9}}{3} - \frac{1}{3};$$

$$2) \int_{4}^{9} 4x \ d\sqrt{x}; \qquad \qquad b) 27;$$

$$3) \int_{2}^{4} \sqrt{x} \ d \ln(x); \qquad \qquad c) \frac{76}{3};$$

$$4) \int_{0}^{3} e^{2x} de^{x}. \qquad \qquad d) 4 - 2\sqrt{2}.$$

- 8. Если функция g(x) монотонно возрастает, то есть ли аналогия при составлении сумм Дарбу в случае интегралов Римана и Стилтьеса. Ответьте да или нет?
 - 9. Установите соответствия между свойствами и формулами
- 1. Аддитивность
- 2. Теорема о среднем
- 3.Линейность по функции g(x)

$$a. \int_{a}^{b} f(x)d(\alpha g_{1}(x) + \beta g_{2}(x)) = \alpha \int_{a}^{b} f(x)dg_{1}(x) + \beta \int_{a}^{b} f(x)dg_{2}(x)$$

$$b. \int_{a}^{b} f(x)dg(x) = \int_{a}^{c} f(x)dg(x) + \int_{c}^{b} f(x)dg(x)$$

$$c. \int_{a}^{b} f(x)dg(x) = C(g(b) - g(a))$$

и запишите результат в таблице.

1	2	3

10. Вычислите

$$\int_1^2 x \ d \ln(2+x).$$

11. Какой интеграл больше

$$\int_2^6 x^4 d \ln(x)$$

или

$$\int_3^5 x^6 d \ln(x) ?$$

12. Существует ли интеграл

$$\int_0^{2\pi} x^2 d \, ctg(x) \quad ?$$

13. Определите знак интеграла

$$\int_0^{2\pi} \sin^2(x) d \, ctg(x).$$

14. Какой интеграл меньше

$$\int_{2}^{4} \frac{x}{2} dx^{2}$$

или

$$\int_2^4 \frac{x}{4} dx^2 ?$$

- 15. Запишите свойство линейности интеграла Стилтьеса по функции f(x).
- 16. Запишите формулу интегрирования по частям для интеграла $\int_a^b f(x) dg(x)$.
- 17. Сформулируйте хотя бы одно достаточное условие существования интеграла Стилтьеса.
- 18. Можно ли вычислить интеграл Стилтьеса, если g(x)- разрывная функция на [a;b]? Если да, то при каких условиях?
 - 19. Интеграл Стилтьеса $\int_a^b f(x)dg(x)$ по определению это...
 - 20. Вычислите интеграл

$$\int_0^{2\pi} \sin(2x) \ d\sin(x).$$

Тема 3. Криволинейные интегралы I и II рода и их приложения

Tect 1

- 1. Конечный предел какой интегральной суммы называют криволинейным интегралом I-ого рода?
- a) $\sum_{i=1}^{n} f(M'_i) | M_{i-1}M_i |$;
- б) $\sum_{i=1}^{n} f(M'_i) | M_{i-1} M_{i+1} |$;
- B) $\sum_{i=1}^{n} f(M_i') | M_{i-1}M_i |$;
- Γ) $\sum_{j=1}^{n} f(M'_i) | M_j M_{j+1} |$.
- 2. Каким свойством не обладает криволинейный интеграл II-ого рода?
- а) коммутативность;
- б) аддитивность;
- в) линейность;
- г) интегрируемость модуля.
- 3. Выберете необходимое условие существования криволиней ного интеграла I-ого рода:
- a)f(x,y) непрерывна на кривой l;
- б)f(x,y) монотонна на кривой l;
- в)f(x,y) ограничена сверху на кривой l;
- Γ)f(x,y) ограничена снизу на кривой l.
- 4. Какое из перечисленных условий НЕ является условием независимости криволинейного интеграла II-ого рода от формы кривой? Выберете правильный ответ.
- а)P(x,y)dx+Q(x,y)dy полный дифференциал I-ого порядка;
- б) $\int\limits_{AB} P(x,y)\mathrm{d}x + Q(x,y)\mathrm{d}y$ не зависит от формы кривой, а зависит

от точек А и В;

в) $\oint P(x,y) dx + Q(x,y) dy = 0$, $\forall C \in D$,где C-замкнутый контур;

$$\Gamma$$
) $\frac{\partial P(x,y)}{\partial x} = \frac{\partial Q(x,y)}{\partial y}, \forall (x,y) \in D.$

- 5. Запишите формулу, которая связывает криволинейные интегралы I-ого и II-ого рода.
- 6. Справедлива ли формула, если $l: x = \phi(t), y = \psi(t),$ $t_0 < t < T$ гладкая кривая, $f(\phi(t), \psi(t)) \in C[t_0, T]$

$$\int_{l} f(x,y) dl = (R) \int_{t_0}^{T} f(\phi(t), \psi(t)) (\dot{\phi}(t)^2 + \dot{\psi}(t)^2) dt?$$

Ответьте да или нет.

- 7. В чем заключается геометрический смысл криволиней ного интеграла I-ого рода?
- 8. Вычислите длину окружности, которая задана уравнением $x^2 + y^2 = 4$.
- 9. Как вычислить криволинейный интеграл I-ого рода, если кривая l задана в полярной системе координат уравнением $r = r(\phi)$; $\alpha \le \phi \le \beta$? Запишите формулу.
- 10. Как будет выглядеть формула для вычисления криволинейного интеграла I-ого рода $\int\limits_l (x+y)\mathrm{d}l$, где l- контур треугольника с вершинами $\mathrm{O}(0,0),\mathrm{A}(1,0),\mathrm{B}(0,1)$?
- 11. Сопоставьте криволинейный интеграл I- ого рода из левого столбца c его значением в правом столбце.

$$\begin{array}{lll}
1 \int\limits_{l} x \mathrm{d}l & \mathrm{a} \ \frac{\pi}{4} \\
2 \int\limits_{l} x y \mathrm{d}l & 6 1 \\
3 \int\limits_{l} y^2 \mathrm{d}l & \mathrm{B} -\frac{1}{2}
\end{array}$$

где l-окружность, лежащая в первой четверти x=cost; y=sint.

12. Вставьте пропущенные слова или словосочетания. Пусть P(x,y)dx + Q(x,y)dy- . . . , тогда определен аналог фор-

мулы Ньютона-Лейбница
$$\int\limits_{\widehat{AB}}P(x,y)\mathrm{d}x+Q(x,y)\mathrm{d}y=\Phi(\mathrm{B})$$
-Ф(A) - где $\Phi(\mathrm{x,y})$ - для $P(x,y)\mathrm{d}x+Q(x,y)\mathrm{d}y$.

- 13. Найдите массу М дуги $y=5ch(\frac{x}{5})=\frac{5}{2}(e^{\frac{x}{5}}+e^{-\frac{x}{5}})$ от x=0 до x=5 с плотностью $\rho(x,y)=x.$
- 14. Какую величину из механики нельзя вычислить с помощью криволинейного интеграла*I*-ого рода? Выберите правильный ответ.
- а) вычисление массы материальной кривой;
- б) определение значения работы силы при перемещении по кривой точки единичной массы;
- в) статические моменты кривой относительно осей координат;
- г) момент инерции кривой относительно координатной оси.
- 15. Вычислить криволинейный интеграл I-ого рода, взятый вдоль пространственной кривой $\int\limits_l x^2+y^2+z^2\mathrm{d}l$, где l-часть винтовой кривой $x=5cost;y=5sint;z=4t(0\leq t\leq 2\pi).$
- 16. Убедитесь, что подынтегральное выражение является полным дифференциалом, а затем вычислите криволинейный интеграл II-ого рода.

$$\int_{(-2,-1)}^{(3,0)} (x^4 + 4xy^3) dx + (6x^2y^2 - 5y^4) dy.$$

- 17. Вычислите криволинейный интеграл II-ого рода: $\int\limits_{\widehat{AB}} (x^2-2xy) \mathrm{d}x + (y^2-2xy) \mathrm{d}y,$ где AB- парабола $y=x^2(-1 \le x \le 1).$
- 18. Найдите момент инерции относительно оси OZ первого витка винтовой линии x=6cost; y=6sint; z=t с линейной плотностью $\rho(x,y,z)=z.$
- 19. Вычислите криволинейный интеграл I -ого рода: $\int\limits_{l} (x^2+y^2) \mathrm{d}l, \text{ где } l \text{ -кривая } x=6cost; y=-6sint (0 \leq t \leq 2\pi).$
- 20. Вычислите криволинейный интеграл I -ого рода: $\int\limits_l e^{\sqrt{x^2+y^2}} \mathrm{d}l,$ где l -выпуклый контур, ограниченный кривыми $r=a; \phi=0; \phi=\frac{\pi}{4}.$

Tect 2

- 1. Каким свойством не обладает криволинейный интеграл I-ого рода?
- а) дистрибутивность;
- б) аддитивность;
- в) линейность;
- г) интегрируемость модуля.
- 2. Какое из перечисленных условий НЕ является условием независимости криволинейного интеграла II-ого рода от формы кривой? Выберете правильный ответ.
- а)P(x,y)dx+Q(x,y)dy полный дифференциал I-ого порядка;
- б) $\int\limits_{\stackrel{\smile}{\leftarrow} P} P(x,y) \mathrm{d}x + Q(x,y) \mathrm{d}y$ зависит от формы кривой;
- в) $\oint P(x,y)dx + Q(x,y)dy = 0$, $\forall C \in D$,где С-замкнутый контур;
- $\Gamma)\frac{\partial P(x,y)}{\partial y} = \frac{\partial Q(x,y)}{\partial x} , \forall (x,y) \in D.$
- 3. Верно ли, что для построения криволинейного интеграла I-ого рода мы берем прозвольное разбиение отрезка? Ответьте да или нет.
- 4. Какую величину из механики нельзя вычислить с помощью криволинейного интеграла I-ого рода? Выберите правильные ответы.
- а) вычисление массы материальной кривой;
- б) определение значения работы силы при перемещении по кривой точки единичной массы;
- в) статические моменты кривой относительно осей координат;
- г) объем цилиндрической поверхности образованного кривой.
 - 5. Какое свойство записано ниже?

Пусть $l: x=tsht, y=t^2cht, t_0 < t < T$ - гладкая кривая, и существует $\int\limits_l (x+xy) \mathrm{d}x + (y^2+x^2) \mathrm{d}y$ и $\int\limits_l (x^4+y) \mathrm{d}x + (y-y^6) \mathrm{d}y$,тогда

существует
$$\int_{l} 6(x + xy + x^4 + y) dx + 3(y^2 + x^2 + y - y^6) dy$$

- а) дистрибутивность;
- б) аддитивность;

- в) линейность;
- г) интегрируемость модуля.
- 6. Запишите формулу для вычисления для вычисления криволинейного интеграла I-ого рода по кривой l: $y(x) = x^2$; $1 \le x \le 9$.
- 7. Зависит ли данный интеграл $\int\limits_l (x+y) \mathrm{d} x + (x-y) \mathrm{d} y$ от формы кривой l? Ответьте да или нет.
- 8. Запишите интегральные суммы, которые имеют конечный предел, суммой этих пределов называют криволинейным интегралом II-ого рода по кривой l от выражения $\int\limits_{l}f(x,y)\mathrm{d}x+g(x,y)\mathrm{d}y.$
- 9. Вычислите длину окружности, которая задана уравнением $x^2 + y^2 = 9$.
- 10. Запишите формулу для вычисления криволинейного интеграла II-ого рода,если $l\colon x=t^3; y=t^2; z=t; t\in [0,1]$ $I=\int\limits_{l}(x+y)\mathrm{d}x+2z\mathrm{d}y+xy\mathrm{d}z.$
- 11. Сопоставьте криволинейный интеграл I- ого рода из левого столбца c его значением в правом столбце.

$$\begin{array}{lll}
1 \int\limits_{l} x \mathrm{d}l & \mathrm{a} & \frac{16\pi^3 - 3}{4} \\
2 \int\limits_{l} xy \mathrm{d}l & \mathrm{f} & 4\pi \\
3 \int\limits_{l} y^2 \mathrm{d}l & \mathrm{g} & 12\pi - 8\pi^3
\end{array}$$

где l - окружность; x = tcost; y = tsint.

12. Вставьте пропущенные слова или формулы: если l - . . . , $f(\phi(t), \psi(t)), g(\phi(t), \psi(t)) \in C[t_0, T]$ Тогда $\int\limits_{l} f(x,y) \mathrm{d}x + g(x,y) \mathrm{d}y = (\Re) \int\limits_{t_0}^{T} \ldots$

13. Найдите массу М дуги $y=3ch(\frac{x}{3})=\frac{3}{2}(e^{\frac{x}{3}}+e^{-\frac{x}{3}})$ от x=0 до x=3 с плотностью $\rho(x,y)=x.$

- 14. Найдите длину дуги пространственной кривой: $x=3t; y=3t^2; z=2t^3$ от $\mathrm{O}(0,0,0)$ да $\mathrm{A}(3,3,2)$.
- 15. Вычислить криволинейный интеграл I-ого рода, взятый вдоль пространственной кривой $\int\limits_l x^2+y^2+z^2\mathrm{d}l$, где l-часть винтовой кривой $x=7cost; y=7sint; z=3t(0\leq t\leq 2\pi).$
- 16. Найдите момент инерции относительно оси OZ первого витка винтовой линии x=6cost; y=6sint; z=t с линейной плотностью $\rho(x,y,z)=z$.
- 17. Вычислите криволинейный интеграл II-ого рода: $\int\limits_{I} (x^2-2xy) \mathrm{d}x + (y^2-2xy) \mathrm{d}y,$ где l: $y=x^3 (0 \le x \le 1).$
- 18. Найдите статический момент однородной полуарки циклоиды: x = 4(t sint); y = 4(1 cost) относительно оси Oy.
- 19. Найдите длину дуги пространственной кривой: $x=e^{-t}cost; y=e^{-t}sint; z=e^{-t}$, при $0\le {\rm t}\le +\infty$.
- 20. Вычислите криволинейный интеграл I-ого рода: $I=\int\limits_{l}\frac{1}{xy}\mathrm{d}l,$ где l- отрезок прямой, соединяющей точки $\mathrm{A}(1,1)$ и $\mathrm{B}(2,3).$

Тест 3

- 1. Какое из перечисленных условий НЕ является условием независимости криволинейного интеграла II-ого рода от формы кривой? Выберете правильный ответ.
- $\mathbf{a})P(x,y)dx+Q(x,y)dy$ полный дифференциал I-ого порядка;
- б) $\int\limits_{\stackrel{\sim}{AB}} P(x,y)\mathrm{d}x + Q(x,y)\mathrm{d}y$ не зависит от формы кривой, а зависит от точек A и B:
- в) $\oint P(x,y)dx+Q(x,y)dy\neq 0$, $\forall C\in D$, где С-замкнутый контур; $\Gamma)\frac{\partial P(x,y)}{\partial y}=\frac{\partial Q(x,y)}{\partial x}$, $\forall (x,y)\in D$.

2. Выберете правильный ответ.

Пусть кривая $l: x = \phi(t), y = \psi(t), t_0 < t < T$. При каком условии на $\phi(t), \psi(t)$ криволинейный интеграл I-ого рода будет существовать?

- $a)\phi(t),\psi(t)$ непрерывны на $t_0 < t < T$;
- б) $\phi(t), \psi(t)$ имеют конечное число разрывов I-ого рода на $t_0 < t < T;$
- в) $\phi(t), \psi(t)$ имеют бесконечное число разрывов I-ого рода на $t_0 < t < T;$
- $\Gamma(t), \psi(t)$ гладкие функции на $t_0 < t < T$.
 - 3. Вставьте пропущенные слова или формулы.

Если l - кривая, $t_A; t_B$ -значения параметра, которые соответствуют точкам A и B , т.е $t_A=t_0; t_B=T$ или $t_A=T; t_B=t_0$.

Тогда
$$\int\limits_{l}f(x,y)\mathrm{d}x+g(x,y)\mathrm{d}y=(S)\int\limits_{t_{A}}^{t_{B}}$$
 ...

- 4. В чем заключается геометрический смысл криволинейного интеграла *I*-ого рода?
 - 5. Выберите правильный ответ.

Формула $\int\limits_l f(x,y)\mathrm{d}l=(R)\int\limits_{t_0}^T f(\phi(t),\psi(t))\sqrt{(\dot{\phi}(t)^2+\dot{\psi}(t)^2)}\mathrm{d}t$ справедлива, когда l является

- а) l гладкая кривая;
- б) l ограниченная кривая;
- в) l окружность;
- Γ) l винтовая линия .
- 6. Запишите формулу для нахождения массы материальной кривой с помощью криволинейного интеграла I-ого рода.
- 7. Запишите формулу для нахождения криволинейный интеграл II-ого рода:

$$I=\int\limits_{\widehat{AB}}(x-2y)\mathrm{d}x+(y+4z-2)\mathrm{d}y+(z-x)\mathrm{d}z$$
, где AB отрезок прямой A $(1,2,3)$,B $(2,5,8)$.

8. Вычислите длину окружности, заданную уравнением r = 10.

- 9. Найдите статический момент полуарки циклоиды x=2(t-sint); y=2(1-cost) относительно оси Oyс линейной плотностью $\rho(t)=3.$
- 10. Сопоставьте криволинейный интеграл II-ого рода по кривой l с его значением,если

 $I=\int\limits_l(2xy)\mathrm{d}x-(x^2)\mathrm{d}y$ вдоль различных кривых соединяющих точки $\mathrm{O}(0{,}0)$ и $\mathrm{A}(2{,}1).$

где В(2,0)

11. Запишите формулу для вычисление площади криволинейной трапеции I типа.

Криволинейной трапецией I типа называют множество $G = \{(x.y) | a \le x \le b; f(x) \le y \le g(x); f, g \in C[a.b]\}.$

- 12. Вычислите криволинейный интеграл II-ого рода $\oint\limits_C \frac{(x+y)\mathrm{d}x-(x-y)\mathrm{d}y}{x^2+y^2}$, где C-окружность единичного радиуса, пробегаемая против часовой стрелки.
- 13. Найдите массу дуги эллипса $\frac{x^2}{2}+y^2=1$, с линейной плотностью $\rho(x,y)=|y|.$
- 14. Вычислите криволинейный интеграл I-ого рода $\int\limits_l \frac{x}{y} \mathrm{d}l$, где l-дуга параболы $y^2=2x$, заключенная между точками $\mathrm{A}(2,2)$ и $\mathrm{B}(8,4).$
- 15. Убедитесь, что подынтегральное выражение является полным дифференциалом. Вычислите криволинейный интеграл II-ого рода:
- $\int\limits_{(2,1)}^{(1,2)} rac{y \mathrm{d} x x \mathrm{d} y}{x^2}$ вдоль путей, не пересекающих ось Oy.

- 16. Вычислите криволинейный интеграл II-ого рода: $\int\limits_l x^2\mathrm{d}x + (x+z)\mathrm{d}y + xy\mathrm{d}z,$ где l-дуга кривой $x=sint; y=sin^2t;$ $z=sin^3t(0\leq t\leq \frac{\pi}{2}).$
- 17. Найдите момент инерции относительно оси Ox однородной окружности R=5.
- 18. Найдите длину дуги пространственной кривой: $x = 3t; y = 3t^2; z = 2t^3$ от O(0,0,0) да A(9,27,54).
- 19. Вычислите криволинейный интеграл I-ого рода: $\int\limits_{l}xy\mathrm{d}l,$ где l-кривая $x=5cht;y=5sht;t\in [0;\pi].$
- 20. Вычислите криволинейный интеграл II-ого рода: $\int\limits_{l} (x^2-z^2) \mathrm{d}x + 2yz \mathrm{d}y x^2 \mathrm{d}z,$ где l- кривая $x=t; y=t^2; z=t^3$ $(0 \le t \le 1).$

Тест 4

- 1. Выберете необходимое условие существования криволинейного интеграла I-ого рода.
- a)f(x,y) непрерывна на кривой l;
- б)f(x,y) монотонна на кривой l;
- в) f(x, y) ограничена сверху на кривой l;
- Γ) f(x,y) ограничена снизу на кривой l.
- 2. Каким свойствами не обладает криволинейный интеграл I-ого рода?
- а) коммутативность;
- б) аддитивность;
- в) линейность;
- г) интегрируемость модуля.
- 3. Какое из перечисленных условий НЕ является условием независимости криволинейного интеграла II-ого рода от формы кривой? Выберете правильный ответ.

- a)P(x,y)dx + Q(x,y)dy полный дифференциал *I*-ого рода;
- б) $\int P(x,y) dx + Q(x,y) dy$ не зависит от формы кривой, а зависит $\stackrel{\widetilde{AB}}{\text{ от точек A и B}}$;

в)
$$\oint P(x,y)dx + Q(x,y)dy = 0$$
, $\forall C \in D$, где С-замкнутая кривая; $\Gamma \frac{\partial P(x,y)}{\partial x} = \frac{\partial Q(x,y)}{\partial y}$, $\forall (x,y) \in D$.

- 4. Какую величину из механики нельзя вычислить с помощью криволинейного интеграла І-ого рода?
- а) вычисление массы материальной кривой;
- б) определение значения работы силы при перемещении по кривой точки единичной массы;
- в) статические моменты кривой относительно осей координат;
- г) момент инерции кривой относительно координатной оси.
- 5. Запишите формулу для решения криволинейного интеграла II-ого рода

$$\oint_C (y+2x)dx+2(x+y)dy$$
, где C образован линиями $y=4x^2;$ $y=4;$ $x=0.$

6. Справедлива ли формула, если $l: x = \phi(t), y = \psi(t),$ $t_0 < t < T$ - гладкая кривая, $f(\phi(t), \psi(t)) \in C[t_0, T]$

$$\int_{l} f(x,y) dl = (R) \int_{t_0}^{T} f(\phi(t), \psi(t)) \sqrt{\dot{\phi}(t)^2 + \dot{\psi}(t)^2} dt?$$

Ответьте да или нет.

- 7. При каком условии криволинейный интеграл II-ого рода не зависит от формы кривой?
 - 8. Вычислите длину окружности, заданную уравнением r = 1.
- 9. Найдите статический момент полуарки циклоиды x = (t - sint); y = (1 - cost) относительно оси Ox с линейной плотностью $\rho(t) = 5$.

10. Сопоставьте криволинейный интеграл II-ого рода по кривой l с его значением, если $I=\int\limits_{I}(xy)\mathrm{d}x-(y^2)\mathrm{d}y$ вдоль различных кривых соединяющих точки

1 прямая [OA] а
$$\frac{4}{5}$$
 2 парабола с осью Oy 3 ломаная [OBA], в $\frac{1}{8}$ где $B(2.0)$

O(0,0) и A(2,1).

11. Запишите формулу для вычисление площади криволинейной трапеции II типа.

Криволинейной трапецией II типа называют

$$G = \{(x.y) | c \le y \le d; f(y) \le x \le g(y); f, g \in C[c.d]\}$$

- 12. Вычислите криволинейный интеграл II-ого рода $\oint\limits_C \frac{(x+y)\mathrm{d}x-(x-y)\mathrm{d}y}{x^2+y^2}$, где C-окружность R=5, пробегаемая против часовой стрелки.
- 13. Определите массу кривой, имеющей форму отрезка от точки A(1,1) до B(2,4) с плотностью $\rho(x,y)=3x+2y$.
- 14. Вычислите криволинейный интеграл I-ого рода: $\int\limits_{l}(5z-2\sqrt{x^2+y^2})\mathrm{d}l, \ \mathrm{rge}\ l$ -дуга кривой,заданной параметрически $x=tcost;y=tsint;z=t;t\in[0,\pi].$
- 15. Убедитесь, что подынтегральное выражение является полным диффенциалом. Вычислите криволинейный интеграл II-ого рода:
- $\int\limits_{(0,-1)}^{(1,0)} \frac{x {\rm d} y y {\rm d} x}{(x-y)^2}$ вдоль путей, не пересекающих прямой y=x.
- 16. Вычислите криволинейный интеграл II-ого рода: $I=\int\limits_{I}(x+y)\mathrm{d}x+2z\mathrm{d}y+xy\mathrm{d}z,$ где $l{:}x=t^3;y=t^2;z=t;t\in[0,1].$

- 17. Найдите момент инерции относительно оси Ox однородной окружности R=3.
- 18. Найдите длину дуги пространственной кривой: $x=e^t cost; y=e^t sint; z-e^t, 0 \leq t \leq 5.$
- 19. Вычислите криволинейный интеграл I-ого рода: $\int_I (x^{\frac43}+y^{\frac43}) \mathrm{d}l$, где l-дуга астроиды $x=acos^\phi;y=asin^3\phi;t\in[0,\frac\pi2].$
- 20. Вычислите криволинейный интеграл II-ого рода: $\int\limits_l (xy-1)\mathrm{d}x + x^2y\mathrm{d}y, \text{ где }l\text{-отрезок от точки A}(1,2) \text{ до точки B}(2,4)$ по прямой AB.

Тема 4. Кратные интегралы

Tect 1

1. Вместо многоточия вставьте правильный вариант ответа:

$$\iint_{\Omega} f(x,y) dx dy = \lim_{\dots} \sum_{i} \sum_{j} f(x_i, y_j) \Delta x_i \Delta y_j,$$
где $\Delta x_i = x_{i+1} - x_i, \ \Delta y_j = y_{j+1} - y_j.$

- a) $\min |\Delta x_i| \to 0$ $\min |\Delta y_i| \to 0$;
- b) $\min_{\min |\Delta x_i| \to \infty} \min_{\min |\Delta y_i| \to \infty}$;
- c) $\max_{\max |\Delta x_i| \to 0} \max_{\max |\Delta y_i| \to 0}$;
- d) $\max |\Delta x_i| \to \infty$ $\max |\Delta y_i| \to \infty$
- 2. Укажите верную формулу:

a)
$$\iint\limits_{\Omega} f(x,y) dx dy = \iint\limits_{\Omega} f(x(u,v),y(u,v)) J du dv;$$

b)
$$\iint\limits_{\Omega} f(x,y)dxdy = \iint\limits_{\Omega'} f(x(u,v),y(u,v))Jdudv;$$

c)
$$\iint\limits_{\Omega} f(x,y)dxdy = \iint\limits_{\Omega} f(x(u,v),y(u,v))|J|dudv;$$

d)
$$\iint_{\Omega} f(x,y) dx dy = \iint_{\Omega'} f(x(u,v),y(u,v)) |J| du dv,$$

где
$$J=egin{array}{c|c} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{array}$$
 - якобиан перехода к другим координатам.

- 3. Вычислите интеграл $\iint\limits_{\Omega} \frac{dxdy}{(x+y)^2},$ где Ω прямоугольник $3\leqslant x\leqslant 4,\ 1\leqslant y\leqslant 2.$
- a) $\frac{21}{4}$; b) $\frac{25}{4}$; c) $\ln \frac{21}{4}$; d) $\ln \frac{25}{4}$.

- 4. Поменяйте пределы интегрирования в $\int_{0}^{2} dx \int_{x}^{2x} f(x,y) dy$.
- $\mathbf{a})\int\limits_0^4 dy\int\limits_{\underline{y}}^2 f(x,y)dx;\, \mathbf{c})\int\limits_0^2 dy\int\limits_{\underline{y}}^y f(x,y)dx+\int\limits_2^4 dy\int\limits_{\underline{y}}^2 f(x,y)dx;$
- b) $\int_{0}^{4} dy \int_{\frac{y}{2}}^{y} f(x,y) dx$; d) $\int_{0}^{2} dy \int_{\frac{y}{2}}^{2} f(x,y) dx + \int_{2}^{4} dy \int_{\frac{y}{2}}^{y} f(x,y) dx$.
- 5. Перейдите к полярным координатам r и ϕ в $\int\limits_0^1 dx \int\limits_0^1 f(x,y) dy,$ полагая $x=r\cos\phi, y=r\sin\phi.$

$$\mathbf{a}) \int\limits_0^{\frac{\pi}{4}} d\phi \int\limits_0^{\frac{1}{\cos\phi}} rf(r,\phi) dr + \int\limits_{\frac{\pi}{2}}^{\frac{\pi}{2}} d\phi \int\limits_0^{\frac{1}{\sin\phi}} rf(r,\phi) dr;$$

b)
$$\int_{0}^{\frac{\pi}{4}} d\phi \int_{0}^{\frac{1}{sin\phi}} rf(r,\phi)dr + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\phi \int_{0}^{\frac{1}{cos\phi}} rf(r,\phi)dr;$$

c)
$$\int_{0}^{\frac{\pi}{2}} d\phi \int_{0}^{\frac{1}{sin\phi}} rf(r,\phi)dr;$$

d)
$$\int_{0}^{\frac{\pi}{2}} d\phi \int_{0}^{\frac{1}{\cos\phi}} rf(r,\phi)dr;$$

- 6. Вычислите $\iint_{\Omega} xy^2 dx dy$, $\Omega : y^2 = 2px$, $x = \frac{p}{2}$ (p > 0).
- 7. Вычислите $\iint\limits_{\Omega} cos(x^2+y^2) dx dy, \Omega: x^2+y^2 \leqslant a^2.$
- 8. Вычислите $\iint\limits_{\Omega}(x^2y^2+y^2)dxdy, \Omega: \tfrac{1}{x}\leqslant y\leqslant \tfrac{2}{x}, x\leqslant y\leqslant 3x.$
- 9. Вычислите $\iint\limits_{\Omega} xydxdy, \Omega: xy=1, x+y=\frac{5}{2}.$
- 10. Вычислите $\iint\limits_{\Omega}\sqrt{|y-x^2|}dxdy, \Omega:|x|\leqslant 1, 0\leqslant y\leqslant 2.$

- 11. Установите соответствие.
- 1. Площадь области Ω ;
- 2. Объём цилиндра, ограниченного сверху непрерывной поверхностью z = z(x, y), снизу z = 0 и вырезающего из плоскости ОХҮ квадрируемую область Ω ;
- 3. Площадь гладкой поверхности z = z(x, y);
- 4. Центробежный момент инерции, где $z = \rho(x,y)$ плотность области Ω .

a.
$$\iint_{\Omega} \sqrt{1 + (\frac{\partial z}{\partial y})^2 + (\frac{\partial z}{\partial y})^2} dxdy;$$

b.
$$\iint_{\Omega} z(x, y) dxdy;$$

c.
$$\iint_{\Omega} zxy dxdy;$$

d.
$$\iint_{\Omega} dxdy.$$

- 12. С помощью двойного интеграла вычислите площадь фигуры Ω , ограниченной линиями $y = x^2 - 1$, x + y = 5.
- 13. Вычислите площадь фигуры, ограниченной кривыми $y = \frac{x^5}{c^4}$, $y = \frac{x^5}{b^4}$, $x = \frac{y^5}{c^4}$, $x = \frac{y^5}{c^4}$ (x > 0, y > 0, 0 < a < b, 0 < c < d).
- 14. Найдите массу пластинки плотности ρ , ограниченной кри-

$$y=x^2, \ x+y=2, \ y-x=2 \ (x>0),$$
 если $\rho=x+2.$

15. Найдите координаты центра масс однородной пластинки, ограниченной кривыми

$$ay = x^2$$
, $x + y = 2a$ $(a > 0)$.

16. Найдите моменты инерции I_x , I_y пластинки $(\rho=1)$, ограниченной кривыми

$$xy = a^2$$
, $xy = 2a^2$, $x = 2y$, $2x = y$ $(x > 0, y > 0)$.

17. Найдите площадь части поверхности $x^2+y^2+z^2=a^2,$ заключенной внутри цилиндра $x^2+y^2=\pm ax.$

- 18. Найдите площадь поверхности cz = xy, если $(x^2 + y^2)^2 \le 2c^2xy$, $z \ge 0$.
- 19. Изобразите объём, выражаемый следующим двойным интегралом $\iint\limits_{\Omega} (x+y) dx dy$, где $\Omega: \{0 \leqslant x+y \leqslant 1; \ x \geqslant 0, \ y \geqslant 0\}.$
- 20. Вычислите объём тела, ограниченного прямыми z = 1 + x + y, z = 0, x + y = 1, x = 0, y = 0.

Тест 2

1. Вместо многоточия вставьте правильный вариант ответа:

$$\iint\limits_{\Omega} f(x,y) dx dy = \lim_{\max|\Delta x_i, \Delta y_j| \to 0} \sum_i \sum_j ...,$$
 где $\Delta x_i = x_{i+1} - x_i$, $\Delta y_i = y_{i+1} - y_i$.

- a) $f(x,y)\Delta x_i \Delta y_j$; b) $f(x_i,y_j)\Delta x_i \Delta y_j$; c) $f(x_i,y_j)$; d) $\Delta x_i \Delta y_j$.
 - 2. Укажите верную формулу:

a)
$$\iint\limits_{\Omega} f(x,y) dx dy = \int\limits_{a}^{b} dx \int\limits_{y_{1}(x)}^{y_{2}(x)} f(x,y) dy;$$

b)
$$\iint_{\Omega} f(x,y) dx dy = \int_{a}^{b} dy \int_{y_{1}(x)}^{y_{2}(x)} f(x,y) dx;$$

c)
$$\iint_{\Omega} f(x,y) dx dy = \int_{a}^{b} f(x,y) dx \int_{y_{1}(x)}^{y_{2}(x)} dy;$$

d)
$$\iint_{\Omega} f(x,y) dx dy = \int_{a}^{b} f(x,y) dy \int_{y_{1}(x)}^{y_{2}(x)} dx,$$

$$\text{где } \Omega : \{ a \leq x \leq b; \ y_{1}(x) \leq y \leq y_{2}(x) \}.$$

- 3. Вычислите интеграл $\iint\limits_{\Omega}(x+2y)dxdy,$ где Ω ограничена линиями $y=x^2,\;\;y=0,\;\;x+y-2=0.$
- $a)\frac{9}{20}$; $b)\frac{29}{20}$; $c)\ln\frac{9}{20}$; $d)\ln\frac{29}{20}$.
 - 4. Поменяйте пределы интегрирования в $\int_{-6}^{2} dx \int_{-\frac{x^2}{4}-1}^{2-x} f(x,y) dy$.

a)
$$\int_{-1}^{8} dy \int_{-2\sqrt{y+1}}^{2\sqrt{y+1}} f(x,y)dx;$$
b)
$$\int_{-1}^{8} dy \int_{-2\sqrt{y+1}}^{2-y} f(x,y)dx;$$
c)
$$\int_{-1}^{0} dy \int_{-2\sqrt{y+1}}^{2-y} f(x,y)dx + \int_{0}^{8} dy \int_{-2\sqrt{y+1}}^{2\sqrt{y+1}} f(x,y)dx;$$
d)
$$\int_{-1}^{0} dy \int_{-2\sqrt{y+1}}^{2\sqrt{y+1}} f(x,y)dx + \int_{0}^{8} dy \int_{-2\sqrt{y+1}}^{2-y} f(x,y)dx;$$

5. Перейдите к полярным координатам r и ϕ в $\int_{-1}^{0} dx \int_{0}^{1} f(x,y) dy$, полагая $x = r \cos \phi, y = r \sin \phi$.

a)
$$\int_{\frac{\pi}{2}}^{\frac{3\pi}{4}} d\phi \int_{0}^{\frac{1}{\sin\phi}} rf(r,\phi)dr + \int_{\frac{3\pi}{4}}^{\pi} d\phi \int_{0}^{\frac{1}{\cos\phi}} rf(r,\phi)dr;$$
b)
$$\int_{\frac{\pi}{2}}^{\frac{3\pi}{4}} d\phi \int_{0}^{\frac{-1}{\cos\phi}} rf(r,\phi)dr + \int_{\frac{3\pi}{4}}^{\pi} d\phi \int_{0}^{\frac{1}{\sin\phi}} rf(r,\phi)dr;$$
c)
$$\int_{\frac{\pi}{2}}^{\pi} d\phi \int_{0}^{\frac{1}{\sin\phi}} rf(r,\phi)dr;$$

d)
$$\int_{\frac{\pi}{2}}^{\pi} d\phi \int_{0}^{\frac{-1}{\cos\phi}} rf(r,\phi) dr;$$

6. Вычислите
$$\iint\limits_{\Omega}(x^2+y^2)dxdy, \Omega: y=x, y=x+a, y=a, y=3a.$$

7. Вычислите
$$\iint\limits_{\Omega} \frac{x^2}{x^2+y^2} dx dy, \Omega: x^2+y^2 \geqslant ax.$$

8. Вычислите
$$\iint\limits_{\Omega} \frac{(x+y)^2}{x} dx dy$$
, $\Omega: 1-x\geqslant y\geqslant 3-x$, $\frac{x}{2}\geqslant y\geqslant 2x$.

9. Вычислите
$$\iint\limits_{\Omega}(|x|+|y|)dxdy, \Omega:|x|+|y|\geqslant 1.$$

10. Вычислите
$$\iint\limits_{\Omega}|\cos(x+y)|dxdy, \Omega:0\geqslant x\geqslant\pi, 0\geqslant y\geqslant\pi.$$

11. Установите соответствие.

- 1. Плошаль области Ω :
- 2. Объём цилиндра, ограниченного сверху непрерывной поверхностью z=z(x,y), снизу z=0 и вырезающего из плоскости ОХҮ квадрируемую область Ω ;
- 3. Площадь гладкой поверхности z = z(x, y);
- 4. Центробежный момент инерции, где $z=\rho(x,y)$ плотность области $\Omega.$

$$\begin{array}{l} \text{a.} \int \int _{\Omega} \sqrt{1+(\frac{\partial z}{\partial y})^2+(\frac{\partial z}{\partial y})^2} dxdy; \\ \text{b.} \int \int _{\Omega} z(x,y) dxdy; \\ \text{c.} \int \int _{\Omega} zxy dxdy; \\ \text{d.} \int \int _{\Omega} dxdy. \end{array}$$

- 12. С помощью двойного интеграла вычислите площадь фигуры Ω , ограниченной линиями $y^2=2x+4, y^2=-\frac{1}{2}x+4.$
- 13. Вычислите площадь фигуры, ограниченной кривыми $x^2 = py, x^2 = qy, y = ax, y = bx (0$
- 14. Найдите массу пластинки плотности ρ , ограниченной линиями

$$x = y, x - 3y = 1, y = 1, y = 3,$$
 если $\rho = y$.

- 15. Найдите координаты центра масс однородной пластинки, ограниченной кривыми $\sqrt{x} + \sqrt{y} = \sqrt{a}, x = 0, y = 0.$
- 16. Найдите моменты инерции I_x , I_y пластинки $(\rho=1)$, ограниченной кривыми $r=a(1+\cos\phi)$.
- 17. Найдите площадь части поверхности $z=\sqrt{x^2+y^2},$ заключенной внутри цилиндра $x^2+y^2=2x.$
- 18. Найдите площадь поверхности $2z=x^2,$ если $x\leqslant 2y\leqslant 4x,$ $x\leqslant 2\sqrt{2}.$
 - 19. Изобразите объём, выражаемый следующим двойным инте-

гралом
$$\iint\limits_{\Omega} \sqrt{1-\frac{x^2}{4}-\frac{y^2}{9}},$$
 где $\Omega:\{\frac{x^2}{4}+\frac{y^2}{9}\leqslant 1\}.$

20. Вычислите объём тела, ограниченного прямыми x+y+z=a, $x^2+y^2=R^2$, x=0, x=0, y=0, z=0 ($a\geqslant \sqrt{2}R$).

Тест 3

1. Вместо многоточия вставьте правильный вариант ответа:

Если Ω задана неравенствами: $x_1(y) \leqslant x \leqslant x_2(y), a \leqslant y \leqslant b$, где $x_1(y), x_2(y)$ - непрерывные функции на [a,b], то $\iint f(x,y) dx dy = ...$

a)
$$\int_{x_1(y)}^{x_2(y)} dy \int_a^b f(x,y) dx$$

b)
$$\int_{a}^{b} dy \int_{x_1(y)}^{x_2(y)} f(x, y) dx$$

c)
$$\int_{x_1(y)}^{x_2(y)} dx \int_a^b f(x,y) dy$$

d)
$$\int_{a}^{b} dx \int_{x_{1}(y)}^{x_{2}(y)} f(x, y) dy$$

2. Продолжите фразу:

Пусть $I = \iint f(x,y) dx dy$. Множество Ω симметрично относительно оси ОҮ. Тогда из нечетности f(x,y) по переменной х следует, что $I = \dots$

а)
$$2 \iint_{\Omega_1} f(x,y) dx dy$$
, где $\Omega_1 = \Omega \cap \{(x,y) : x \geqslant 0\};$
b) $2 \iint_{\Omega_1} f(x,y) dx dy$, где $\Omega_1 = \Omega \cup \{(x,y) : x \geqslant 0\};$

b)
$$2\iint\limits_{\Omega_1} f(x,y) dxdy$$
, где $\Omega_1 = \Omega \cup \{(x,y) : x \geqslant 0\}$;

c)
$$\iint_{\Omega_1} f(x,y) dx dy$$
, где $\Omega_1 = \Omega \cap \{(x,y) : x \geqslant 0\};$

d) 0.

- 3. Вычислите интеграл $\iint_{\Omega} (2x+y) dx dy$, где Ω ограничена линиями x+y=3,y=0,x=0.
- a) $\frac{25}{2}$; b) $\frac{27}{2}$; c) $\ln \frac{25}{2}$; d) $\ln \frac{27}{2}$.
 - 4. Поменяйте пределы интегрирования в $\int_{1}^{2} dx \int_{2-x}^{\sqrt{2x-x^2}} f(x,y) dy$.

$$\mathbf{a}) \int\limits_{0}^{1} dy \int\limits_{1+\sqrt{1-y^{2}}}^{2-y} f(x,y) dx; \mathbf{c}) \int\limits_{0}^{\frac{1}{2}} dy \int\limits_{0}^{2-y} f(x,y) dx + \int\limits_{\frac{1}{2}}^{1} dy \int\limits_{0}^{1+\sqrt{1-y^{2}}} f(x,y) dx;$$

b)
$$\int_{0}^{1} dy \int_{2-y}^{1+\sqrt{1-y^2}} f(x,y)dx; d$$
 $\int_{0}^{\frac{1}{2}} dy \int_{0}^{1+\sqrt{1-y^2}} f(x,y)dx + \int_{\frac{1}{2}}^{1} dy \int_{0}^{2-y} f(x,y)dx.$

5. Перейдите к полярным координатам r и ϕ в $\int\limits_{-1}^{0}dx\int\limits_{0}^{x^{2}}f(x,y)dy,$ полагая $x=r\cos\phi,y=r\sin\phi.$

a)
$$\int_{\frac{3\pi}{8}}^{\frac{7\pi}{8}} d\phi \int_{0}^{\frac{1}{\cos\phi}} rf(r,\phi)dr + \int_{\frac{7\pi}{4}}^{\pi} d\phi \int_{0}^{\frac{-\sin\phi}{\cos^2\phi}} rf(r,\phi)dr;$$

b)
$$\int_{\frac{3\pi}{4}}^{\frac{7\pi}{8}} d\phi \int_{0}^{\frac{-\sin\phi}{\cos^2\phi}} rf(r,\phi)dr + \int_{\frac{7\pi}{8}}^{\pi} d\phi \int_{0}^{\frac{1}{\cos\phi}} rf(r,\phi)dr;$$

$$\mathbf{c}) \int_{\frac{3\pi}{4}}^{\pi} d\phi \int_{\frac{-\sin\phi}{\cos^2\phi}}^{\frac{1}{\cos\phi}} rf(r,\phi) dr;$$

d)
$$\int_{\frac{3\pi}{4}}^{\pi} d\phi \int_{\frac{1}{\cos\phi}}^{\frac{-\sin\phi}{\cos^2\phi}} rf(r,\phi)dr$$
.

- 6. Вычислите $\iint\limits_{\Omega}(x+y)dxdy, \Omega$ параллелограм со сторонами y=x,y=x+a,y=a,y=3a.
 - 7. Вычислите $\iint\limits_{\Omega} sin\sqrt{x^2+y^2}dxdy, \Omega: \pi^2\leqslant x^2+y^2\leqslant 4\pi^2.$

- 8. Вычислите $\iint\limits_{\Omega}xy(x+y)dxdy, \Omega:-1\leqslant x-y\leqslant 1, \tfrac{1}{x}\leqslant y\leqslant \tfrac{2}{x}.$
- 9. Вычислите $\iint\limits_{\Omega} \sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}} dx dy, \Omega: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1.$
- 10. Вычислите $\iint\limits_{\Omega} (x+y) dx dy, \Omega: y^2 = 2x, x+y = 4, x+y = 12.$
- 11. Установите соответствие.
- 1. x_0 координата центра масс пластинки Ω , лежащей в плоскости Oxy, и $\rho=\rho(x,y)$ плотность пластинки;
- 2. y_0 координата центра масс пластинки Ω , лежащей в плоскости Oxy, и $\rho=\rho(x,y)$ плотность пластинки;
- 3. I_x момент инерции пластинки Ω , лежащей в плоскости Oxy, и $\rho = \rho(x,y)$ плотность пластинки;
- 4. I_y момент инерции пластинки Ω , лежащей в плоскости Oxy, и $\rho = \rho(x,y)$ плотность пластинки.
- a. $\iint \rho y^2 dx dy;$
- b. $\frac{1}{M} \iint_{\Omega} \rho y dx dy$;
- c. $\iint_{\Omega} \rho x^2 dx dy;$
- d. $\frac{1}{M} \iint_{\Omega} \rho x dx dy$.
- 12. С помощью двойного интеграла вычислите площадь фигуры Ω , ограниченной линиями $y^2 = 2x + 8, y^2 = \frac{-1}{2}x + 3.$
- 13. Вычислите площадь фигуры, ограниченной кривыми $y = ax^3, y = bx^3, y^2 = px, y^2 = qx \ (0 < a < b, 0 < p < q).$
- 14. Найдите массу пластинки плотности ρ , ограниченной кривыми

$$y^2 = x + 4, y^2 = 4 - x, y = 0 (y \geqslant 0),$$
 если $\rho = y.$

- 15. Найдите координаты центра масс однородной пластинки, ограниченной кривыми $y=3x-x^2, y=0.$
- 16. Найдите моменты инерции I_x , I_y пластинки ($\rho=1$), ограниченной кривыми $x^4+y^4=a^2(x^2+y^2).$
- 17. Найдите площадь части поверхности $x^2+y^2=2az$, заключенной внутри цилиндра $(x^2+y^2)^2=2a^2xy$.
- 18. Найдите площадь поверхности $z^2=2xy,$ если $0\leqslant x\leqslant a,$ $0\leqslant y\leqslant b.$
- 19. Изобразите объём, выражаемый следующим двойным интегралом $\iint\limits_{\Omega} \sqrt{x^2+y^2} dx dy$, где $\Omega: x^2+y^2\leqslant x$.
- 20. Вычислите объём тела, ограниченного прямыми $z = x^2 + y^2, x = y^2, y = 1, z = 0.$

Тест 4

1. Вместо многоточия вставьте правильный вариант ответа:

Если Ω задана неравенствами: $a\leqslant x\leqslant b, y_1(x)\leqslant y\leqslant y_2(x),$ где $y_1(x),y_2(x)$ - непрерывные функции на [a,b], то $\iint\limits_{\Omega}f(x,y)dxdy=...$

a)
$$\int_{y_1(x)}^{y_2(x)} dy \int_a^b f(x,y) dx$$

b)
$$\int_{a}^{b} dy \int_{y_{1}(x)}^{y_{2}(x)} f(x, y) dx$$

c)
$$\int_{y_1(x)}^{y_2(x)} dx \int_a^b f(x,y) dy$$

d)
$$\int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} f(x,y) dy$$

2. Продолжите фразу:

Пусть $I=\iint\limits_{\Omega}f(x,y)dxdy.$ Множество Ω симметрично относительно оси ОҮ. Тогда из четности f(x,y) по переменной х следует, что I=...

а)
$$2\iint_{\Omega} f(x,y) dx dy$$
, где $\Omega_1 = \Omega \cap \{(x,y) : x \geqslant 0\}$;

b)
$$2 \iint_{\Omega_1} f(x,y) dx dy$$
, где $\Omega_1 = \Omega \cup \{(x,y) : x \ge 0\};$

c)
$$\iint_{\Omega_1} f(x,y) dx dy$$
, где $\Omega_1 = \Omega \cap \{(x,y) : x \geqslant 0\}$;

d) 0.

3. Вычислите интеграл $\iint_{\Omega} x dx dy$, где Ω ограничена линиями $y=\sqrt{x},y=x.$

a)
$$\frac{1}{15}$$
; b) $\frac{16}{15}$; c) $\ln \frac{1}{15}$; d) $\ln \frac{16}{15}$.

4. Поменяйте пределы интегрирования в $\int_{0}^{1} dx \int_{x^{3}}^{x^{2}} f(x,y) dy$.

a)
$$\int_{0}^{1} dy \int_{\sqrt{y}}^{\sqrt[3]{y}} f(x,y) dx$$
; c) $\int_{0}^{\frac{1}{2}} dy \int_{0}^{\sqrt{y}} f(x,y) dx + \int_{\frac{1}{2}}^{1} dy \int_{0}^{\sqrt[3]{y}} f(x,y) dx$;

$$\mathbf{b}) \int\limits_0^1 dy \int\limits_{\Im\sqrt{u}}^{\sqrt{y}} f(x,y) dx; \, \mathbf{d}) \int\limits_0^{\frac{1}{2}} dy \int\limits_0^{\Im\sqrt{y}} f(x,y) dx + \int\limits_{\frac{1}{2}}^1 dy \int\limits_0^{\sqrt{y}} f(x,y) dx.$$

5. Перейдите к полярным координатам r и ϕ в $\int\limits_0^1 dx \int\limits_0^{x^2} f(x,y) dy$, полагая $x=r\cos\phi, y=r\sin\phi$.

$$\begin{aligned} &\mathbf{a}) \int\limits_{0}^{\frac{\pi}{8}} d\phi \int\limits_{0}^{\frac{1}{\cos\phi}} rf(r,\phi) dr + \int\limits_{\frac{\pi}{8}}^{\frac{\pi}{4}} d\phi \int\limits_{\cos^{2}\phi}^{\frac{\sin\phi}{\cos^{2}\phi}} rf(r,\phi) dr; \\ &\mathbf{b}) \int\limits_{0}^{\frac{\pi}{8}} d\phi \int\limits_{0}^{\frac{\sin\phi}{\cos^{2}\phi}} rf(r,\phi) dr + \int\limits_{\frac{\pi}{8}}^{\frac{\pi}{4}} d\phi \int\limits_{0}^{\frac{1}{\cos\phi}} rf(r,\phi) dr; \\ &\mathbf{c}) \int\limits_{0}^{\frac{\pi}{4}} d\phi \int\limits_{\cos^{2}\phi}^{\frac{1}{\cos\phi}} rf(r,\phi) dr; \\ &\mathbf{d}) \int\limits_{0}^{\frac{\pi}{4}} d\phi \int\limits_{\cos^{2}\phi}^{\frac{\sin\phi}{\cos^{2}\phi}} rf(r,\phi) dr. \end{aligned}$$

6. Вычислите
$$\iint\limits_{\Omega} x^2 y^2 dx dy, \Omega: y^2 = 2px, x = \frac{p}{2} \ (p > 0).$$

7. Вычислите
$$\iint\limits_{\Omega} \sqrt{x^2 + y^2} dx dy dx dy$$
, $\Omega: x^2 + y^2 \leqslant a^2$.

8. Вычислите
$$\iint_{\Omega} (x^3 + y^3) dx dy$$
, $\Omega : \frac{1}{x} \leqslant 2y \leqslant \frac{3}{x}, x^2 \leqslant y \leqslant 3x^2$.

9. Вычислите
$$\iint\limits_{\Omega} (x+y) dx dy$$
, $\Omega: x+y=x^2+y^2$.

10. Вычислите
$$\iint\limits_{\Omega}|\frac{x+y}{\sqrt{2}}-x^2-y^2|dxdy,\Omega:x^2+y^2\leqslant 1.$$

11. Установите соответствие.

- 1. x_0 координата центра масс пластинки Ω , лежащей в плоскости Oxy, и $\rho = \rho(x,y)$ плотность пластинки;
- 2. y_0 координата центра масс пластинки Ω , лежащей в плоскости Oxy, и $\rho=\rho(x,y)$ плотность пластинки;
- 3. I_x момент инерции пластинки Ω , лежащей в плоскости Oxy, и $\rho = \rho(x,y)$ плотность пластинки;
- 4. I_y момент инерции пластинки Ω , лежащей в плоскости Oxy, и $\rho = \rho(x,y)$ плотность пластинки.

a.
$$\iint_{\Omega} \rho y^2 dx dy;$$
b.
$$\iint_{M} \iint_{\Omega} \rho y dx dy;$$
c.
$$\iint_{\Omega} \rho x^2 dx dy;$$
d.
$$\iint_{M} \iint_{\Omega} \rho x dx dy.$$

- 12. С помощью двойного интеграла вычислите площадь фигуры $\Omega,$ ограниченной линиями $y=x^2, x+y=6.$
- 13. Вычислите площадь фигуры, ограниченной кривыми $y=\frac{x^2}{a},\ y=\frac{x^2}{b},\ y^2=\frac{x^3}{c},\ y^2=\frac{x^3}{d}\ (0< a< b,\ 0< c< d).$
- 14. Найдите массу пластинки плотности ρ , ограниченной кривыми

$$x^2 + y^2 = 4x$$
, $x^2 + y^2 = 4y$, $(xy \geqslant 0)$, если $\rho = x$.

15. Найдите координаты центра масс однородной пластинки, ограниченной кривыми

$$y = x^2 + 4x + 3, \ y = 0.$$

16. Найдите моменты инерции I_x, I_y пластинки $(\rho = 1),$ ограниченной кривыми

$$(x-a)^2 + (y-a)^2 = a^2, x = 0, y = 0 \ (0 \le x \le a).$$

- 17. Найдите площадь части поверхности $z=\sqrt{x^2-y^2},$ заключенной внутри цилиндра $(x^2+y^2)=a^2(x^2-y^2).$
- 18. Найдите площадь поверхности $z = \sqrt{x^2 + y^2}$, если $x^2 + y^2 \leqslant 2ax$.
- 19. Изобразите объём, выражаемый следующим двойным интегралом $\iint\limits_{\Omega}(x^2+y^2)dxdy$, где $\Omega:|x|+|y|\leqslant 1$.
- 20. Вычислите объём тела, ограниченного прямыми $z = xy, \ x + y + z = 1, \ z = 0.$

Tecт 5

1. Пусть G - компакт, и ∂G (граница G) - множество объема ноль. Верно ли, что G измеримо?
1) да
2) нет
2. Пусть числовая функция f задана на множестве E , которое измеримо по Жордану и $\mu E=0.$ Чему равен $\int f(x) dE$?
1) однозначно сказать нельзя
2) 0
3) 1
3. Пусть f - произвольная функция, а G - открытое множество. Пусть, к тому же, интеграл $\int f dG$ существует. Что мы можем сказать о функции f?
1) она ограничена на G
2) она непрерывна на G
3) она дифференцируема на G
4. Функция f определена на множестве $E=E'\cup E'',\ E'\cap E''=\varnothing.$ Интеграл $\int f(x)dE$ существует. Что можно сказать об интегралах $\int f(x)dE'$ и $\int f(x)dE''$?
1) ничего
2) они существуют

3) их не существует

- 5. Функции f(x),g(x) интегрируемы на E и $f(x)\leq g(x),\ \forall x\in Q\subset E.$ Верно ли, что $\int\limits_E f(x)\leq \int\limits_E g(x)$?
 - 1) верно
 - 2) верно, если Q = E
 - 3) неверно
 - 4) зависит от функций f и g
- 6. Что из нижеперечисленного необходимо для интегрируемости разрывной функции f на измеримом по Жордану компакте G?
 - 1) ограниченность f
 - 2) то, что граница G множество меры 0
- 3)то, что множество точек разрыва функции f множество меры 0
 - 4) ограниченность множества G
- 7. Функции f,g интегрируемы на Е и $\int f(x)dE = \int g(x)dE = 1$. Чему равен интеграл $\int (f(x) g(x))dE$?
- 8. Вычислить интеграл $\int\limits_{0\leq x\leq 1}\int\limits_{0\leq y\leq 1}xy\;dxdy$, рассматривая его как предел интегральной суммы, разбивая область интегрирования на квадраты прямыми $x=i/n,\;y=j/n,\;(i,j=1,2,...,n-1)$ и выбирая значения подинтегральной функции в правых верхних вершинах этих квадратов.
- 9. Построить пример функции, неограниченной и интегрируемой на множестве положительной меры.
- 10. Пусть E измеримое по Жордану множество, а $\tau = \{E_i\}_{i=1}^{i=k}$ система непустых измеримых по Жордану множеств и $E_i \subset E, \, \forall i.$ Какими из нижеперечисленных свойств должны обладать множества E_i , чтобы τ было разбиением?

- $1) \bigcup_{i=1}^{k} E_i = E$
- 2) $\mu E_i = 0, \forall i$
- 3) $E_i \cap E_i = \emptyset$, $i \neq j$
- 4) $\mu(E_i \cap E_j = \varnothing), i \neq j$
- 11. Пусть E измеримое по Жордану множество, а $\tau = \{E_i\}_{i=1}^{i=k}$ его разбиение и $\mu E_i = i$. Чему равна μE ?
 - 12. Существует ли интеграл $\int\limits_{\Omega}\int y(x)dxdy,$ если

$$y(x) = \begin{cases} lnx, \ x \in (1; e) \\ 1, \ x = 1 \\ 0, \ x = e \end{cases}, \text{ a } \Omega = [1; e] \times [0; 1]?$$

- 13. Пусть функция f задана на множестве E и ограничена на E и замыкании E. Какие из нижеперечисленных утверждений верны?
- 1) Из интегрируемости f на E следует ее интегрируемость на внутренности E
- 2) Из интегрируемости f на внутренности E следует ее интегрируемость на E
- 3) Из интегрируемости f на E следует ее интегрируемость на замыкании E
- 4) Из интегрируемости f на замыкании E следует ее интегрируемость на E
- 14. Привести пример последовательности, исчерпывающей множество $[-1;1] \times [-1;1]$.
- 15. Ниже приведены два условия. Поставьте между ними стрелочку, показывающую, какое из какого следует.
 - 1) Ограниченная на измеримом по Жордану множестве функ-

ция интегрируема

- 2) Ее верхний и нижний интегралы Дарбу равны
- 16. Найдите площадь криволинейной трапеции ограниченной графиком функции $y=\sqrt{x}$ и прямыми $y=0,\ x=1.$
- 17. В двойном интеграле $\int\limits_{\Omega} f(x,y) dx dy$ расставить пределы в том и в другом порядке, если Ω треугольник, ограниченный прямыми $y=x,\ y=0,\ x=1.$
- 18. В двойном интеграле $\int\limits_{\Omega}1\,dxdy$ расставить пределы в том и в другом порядке, если Ω четырехугольник, ограниченный прямыми $y=2x+1,\ y=3x-1,\ y=-x+1,\ y=-2x-1.$ Вычислить интеграл.
- 19. Изменить порядок интегрирования в интеграле $\int\limits_{0}^{1}dx\int\limits_{0}^{e^{x}-1}f(x,y)dy.$
 - 20. Докажите формулу Дирихле $\int\limits_0^a dx \int\limits_0^x f(x,y) dy = \int\limits_0^a dy \int\limits_y^a f(x,y) dx.$

Тест 6

- 1. Пусть G ограниченное множество, и ∂G граница G. Верно ли, что ∂G измеримое множество?
 - да
 - нет
- 2. Пусть на измеримом по Жордану множестве $E \subset \mathbb{R}^n$ задана функция $f(x) = f(x_1,...,x_n)$ и $\tau = \{E_i\}_{i=1}^{i=k}$ некоторое разбиение множества E. Выберем произвольным образом точки $\xi_i \in E_i, \ i=1,...,k$. Что называется интегральной суммой Римана функции f?
 - 1) $\sum_{i=1}^{k} \xi_i \cdot \mu E_i$

- $2) \sum_{i=1}^{k} f(\xi_i) \cdot E_i$
- 3) $\sum_{i=1}^{k} f(\xi_i) \cdot \mu E_i$
- 3. Следует ли из ограниченности функции на множестве ее интегрируемость на этом множестве?
 - да
 - нет
- 4. Функция f(x) интегрируема и ограничена на множестве E. Тогда величина $|\int f(x)dE| \int |f(x)|dE$
 - 1) не больше нуля
 - 2) не меньше нуля
 - 3) равна нулю
 - 4) может быть любой
- 5. Функции f(x), g(x) интегрируемы на $E, 1 \leq f(x) \leq 5$, а g(x) не меняет знак на E и $\int g(x)dE=1$. Какой величиной тогда можно ограничить сверху $\int f(x)g(x)\,dE$?
 - 1) 5
 - 2) 2.5
 - 3) 1
 - 4) ничего сказать нельзя
 - 6. Существует ли интеграл $\int\limits_{\Omega}\int y(x)dxdy,$ если

$$y(x) = \begin{cases} x^2, & x \in (0;1) \\ 1, & x = 0 \\ 0, & x = 1 \end{cases}$$
, a $\Omega = [0;1] \times [0;1]$?

7.
$$E = \{x^2 + y^2 \le 1\}, E \subset \mathbb{R}^2$$
. Чему равен $\int dE$?

- 8. Ниже приведены два условия. Поставьте между ними стрелочку, показывающую, какое из какого следует.
- 1) Ограниченная на измеримом по Жордану множестве
 ${\cal E}$ функция интегрируема
- 2) Для любого $\epsilon>0$ существует такое разбиение τ множества E, что $S_{\tau}-s_{\tau}<\epsilon$, где s_{τ} и S_{τ} нижняя и верхняя суммы Дарбу, соответствующие данному разбиению.
- 9. Функция f определена на множестве $E = E' \cup E'', E' \cap E'' = E'''$. Интеграл $\int f(x)dE$ существует. $\int f(x)dE' = a, \int f(x)dE'' = b, \int f(x)dE''' = c$. Чему равен $\int f(x)dE$?
- 10. Пусть E измеримое по Жордану множество, а $\tau = \{E_i\}_{i=1}^{i=k}$ система непустых измеримых по Жордану множеств и $E_i \subset E, \, \forall i.$ Какими из нижеперечисленных свойств должны обладать множества E_i , чтобы τ было разбиением?

$$1) \bigcup_{i=1}^{k} E_i = E$$

2)
$$\mu E_i = 0, \forall i$$

3)
$$E_i \cap E_j = \emptyset$$
, $i \neq j$

4)
$$\mu(E_i \cap E_j) = \emptyset, i \neq j$$

- 11. Вычислить интеграл $\int\limits_{0\leq x\leq 1}\int\limits_{0\leq y\leq 1}(x+y)\;dxdy$, рассматривая его как предел интегральной суммы, разбивая область интегрирования на квадраты прямыми $x=i/n,\;y=j/n,\;(i,j=1,2,...,n-1$ и выбирая значения подинтегральной функции в правых верхних вершинах этих квадратов.
- 12. Построить пример функции, неограниченной и интегрируемой на множестве положительной меры.
 - 13. Пусть функция f задана на множестве E и ограничена. Ка-

кие из нижеперечисленных утверждений верны?

- 1) Из интегрируемости f на E следует ее интегрируемость на внутренности E
- 2) Из интегрируемости f на внутренности E следует ее интегрируемость на E
- 3) Из интегрируемости f на E следует ее интегрируемость на замыкании E
- 4) Из интегрируемости f на замыкании E следует ее интегрируемость на E
- 14. Пусть E измеримое по Жордану множество, а $\tau = \{E_i\}_{i=1}^{i=k}$ его разбиение и $\mu E_i = i$. Чему равна μE ?
- 15. Привести пример последовательности, исчерпывающей множество $[-1;1] \times [-1;1]$.
- 16. Найдите площадь криволинейной трапеции ограниченной графиком функции $y=x^2+1$ и прямыми $y=0,\ x=0,\ x=1.$
- 17. В двойном интеграле $\int\limits_{\Omega} f(x,y) dx dy$ расставить пределы в том и в другом порядке, если Ω четырехугольник, ограниченный прямыми $y=5x+1,\ y=6x-1,\ y=1,\ y=-1.$
- 18. В двойном интеграле $\int\limits_{\Omega} 1 \ dx dy$ расставить пределы в том и в другом порядке, если Ω треугольник, ограниченный прямыми $y=4x+2, \ y=-x+2, \ 3y=2x+1.$ Вычислить интеграл.
 - 19. Изменить порядок интегрирования в интеграле

$$\int_{0}^{e-1} dx \int_{0}^{\ln(x+1)} f(x,y) dy.$$

20. Докажите формулу Дирихле

$$\int_{0}^{a} dx \int_{0}^{x} f(x,y) dy = \int_{0}^{a} dy \int_{y}^{a} f(x,y) dx.$$

Тест 7

- 1. Верно ли, что кратный интеграл Римана по множеству E зависит от разбиения множества E?
 - да
 - нет
- 2. Пусть f функция, ограниченная на измеримом по Жордану множестве E и $\tau = \{E_i\}_{i=1}^{i=k}$ некоторое разбиение множества E. Что называется нижней суммой Дарбу?
 - 1) $\sum_{i=1}^k m_i \cdot \mu E_i$, где $m_i = \sup_{x \in E_i} f(x)$
 - 2) $\sum_{i=1}^k m_i \cdot \mu E_i$, где $m_i = \inf_{x \in E_i} f(x)$
 - 3) $\sum_{i=1}^k m_i \cdot E_i$, где $m_i = \sup_{x \in E_i} f(x)$
 - 4) $\sum_{i=1}^k m_i \cdot E_i$, где $m_i = \inf_{x \in E_i} f(x)$
- 3. Пусть E измеримый компакт, $E\subset \mathbb{R}^n,$ а f непрерывная на нем функция. Верно ли, что f интегрируема на E?
 - 1) да
 - нет
- 4. Пусть дана функция f(x,y) = x, $G = \{0 < x < 2, 0 < y < 2\}$. Что можно сказать о знаке интеграла $\int f(x,y)dG$?
 - 1) положительный
 - 2) отрицательный
- 5. Функции f(x), g(x) интегрируемы на $E, 1 \le f(x) \le 5$, а g(x) не меняет знак на E и $\int g(x)dE=1$. Какой величиной тогда можно ограничить снизу $\int f(x)g(x)\,dE$?

- 1) 5
- 2) 2.5
- 3) 1
- 4) ничего сказать нельзя
- 6. Пусть f(x) = sinx и $x \in [0, \pi]$. Чему равна Жорданова мера графика функции f(x) в пространстве \mathbb{R}^2 ?
- 7. Ниже приведены два условия. Поставьте между ними стрелочку, показывающую, какое из какого следует.
- 1) Ограниченная на измеримом по Жордану множестве E функция интегрируема
- 2) Для любого $\epsilon>0$ существует такое разбиение τ множества E, что $S_{\tau}-s_{\tau}<\epsilon$, где s_{τ} и S_{τ} нижняя и верхняя суммы Дарбу, соответствующие данному разбиению.
 - 8. Пусть $G = \{|y| < 1 |x|\}$. Чему равен $\int dG$?
- 9. Привести пример последовательности, исчерпывающей множество $[-1;1] \times [-1;1]$.
- 10. Вычислить интеграл $\int\limits_{0\leq x\leq 1}\int\limits_{0\leq y\leq 1}(\cos x+\sin y)\;dxdy$, рассматривая его как предел интегральной суммы, разбивая область интегрирования на квадраты прямыми $x=i/n,\;y=j/n,\;(i,j=1,2,...,n-1$ и выбирая значения подинтегральной функции в правых верхних вершинах этих квадратов.
 - 11. Пусть $E=[0;1]\times[0;1]$, и $\tau_1=E$, $\tau_2=\{E_{i,j}=[\frac{1}{2}(1-i);\frac{1}{2}(1-j)]\}_{i,j=0}^1$ разбиения E.

Каково соотношение между S_{τ_1} и S_{τ_2} ? (S_{τ} - верхняя сумма Дарбу при разбиении τ)

1)
$$S_{\tau_1} \leq S_{\tau_2}$$

- 2) $S_{\tau_1} \geq S_{\tau_2}$
- 12. Построить пример функции, неограниченной и интегрируемой на множестве положительной меры.
- 13. Пусть функция f задана на множестве E и ограничена. Какие из нижеперечисленных утверждений верны?
- 1) Из интегрируемости f на E следует ее интегрируемость на внутренности E
- 2) Из интегрируемости f на внутренности E следует ее интегрируемость на E
- 3) Из интегрируемости f на E следует ее интегрируемость на замыкании E
- 4) Из интегрируемости f на замыкании E следует ее интегрируемость на E
- 14. Пусть E измеримое по Жордану множество, а $\tau = \{E_i\}_{i=1}^{i=k}$ его разбиение и $\mu E_i = i$. Чему равна μE ?
- 15. Пусть E измеримое по Жордану множество, а $\tau = \{E_i\}_{i=1}^{i=k}$ система непустых измеримых по Жордану множеств и $E_i \subset E, \, \forall i.$ Какими из нижеперечисленных свойств должны обладать множества E_i , чтобы τ было разбиением?
 - $1) \bigcup_{i=1}^{k} E_i = E$
 - 2) $\mu E_i = 0, \forall i$
 - 3) $E_i \cap E_j = \emptyset, \ i \neq j$
 - 4) $\mu(E_i \cap E_j) = \emptyset, i \neq j$
- 16. Найдите площадь криволинейной трапеции ограниченной графиком функции $y=x^3$ и прямыми $y=0,\ x=1.$

- 17. В двойном интеграле $\int\limits_{\Omega} f(x,y) dx dy$ расставить пределы в том и в другом порядке, если Ω круг $x^2 + y^2 < 9$.
- 18. В двойном интеграле $\int\limits_{\Omega} 1 \, dx dy$ расставить пределы в том и в другом порядке, если Ω четырехугольник, ограниченный прямыми $y=4x-1,\;y=2x+2,\;y=-x-1,\;y=1.$ Вычислить интеграл.
 - 19. Изменить порядок интегрирования в интеграле

$$\int_{0}^{2} dx \int_{0}^{x^{2}} f(x, y) dy.$$

20. Докажите формулу Дирихле

$$\int_{0}^{a} dx \int_{0}^{x} f(x,y) dy = \int_{0}^{a} dy \int_{y}^{a} f(x,y) dx.$$

Тест 8

- 1. Пусть множества F, G измеримы по Жордану. Можем ли мы сказать, что $F \cup G$ измеримо по Жордану?
 - да
 - нет
- 2. Пусть G измеримое множество. Верно ли, что у G может не существовать разбиения некоей малой мелкости?
 - да
 - нет
- 3. E измеримое множество, $E\subset \mathbb{R}^n$, а f интегрируемая на нем функция. Пусть функция g отличается от функции f в точках, составляющих множество меры 0. Тогда, если $\int f\,dE=A$, то $\int g\,dE$ равен
 - 1) $A \pm \epsilon$, где $\epsilon \to 0$

- 2) точно нельзя сказать
- 3) A
- 4. Функция f определена на множестве $E=E'\cup E'',\ E'\cap E''=\varnothing$. Интегралы $\int f(x)dE'$ и $\int f(x)dE''$ существуют. Что можно сказать об интеграле $\int f(x)dE$?
 - 1) ничего
 - 2) он существует
 - 3) его не существует
- 5. Функции f(x), g(x) интегрируемы и ограничены на некоем множестве. В каком случае на этом же множестве интегрируемо их частное?
 - 1) функция f(x) не меняет знак на E
 - (x) функция g(x) не меняет знак на E
 - 3) функция g(x) непрерывна на E
 - 4) инфимум g(x) больше нуля на E
 - 6. $E = \{x \in [0, \pi], y = sinx\}, E \subset \mathbb{R}^2$. Чему равен $\int dE$?
- 7. Ниже приведены два условия. Поставьте между ними стрелочку, показывающую, какое из какого следует.
- 1) Ограниченная на измеримом по Жордану множестве E функция интегрируема
- 2) Для любого $\epsilon>0$ существует такое разбиение τ множества E, что $S_{\tau}-s_{\tau}<\epsilon$, где s_{τ} и S_{τ} нижняя и верхняя суммы Дарбу, соответствующие данному разбиению.
 - 8. Вычислить интеграл $\int\limits_{0 < x < 1} \int\limits_{0 < y < 1} (x + y)^2 dx dy$, рассматривая

его как предел интегральной суммы, разбивая область интегрирования на квадраты прямыми $x=i/n,\ y=j/n,\ (i,j=1,2,...,n-1$ и выбирая значения подинтегральной функции в правых верхних вершинах этих квадратов.

- 9. Построить пример функции, неограниченной и интегрируемой на множестве положительной меры.
- 10. Пусть E измеримое по Жордану множество, а $\tau = \{E_i\}_{i=1}^{i=k}$ система непустых измеримых по Жордану множеств и $E_i \subset E, \, \forall i.$ Какими из нижеперечисленных свойств должны обладать множества E_i , чтобы τ было разбиением?

$$1) \bigcup_{i=1}^{k} E_i = E$$

- 2) $\mu E_i = 0, \forall i$
- 3) $E_i \cap E_j = \emptyset$, $i \neq j$
- 4) $\mu(E_i \cap E_j) = \emptyset, i \neq j$
- 11. Пусть E измеримое по Жордану множество, а $\tau = \{E_i\}_{i=1}^{i=k}$ его разбиение и $\mu E_i = i$. Чему равна μE ?
 - 12. Пусть $E=[0;1]\times[0;1]$, и $\tau_1=E$, $\tau_2=\{E_{i,j}=[\frac{1}{2}(1-i);\frac{1}{2}(1-j)]\}_{i,j=0}^1$ разбиения E.

Каково соотношение между s_{τ_1} и s_{τ_2} ? $(s_{\tau}$ - нижняя сумма Дарбу при разбиении $\tau)$

- 1) $s_{\tau_1} \le s_{\tau_2}$
- 2) $s_{\tau_1} \ge s_{\tau_2}$
- 13. Пусть функция f задана на множестве E и ограничена. Какие из нижеперечисленных утверждений верны?
- 1) Из интегрируемости f на E следует ее интегрируемость на внутренности E

- 2) Из интегрируемости f на внутренности E следует ее интегрируемость на E
- 3) Из интегрируемости f на E следует ее интегрируемость на замыкании E
- 4) Из интегрируемости f на замыкании E следует ее интегрируемость на E
- 14. Привести пример последовательности, исчерпывающей множество $[-1;1] \times [-1;1]$.
- 15. Ниже приведены два условия. Поставьте между ними стрелочку, показывающую, какое из какого следует.
- 1) Ограниченная на измеримом по Жордану множестве функция интегрируема
 - 2) Ее верхний и нижний интегралы Дарбу равны
- 16. Найдите площадь криволинейной трапеции ограниченной графиком функции y=sinx и прямыми $y=0,\ x=\frac{\pi}{2}.$
- 17. В двойном интеграле $\int\limits_{\Omega}f(x,y)dxdy$ расставить пределы в том и в другом порядке, если Ω треугольник, ограниченный прямыми $5y=-x+5,\ 5y=-4x+20,\ x=0.$
- 18. В двойном интеграле $\int\limits_{\Omega}1\ dxdy$ расставить пределы в том и в другом порядке, если Ω треугольник, ограниченный прямыми $y=x+1,\ y=-3x+1,\ 3y=-x-1.$ Вычислить интеграл.
 - 19. Изменить порядок интегрирования в интеграле

$$\int_{0}^{\frac{\pi}{4}} dx \int_{0}^{tgx} f(x,y) dy.$$

20. Докажите формулу Дирихле

$$\int_{0}^{a} dx \int_{0}^{x} f(x,y) dy = \int_{0}^{a} dy \int_{y}^{a} f(x,y) dx.$$

Тема 5. Замена в кратных интегралах

Тест 1

1. Укажите формулы, которые применяют для вычисления объёма тела V в цилиндрической и сферической системах координат:

```
1) \iiint\limits_{V}\rho\ d\rho\ d\phi\ dz;
```

2)
$$\iiint\limits_V r \sin\theta dr \ d\theta \ d\phi;$$

3)
$$\iiint\limits_V d\rho \ d\phi \ dz;$$

4)
$$\iiint\limits_V r^2 \sin\theta \ dr \ d\theta \ d\phi.$$

2. При переходе к цилиндрической системе координат в кратном интеграле используют следующую замену:

```
1) x = r \cos \phi

y = r \sin \phi

z = r \sin \psi;
```

$$2) x = r \cos \phi$$
$$y = r \sin \phi;$$

3)
$$x = r \cos \phi \cos \psi$$

 $y = r \sin \phi \cos \psi$
 $z = r$;

4)
$$x = r \cos \phi$$

 $y = r \sin \phi$
 $z = h$.

3. Меняется ли значение кратного интеграла при изменении значения подынтегральной функции в точках, образующих множество объёма нуль?

- да;
- нет.

- 4. Сформулируйте теорему о вычислении кратного интеграла по брусу, если $x''=(x_2,\ x_3,\ ...,\ x_n)\in\mathbb{R}^{n-1},\ \mathrm{Q}$ замкнутый брус в $\mathbb{R}^n,\ Q''=\{x''\in\mathbb{R}^{n-1}|Q_i\leqslant x_i\leqslant b_i,\ i=\overline{2,n}\}$ его проекция на плоскость $x_1=0.$
 - 5. Кратный интеграл не применяется для вычисления:
 - 1) площадей, объёмов тел;
 - 2) массы плоской фигуры;
- 3) статических моментов плоской фигуры относительно координатных осей;
 - 4) потока векторного поля.
 - 6. Измените порядок интегрирования в интеграле

$$I = \int_{0}^{4} dx \int_{\frac{3x^2}{8}}^{3\sqrt{x}} dy.$$

- 7. Чему равно значение интеграла $\int\limits_D \int (x+y+3) dx dy,$ если область D ограничена линиями x+y=2, x=0, y=0?
- a) $\frac{26}{3}$; b) $\frac{13}{2}$; c) $\frac{52}{3}$; d) $\frac{13}{3}$.
- 8. Вычислить массу однородной пластинки, ограниченной линиями: $x=0,\ y=0,\ y=1-x^2,$ если её плотность: $\rho=x.$
- 9. Расставьте в двойном интеграле $\iint_D f(x,y) dx dy$ пределы интегрирования в том и другом порядке, если D треугольник с вершинами O(0,0), A(2,1), B(-2,1).
 - 10. Вычислить $\iint\limits_{D} \sqrt{9-x^2-y^2} dx dy$, где D круг $x^2+y^2\leqslant 9$.
- 11. Чему равен объём тела, ограниченного координатными плоскостями и поверхностями $z=x^2+y^2,\ z=2x^2+2y^2,\ y=x,\ y=x^2$? a) $\frac{3}{35};\ b)$ $\frac{1}{12};\ c)$ $\frac{1}{20};\ d)$ $\frac{3}{18}.$
 - 12. Найдите площадь области D, ограниченной линиями

$$x-y+3=0$$
, $x-y-1=0$, $x+3=0$, $y-4=0$.

13. Чему равны координаты центра масс пластинки, лежащей в плоскости ХОУ и ограниченной линиями $y=x,\ y=2x,$ $x=\alpha,\ \alpha\in\mathbb{R},$ если её плотность $\rho(x,y)=xy$?

1)
$$x_o = \frac{8}{5}$$
, $y_o = \frac{112}{45}$;

2)
$$x_o = \frac{224}{15}$$
, $y_o = \frac{48}{15}$;

3)
$$x_o = \frac{112}{45}$$
, $y_o = \frac{8}{5}$;

4)
$$x_o = \frac{48}{5}$$
, $y_o = \frac{224}{15}$.

- 14. Вычислите повторный интеграл $I = \int_{-1}^{1} \int_{-3}^{5} \int_{-y}^{y} (z+2) dx dy dz$.
- a) 32; b) 1; c) 64; d) 11
- 15. Полагая, что если
г и ϕ полярные координаты, измените порядок интегрирования в повторном интеграле

$$I=\int\limits_{-rac{\pi}{2}}^{rac{\pi}{2}}d\phi\int\limits_{0}^{a\cos\phi}f(\phi,r)dr,\;(a>0).$$

- 16. Вычислите двойной интеграл $I=\iint\limits_D (x^2+y^2)dxdy,$ если D ограничена линиями $(x^2+y^2)^2=a^2(x^2-y^2),\ y=0,\ (x>0,\ y<0).$
- 17. Найти объем тела, ограниченного следующими поверхностями: $z=\sin\frac{\pi y}{2x},\ z=0,\ y=x,\ y=0,\ x=\pi.$

a)
$$\frac{2}{\pi}$$
; b) $\frac{\pi}{2}$; c) π ; d) $\frac{5\pi}{2}$.

- 18. Вычислить объём цилиндра, ограниченного поверхностью $f(x,y)=(1-x^2)y$, в основании которого лежит круг $x^2+y^2\leqslant 1$.
- 19. Найти центр тяжести квадратной пластинки 2×2 плотности $\rho(x,y) = xy$.

20. Найдите объём тела, ограниченного следующими поверхностями: $z=x^2+y^2,\ z=2x^2+2y^2,\ y=x,\ y=x^2.$

Тест 2

1. Укажите формулы, которые применяют для вычисления площади плоской фигуры D в полярной и декартовой системах координат:

- 1) $\iint_D \rho \ d\rho \ d\phi$;
- 2) $\iint_D dx dy$;
- 3) $\iint_D d\rho \ d\phi$;
- 4) $\iint_{D} \rho^2 \sin \theta \ d\theta \ d\phi.$

2. Для перехода к сферической системе координат используют следующую замену:

1)
$$x = r \cos \phi \cos \psi$$

 $y = r \sin \phi \cos \psi$
 $z = r$;

2)
$$x = r \cos \phi \sin \psi$$

 $y = r \sin \phi \cos \psi$
 $z = r \sin \psi$;

3)
$$x = r \cos \phi \cos \psi$$

 $y = r \sin \phi \cos \psi$;

4)
$$x = r \cos \phi \cos \psi$$

 $y = r \sin \phi \cos \psi$
 $z = r \sin \psi$.

3. Выберите формулу для вычисления статических моментов плоской материальной фигуры относительно оси OX:

- 1) $\iint_D \rho(x,y)ydxdy;$
- 2) $\iint_D \rho(x,y) dx dy$;
- 3) $\iint_D \rho(x,y)x^2dxdy$;
- 4) $\iint_{D} \rho(x,y)xdxdy$.
- 4. Необходимым признаком интегрируемости $f:\mathbb{Q}\to\mathbb{R}$ на брусе $\mathbb{Q}\subseteq\mathbb{R}^n$ является:
 - 1) непрерывность функции;
 - 2) ограниченность функции;
 - 3) дифференцируемость функции;
 - 4) монотонность функции.
- 5. Сформулируйте теорему о вычислении кратного интеграла по жорданову множеству, если $G \subseteq \mathbb{R}^n$ жорданово множество $G' \subseteq \mathbb{R}^{n-1}$ проекция G на плоскость $x_n = 0$, $G = \{(x', x_n) \in \mathbb{R}^n \mid x' \in G', \phi(x') \leqslant x_n \leqslant \psi(x')\}$, где $\phi, \psi \in C(G')$.
 - 6. Измените порядок интегрирования в интеграле

$$I=\int\limits_0^4 dx\int\limits_{-\sqrt{x}}^{\sqrt{x}}f(x,y)dy.$$

- 7. Чему равно значение интеграла $\iint\limits_D (x+2y) dx dy$, если область D ограничена линиями $x=2, \ x=y, \ 2y=x?$
- a) $\frac{8}{3}$; b) $\frac{10}{3}$; c) $\frac{5}{4}$; d) $\frac{5}{2}$.
- 8. Вычислить массу однородной пластинки, ограниченной линиями: $\sqrt{x} + \sqrt{y} = \sqrt{a}, \ x = 0, \ y = 0.$
- 9. Расставьте в двойном интеграле $\iint\limits_D f(x,y) dx dy$ пределы интегрирования в том и другом порядке, если D: треугольник с верши-

нами O(0,0), A(1,0), B(1,1).

- 10. Вычислите $\iint\limits_{D}e^{x^{2}+y^{2}}dxdy,$ где D кольцо $1\leqslant x^{2}+y^{2}\leqslant 9.$
- 11. Найдите объём тела, ограниченного параболоидом $z=x^2+y^2$, цилиндром $y=x^2$ и плоскостями $y=1,\ z=0.$
- a) $\frac{105}{88}$; b) $\frac{88}{105}$; c) $\frac{79}{105}$; d) $\frac{105}{79}$.
- 12. Найдите площадь области D, ограниченной линиями $y=x^2+1,\ x-y+3=0.$
- 13. Чему равна масса пластинки, лежащей в плоскости ХОУ и ограниченной линиями $x=(y-1)^2,\ y=x-1,$ если плотность $\rho(x,y)=y.$
- a) 4; b) $\frac{27}{4}$; c) 27; d) $\frac{3}{4}$
- 14. Вычислите тройной интеграл $I=\iiint\limits_V 2zdxdydz$, где область V ограничена координатными плоскостями и плоскостью x+y+z=1.
- a) 0; b) 12; c) $\frac{1}{12}$; d) 3.
- 15. Полагая, что если r и ϕ полярные координаты, измените порядок интегрирования в интеграле $I=\int\limits_0^{\frac{\pi}{2}}d\phi\int\limits_0^{a\sqrt{\sin{(2\phi)}}}f(\phi,r)dr,$ (a>0).
- 16. Вычислить $\iint\limits_{D}\cos{(x+y)}dxdy$, если D ограничена линиями $x=0,\ y=x,\ y=\frac{\pi}{2}.$
- a) 0; b) $\frac{\pi}{2}$; c) π ; d) 2π .
- 17. Найдите объём тела, расположенного в первом октанте, ограниченного плоскостями $y=0,\ z=0,\ z=x,\ z+x=4.$
- a) 16; b) 2; c) 8; d) 4.
- 18. Найдите объём тела, ограниченного следующими поверхностями: $z=x^2+y^2,\ z=2x^2+2y^2,\ y=x,\ y=x^2.$

- 19. Вычислите интеграл $\int\limits_0^1 dx \int\limits_{\ln x}^{\ln 2x} e^y dy$.
- 20. Вычислите интеграл $\iint_{x^2+y^2 \le 1} (x^2+y^2)^{\frac{5}{2}} dx dy$.

Тест 3

- 1. Выберите из списка множество объема ноль:
- шар;
- куб;
- 3) граница параллелепипеда;
- 4) тетраэдр.
- 2. Необходимым признаком интегрируемости $f:\mathbb{Q}\to\mathbb{R}$ на брусе $\mathbb{Q}\subseteq\mathbb{R}^n$ является:
 - 1) ограниченность функции;
 - 2) непрерывность функции;
 - 3) монотонность функции;
 - 4) дифференцируемость функции.
- 3. Всякая ли дифференцируемая функция является непрерывной в точке? Да или нет? Ответ обоснуйте.
- 4. Как записывается уравнение сферы радиуса *а* с центром в начале координат в сферической системе координат?

1)
$$x^2 + y^2 + z^2 = a^2$$

2)
$$r^2 + z^2 = a^2$$

- 3) $r = a^2$
- 4) r = a
- 5. В цилиндрической системе координат объём параболоида, ограниченного поверхностями $z=x^2+y^2$ и z=4 вычисляется по формуле:
 - 1) $\int_{0}^{2\pi} d\phi \int_{0}^{2} \rho \ d\rho \int_{\rho^{2}}^{4} dz;$
 - 2) $\int_{0}^{2\pi} d\phi \int_{0}^{2} d\rho \int_{\rho^{2}}^{4} dz;$
 - 3) $\int_{0}^{2\pi} d\phi \int_{0}^{2} \rho \ d\rho \int_{0}^{4} dz;$
 - 4) $\int_{0}^{2\pi} d\phi \int_{-2}^{2} \rho \ d\rho \int_{0}^{\rho^{2}} dz$.
 - 6. Вычислить интеграл $\int_{-1}^{1} \int_{x}^{x+2} (x+2y)dydx$.
- a) 10; b) 8; c) 12; d) 0.
 - 7. Вычислить повторный интеграл $\int_{1}^{4} \int_{-1}^{2} dy dx$.
- a) 8; b) 9; c) 12; d) 10.
- 8. Вычислить значение интеграла $\iint\limits_S e^{x+y} dx dy$, где область S ограничена линиями $y=2,\ x=0,\ y=x.$
 - 1) $1.5e^4 e^2 0.5$;
 - 2) 0;
 - 3) -1;
 - 4) $0.5e^4 0.5$.
 - 9. Значение интеграла $\iint\limits_{S}e^{y^{2}}dxdy,$ где область S четырёхуголь-

ник с вершинами в точках A(1;1), B(0;2), C(6;2), D(4;1), равно:

- 1) 12;
- 2) 48;
- 3) $1.5e^3$;
- 4) $1.5(e^4 e)$.
- 10. Вычислите повторный интеграл: $\int\limits_0^1\int\limits_{-\frac{x}{2}}^{\frac{x}{2}}(x-y)dydx.$
- 11. Вычислить повторный интеграл $\int_{1}^{3} dx \int_{0}^{x^{2}} \frac{y}{x^{3}} dy$.
- a) 2; b) 2x; c) $\frac{4}{3}$; d) 3y.
 - 12. Вычислить повторный интеграл $\int_{0}^{1} \int_{-\frac{x}{2}}^{\frac{x}{2}} \int_{\frac{y}{3}}^{\frac{y}{3}} z dz dy dx$.
- a) 0; b) -1; c) x + 2; d) 3.
 - 13. Чему равен кратный интеграл $\int_{-1}^{1} \int_{2}^{3} (x^3 + 3x^2 + x + 5) dx dy$?
- a) 0; b) 12; c) 28; d) -5.
- 14. Вычислить объём тела, ограниченного поверхностями x=0, $y=0, \ x+y+z=1, \ z=0.$
- a) $\frac{1}{6}$; b) $\frac{1}{2}$; c) $\frac{1}{3}$; d) 6.
 - 15. Вычислить повторный интеграл $\int\limits_0^1\int\limits_0^1\int\limits_0^1(x-y-z)dxdydz.$
 - 16. Вычислить интеграл $\int_{1}^{e} dx \int_{x}^{2x} \frac{1}{y^2} dy$.
- 17. Перейти к полярным координатам и расставить пределы интегрирования в каком либо порядке $\int\limits_0^8 dx \int\limits_0^{(4-x^{\frac{2}{3}})^{\frac{3}{2}}} f(x,y) dy.$

- 18. Вычислить площадь области, ограниченной кривой $\frac{x^2}{9} + \frac{y^2}{4} = 1$, используя кратный интеграл.
- 19. Вычислить объём параллелепипеда со сторонами 4 и 6 усечённого поверхностью $f(x,y)=x^2+y^2.$
- 20. Найти центр тяжести квадратной пластинки 2×2 плотности $\rho(x,y) = xy$.

Тест 4

- 1. Двойной интеграл проще вычислить в полярных координатах, если:
 - 1) область интегрирования окружность или её часть;
 - 2) подынтегральная функция сложная функция;
 - 3) область интегрирования прямоугольник.
- 2. Необходимым признаком интегрируемости $f:\mathbb{Q}\to\mathbb{R}$ на брусе $\mathbb{Q}\subseteq\mathbb{R}^n$ является:
 - 1) ограниченность функции;
 - 2) монотонность функции;
 - 3) дифференцируемость функции;
 - 4) непрерывность функции.
- 3. Масса куба $0\leqslant x\leqslant 1,\ 0\leqslant y\leqslant 1,\ 0\leqslant z\leqslant 1,$ имеющего плотность $\rho(x,y,z)=x^6yz^3$ равна:
- a) $\frac{1}{10}$; b) 56; c) $\frac{1}{56}$; d) $\frac{1}{28}$.

- 4. Меняется ли значение кратного интеграла при изменении порядка интегрирования в повторном интеграле?
 - да;
 - нет;
 - 3) не всегда.
- 5. Как обозначается общий вид кратного интеграла от f(x), $x \in \mathbb{R}^n$ по брусу $\mathbb{Q} \subseteq \mathbb{R}^n$. Напишите случай при n=2, n=3.
 - 6. Достаточным признаком интегрируемости по брусу является:
 - 1) ограниченность функции;
 - 2) монотонность функции;
 - 3) непрерывность функции;
 - 4) дифференцируемость функции.
- 7. Расставить пределы интегрирования в повторном интеграле, к которому сводится $\iiint\limits_D f(x,y) dx dy$, если область D ограничена линиями: $y=3,\; x=5,\; y=2x+1.$
- 8. Вычислить площадь фигуры, ограниченной линиями: $y^2 = 2x, \ y = x.$
- 9. Найдите площадь области D, ограниченной линиями: $x-y+3=0,\ x-y-1=0,\ x+3=0,\ y-4=0.$
- 10. Вычислить площадь фигуры, ограниченной кривыми $y = x^2 2x, \ y = x.$
- 11. Вычислить интеграл $\iint\limits_D (x+2y) dx dy$, область D ограничена линиями $y=x^2, \ y=0, \ x+y-2=0.$

12. Вычислить интеграл:

$$\int_{1}^{3} \int_{2}^{5} (5x^2y - 2y^3) dx dy.$$

- 13. Найдите площадь криволинейной трапеции, ограниченной графиком функции $y=x^3$ и прямыми $y=0,\ x=1.$
- 14. Как определить параметр разбиения в схеме построения кратного интеграла по брусу?
 - 15. Вычислите тройной интеграл: $\int\limits_0^1\int\limits_0^1\int\limits_0^1(x+y+z)dxdydz.$
 - 16. Вычислите интеграл $\int_{6}^{\frac{\pi}{2}} dx \int_{x}^{\frac{\pi}{2}} \sin y dy$.
- 17. Перейти к полярным координатам и расставить пределы интегрирования в каком-либо порядке, а затем вычислить интеграл $\int\limits_0^1 dx \int\limits_0^{\sqrt{1-x^2}} xy dy.$
- 18. Вычислить объём цилиндра, ограниченного поверхностью $f(x,y)=(1-x^2)y$, в основании которого лежит окружность $x^2+y^2\leqslant 1$.
- 19. Найти центр тяжести треугольной пластинки плотностью $\rho(x,y)=x^2+y^2$ со сторонами $x\in[0;2],\ y\in[0;x].$
 - 20. Найти массу единичного шара плотностью p(x, y, z) = xyz.

Тема 6. Формулы Грина, Остроградского, Стокса

Tect 1

1. Пусть определен интеграл

$$\iint_{S} (P\cos\alpha + Q\cos\beta + R\cos\gamma)dS.$$

При каких условиях на функции $P,\ Q,\ R$ и область S имеет место формула Остроградского-Гаусса?

- 2. Записать в общем виде формулу Остроградского-Гаусса для поверхностного интеграла 1-го рода.
- 3. Сопоставить название формулы и соответствующее утверждение.
 - I. Формула Грина

а. связывает криволинейный интеграл 2-го рода и кратный интеграл

II. Формула Стокса

b. связывает криволинейный интеграл 2-го рода и поверхностный интеграл 1-го рода

I	II

- 4. На что влияет непрерывность функции в теоремах? Почему наличие точек разрыва приводит к невозможности применить формулы?
- 5. Можно ли ослабить условия теорем и потребовать только существование частных производных (без их непрерывности)? Будут ли справедливы формулы в таком случае?
- 6. В каких случаях интеграл по незамкнутому контуру может быть вычислен с помощью формулы Стокса?

7. Вычислить интеграл

$$\oint_{AmB} (x^2 - yz)dx + (y^2 - xz)dy + (z^2 - xy)dz,$$

взятый по куску винтовой линии

$$x = a\cos\varphi, \ y = a\sin\varphi, \ z = \frac{h}{2\pi}\varphi$$

от точки A(a,0,0) до точки B(a,0,h).

- 8. Формулу Грина можно доказать как следствие формулы Остроградского-Гаусса. Провести доказательство, применяя теорему 1 о связи криволинейных интегралов.
 - 9. Пусть определен интеграл

$$\oint_C \frac{y}{x} dx + (y + \ln x) dy,$$

где C — простой замкнутый контур, ограничивающий область S. Найти какую-нибудь область так, чтобы значение интеграла было равно нулю. Для этого применить формулу Грина.

- 10. Привести пример криволинейного интеграла 2-го рода, который нельзя преобразовать с помощью формулы Стокса.
- 11. Применяя формулу Остроградского-Гаусса, преобразовать интеграл, полагая, что гладкая поверхность S ограничивает конечный объем V:

$$\iint\limits_{S} x^3 dy dz + y^3 dz dx + z^3 dx dy.$$

12. Применяя формулу Стокса, вычислить интеграл

$$\oint_C (y-z)dx + (z-x)dy + (x-y)dz,$$

где C – эллипс $x^2+y^2=a^2, \frac{x}{a}+\frac{z}{h}=1, (a>0,h>0),$ пробегаемый против хода часовой стрелки, если смотреть с положительной стороны оси Ox.

13. С помощью формулы Остроградского-Гаусса вычислить интеграл

$$\iint\limits_{S} x^2 dy dz + y^2 dz dx + z^2 dx dy,$$

где S – внешняя сторона куба $0 \le x \le a, 0 \le y \le a, 0 \le z \le a$.

- 14. Пусть вектор n на плоскости Oxy характеризуется направляющими косинусами $(\cos\alpha,\cos\beta)$ и функция u=u(x,y) дифференцируема на некотором множестве. По какой формуле вычисляется производная по направлению n?
- 15. Сопоставить название формулы и ее запись в векторной форме.
 - I. Остроградского-Гаусса a. $\oint_S a_n \ dS = \iiint_V \text{div } \mathbf{a} \ dxdydz$ II. Формула Стокса b. $\oint_C \mathbf{a} \ d\mathbf{r} = \iiint_S (\text{rot } \mathbf{a})_n dS$

где a_n , (rot **a**) $_n$ - нормальные проекции.

I	II

16. Пусть *s* – гладкая кривая, параметризованная уравнениями

$$x = x(t), y = y(t), a \le t \le b,$$

au – касательный вектор, n – внешняя нормаль к s.

С помощью доказательства теоремы о связи криволинейных интегралов 1-го и 2-го рода установите связь между $\cos\left(\hat{n,x}\right)$ и $\frac{dy}{ds}$, где ds – элемент длины дуги кривой, x – направляющий вектор оси Ox.

17. Найти значение интеграла

$$I = \oint_C [x \cos(\hat{\mathbf{n}}, x) + y \cos(\hat{\mathbf{n}}, y)] ds,$$

где C — простая замкнутая кривая, ограничивающая конечную область $S,\, {\bf n}$ — внешняя нормаль к ней, $x,\,y$ — направляющие векторы

Ox и Oy соответственно.

18. Доказать, что uесть гармоническая функция $^2\,$ тогда и только тогда, если

$$\oint\limits_C \frac{\partial u}{\partial n} ds = 0,$$

где C — произвольный замкнутый контур и $\frac{\partial u}{\partial n}$ — производная по внешней нормали к этому контуру.

19. Определить дважды непрерывно дифференцируемые функции P(x,y) и Q(x,y) так, чтобы криволинейный интеграл

$$I = \oint_C P(x + \alpha, y)dx + Q(x + \alpha, y)dy$$

для любого замкнутого контура C не зависел от постоянной $\alpha.$ Достаточно показать частный случай P и Q.

20.~ Из общей формулы ${\rm Cтоксa}^5,$ определяемой в теории внешних дифференциальных форм, вывести формулу ${\rm Cтокca}.$

1. Пусть определен интеграл

$$\iint_{S} (P\cos\alpha + Q\cos\beta + R\cos\gamma)dS.$$

Сформулируйте условия, которым должны удовлетворять подынтегральные функции и поверхность S, чтобы была справедлива формула Остроградского-Гаусса?

- 2. Записать в общем виде формулу Остроградского-Гаусса для поверхностного интеграла 2-го рода.
- 3. Сопоставить название формулы и соответствующее утверждение.

- I. Интеграл по контуру, каждое замкнутое подмножество которого содержит не больше двух точек самопересечений исходного множества, можно представить в виде суммы интегралов по простым контурам, так как
- II. Интеграл по неодносвязной области представим в виде суммы интегралов по соответствующим односвязным областям, так как

а. значение интеграла, заданного в точке, равно нулю

b. сумма одинаковых криволинейных интегралов 2-го рода, имеющих противоположные направления обхода, равна нулю.

Ι	II

- 4. Почему формулы не имеют смысла, если хотя бы одна подынтегральная функция имеет разрыв в некоторой точке области?
- 5. Можно ли применить формулы, если подынтегральные функции являются дифференцируемыми, но не непрерывно дифференцируемыми?
- 6. Как можно преобразовать интеграл по незамкнутому контуру, чтобы была применима формула Стокса? В каких случаях это возможно?
 - 7. Вычислить интеграл

$$\oint_{AmB} (x^2 - yz)dx + (y^2 - xz)dy + (z^2 - xy)dz,$$

взятый по куску винтовой линии

$$x = a\cos\varphi, \ y = a\sin\varphi, \ z = \frac{h}{\pi}\varphi$$

от точки A(a,0,0) до точки B(-a,0,h).

8. Доказать, что с помощью формулы Остроградского-Гаусса можно вычислить объем тела G с границей $\partial G = S$ по формуле

$$\mu(G) = \frac{1}{n} \int_{S} \left(\sum_{i=1}^{n} x_i \cos \omega_i \right) dS.$$

9. Пусть определен интеграл

$$\oint_C xydx + \left(\frac{x^2}{2} + \frac{1}{y}\right)dy,$$

где C — простой замкнутый контур, ограничивающий область S. Найти какую-нибудь область так, чтобы значение интеграла было равно нулю. Для этого применить формулу Грина.

- 10. Приведите пример криволинейного интеграла 1-го рода, который нельзя преобразовать с помощью формулы Стокса.
- 11. Применяя формулу Остроградского-Гаусса, преобразовать интеграл, полагая, что гладкая поверхность S ограничивает конечный объем V и $\cos\alpha,\cos\beta,\cos\gamma$ направляющие косинусы внешней нормали к поверхности S:

$$\iint\limits_{S} \frac{x \cos \alpha + y \cos \beta + z \cos \gamma}{\sqrt{x^2 + y^2 + z^2}} dS.$$

12. Применяя формулу Стокса, вычислить интеграл

$$\oint_C (y^2 + z^2)dx + (x^2 + z^2)dy + (x^2 + y^2)dz,$$

где C есть кривая $x^2+y^2+z^2=2Rx, x^2+y^2=2rx$ (0 < r < R, z > 0), пробегаемая так, что ограниченная ею на внешней стороне сферы $x^2+y^2+z^2=2Rx$ наименьшая область остается слева.

13. С помощью формулы Остроградского-Гаусса вычислить интеграл

$$\iint\limits_{S} x^3 dy dz + y^3 dz dx + z^3 dx dy,$$

где S – внешняя сторона сферы

$$x^2 + y^2 + z^2 = a^2.$$

- 14. Пусть вектор \mathbf{n} на плоскости Oxz характеризуется направляющими косинусами $(\cos\alpha,\cos\gamma)$ и функция u=u(x,z) дифференцируема на некотором множестве. По какой формуле вычисляется производная по направлению \mathbf{n} ?
- 15. Сопоставить название формулы и ее запись в векторной форме.
 - I. Остроградского-Гаусса a. $\oint_S a_n \ dS = \iiint_V \text{div } \mathbf{a} \ dx dy dz$ II. Формула Стокса b. $\oint_C \mathbf{a} \ d\mathbf{r} = \iiint_S (\text{rot } \mathbf{a})_n dS$

где a_n , (rot **a**) $_n$ - нормальные проекции.

I	II

16. Пусть s – гладкая кривая, параметризованная уравнениями

$$x = x(t), y = y(t), a \le t \le b,$$

 τ – касательный вектор, n – внешняя нормаль к s.

С помощью доказательства теоремы о связи криволинейных интегралов 1-го и 2-го рода установите связь между $\cos\left(\hat{n,y}\right)$ и $\frac{dx}{ds}$, где ds – элемент длины дуги кривой, y – направляющий вектор оси Oy.

17. Доказать, что

$$\iint\limits_{S} \left[\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial u}{\partial y} \right)^{2} \right] dx dy = -\iint\limits_{S} u \Delta u dx dy + \oint\limits_{C} u \frac{\partial u}{\partial n} ds,$$

где гладкий контур C ограничивает конечную область S и $\frac{\partial u}{\partial n}$ – производная по внешней нормали к этому контуру.

- 18. Доказать, что функция, гармоническая 2 внутри конечной области S и на ее границе C, однозначно определяется своими значениями на контуре C. Воспользоваться результатами номера 17.
- 19. Определить дважды непрерывно дифференцируемые функции P(x,y) и Q(x,y) так, чтобы криволинейный интеграл

$$I = \oint_C P(x, y + \beta)dx + Q(x, y + \beta)dy$$

для любого замкнутого контура C не зависел от постоянной $\beta.$ Достаточно показать частный случай P и Q.

20.~ Из общей формулы Стокса 5, определяемой в теории внешних дифференциальных форм, вывести формулу Грина.

Тест 3

1. Пусть определен интеграл

$$\oint\limits_C P\ dx + Q\ dy + R\ dz.$$

При каких условиях на функции $P,\ Q,\ R$ и контур C имеет место формула Стокса?

- 2. Записать в общем виде формулу Стокса для криволинейного интеграла 1-го рода.
- 3. Сопоставить название формулы и соответствующее утверждение.
 - І. Остроградского-Гаусса

а. не зависит от выбора направления обхода области

II. Формула Стокса

b. при отрицательном направлении обхода области в формуле появляется знак минус

I	II

- 4. Если хотя бы одна подынтегральная функция имеет разрыв в некоторой точке области, то формулы не имеют смысла. Какое условие нарушается при отсутствии непрерывности?
- 5. Будут ли выполняться формулы, если подынтегральные функции не являются непрерывно дифференцируемыми, однако имеют частные производные?
- 6. При каких дополнительных условиях на незамкнутый контур, интеграл по нему мог быть вычислен с помощью формулы Стокса?
 - 7. Вычислить интеграл

$$\oint_{AmB} (x^2 - yz)dx + (y^2 - xz)dy + (z^2 - xy)dz,$$

взятый по куску винтовой линии

$$x = a\cos\varphi, \ y = a\sin\varphi, \ z = \frac{h}{2\pi}\varphi$$

от точки A(a,0,h) до точки B(a,0,2h).

- 8. Доказать, что формула Грина справедлива для конечной области S, ограниченной несколькими простыми контурами, если под границей C последней понимать сумму всех граничных контуров, направление обхода которых выбирается так, что область S остается слева.
 - 9. Пусть определен интеграл

$$\oint_C (y - \frac{1}{x})dx + \frac{dy}{y},$$

где C — простой замкнутый контур, ограничивающий область S. Выяснить, можно ли найти S так, чтобы значение интеграла было равно нулю. Для этого применить формулу Грина.

10. Приведите пример поверхностного интеграла 2-го рода, который нельзя преобразовать с помощью формулы Остроградского-Гаусса.

11. Применяя формулу Остроградского-Гаусса, преобразовать интеграл, полагая, что гладкая поверхность S ограничивает конечный объем V:

$$\iint\limits_{S} yzdydz + zxdzdx + xydxdy.$$

12. Применяя формулу Стокса, вычислить интеграл

$$\oint_C (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz,$$

где C — сечение поверхности куба $0 \le x \le a, 0 \le y \le a, 0 \le z \le a$ плоскостью $x + y + z = \frac{3}{2} a$, пробегаемый против хода часовой стрелки, если смотреть с положительной стороны оси Ox.

13. С помощью формулы Остроградского-Гаусса вычислить интеграл

$$\iint\limits_{S} (x^2 \cos \alpha + y^2 \cos \beta + z^2 \cos \gamma) dS,$$

где S — часть конической поверхности $x^2+y^2=z^2$ $(0\leq z\leq h)$ и $\cos\alpha,\cos\beta,\cos\gamma$ — направляющие косинусы внешней нормали к этой поверхности.

- 14. Пусть вектор $\mathbf n$ на плоскости Oyz характеризуется направляющими косинусами $(\cos\beta,\cos\gamma)$ и функция u=u(y,z) дифференцируема на некотором множестве. По какой формуле вычисляется производная по направлению $\mathbf n$?
- 15. Сопоставить название формулы и соответствующее утверждение.
 - I. Остроградского-Гаусса а. позволяет вычислять циркуляцию векторного поля по за-

мкнутому контуру

II. Формула Стоксаb. позволяет вычислять поток векторного поля по замкнутому контуру

I	II

16. Пусть s – гладкая кривая, параметризованная уравнениями

$$x = x(t), y = y(t), a \le t \le b,$$

au – касательный вектор, n – внешняя нормаль к s.

С помощью доказательства теоремы о связи криволинейных интегралов 1-го и 2-го рода установите связь между $\cos\left(\hat{n,x}\right)$ и $\frac{dy}{ds}$, где ds – элемент длины дуги кривой, x – направляющий вектор оси Ox.

17. Доказать вторую формулу Грина на плоскости

$$\iint\limits_{S} \left| \begin{array}{cc} \Delta u & \Delta v \\ u & v \end{array} \right| dxdy = \oint\limits_{C} \left| \begin{array}{cc} \frac{\partial u}{\partial n} & \frac{\partial v}{\partial n} \\ u & v \end{array} \right| ds,$$

где гладкий контур C ограничивает конечную область S и $\frac{\partial}{\partial n}$ – производная по направлению внешней нормали к C.

18. Доказать формулу Римана

$$\iint\limits_{S} \left| \begin{array}{cc} L[u] & M[v] \\ u & v \end{array} \right| dxdy = \oint\limits_{C} Pdx + Qdy,$$

где

$$L[u] = \frac{\partial^2 u}{\partial x \partial y} + a \frac{\partial u}{\partial x} + b \frac{\partial u}{\partial y} + cu,$$

$$M[v] = \frac{\partial^2 v}{\partial x \partial y} - a \frac{\partial v}{\partial x} - b \frac{\partial v}{\partial y} + cv,$$

(a,b,c – постоянные), P и Q – некоторые определенные функции и контур C ограничивает конечную область S.

19. Определить дважды непрерывно дифференцируемые функции P(x,y) и Q(x,y) так, чтобы криволинейный интеграл

$$I = \oint_C P(x + \alpha, y)dx - Q(x + \alpha, y)dy$$

для любого замкнутого контура C не зависел от постоянной $\alpha.$ Достаточно показать частный случай P и Q.

20.~ Из общей формулы Стокса 5, определяемой в теории внешних дифференциальных форм, вывести формулу Остроградского-Гаусса.

Тест 4

1. Пусть определен интеграл

$$\oint_C P \ dx + Q \ dy + R \ dz.$$

Сформулируйте условия, которым должны удовлетворять подынтегральные функции и контур C, чтобы была справедлива формула Стокса.

- 2. Записать в общем виде формулу Стокса для криволинейного интеграла 2-го рода.
- 3. Сопоставить название формулы и соответствующее утверждение.
 - І. Грина а. формулируется для простого замкнутого кусочно-гладкого контура, ограничивающего конечную односвязную область
 - II. Стокса b. формулируется для простого замкнутого кусочно-гладкого контура, ограничивающего конечную кусочно-гладкую двустороннюю поверхность

I	II

- 4. Как объяснить то, что формулу нельзя применить, если хотя бы одна подынтегральная функция не является непрерывной в рассматриваемой области?
- 5. Справедлива ли формула, если подынтегральные функции являются дифференцируемыми, но их частные производные претерпевают разрыв первого или второго рода?

- 6. Каким должен быть незамкнутый контур, чтобы для соответствующего интеграла имела место формула Стокса?
 - 7. Вычислить интеграл

$$\oint_{AmB} (x^2 - yz)dx + (y^2 - xz)dy + (z^2 - xy)dz,$$

взятый по куску винтовой линии

$$x = a\cos\varphi, \ y = a\sin\varphi, \ z = \frac{h}{\pi}\varphi$$

от точки $A\left(-a,0,\frac{h}{2}\right)$ до точки $B\left(a,0,h\right)$.

8. Доказать, что объем конуса, ограниченного гладкой конической поверхностью F(x,y,z)=0 и плоскостью Ax+By+Cz+D=0, равен

$$V = \frac{1}{3}SH,$$

где S – площадь основания конуса, расположенного в данной плоскости, и H – его высота.

9. Пусть определен интеграл

$$\oint_C \arcsin x dy + \frac{y}{\sqrt{1-x^2}} dx,$$

где C — простой замкнутый контур, ограничивающий область S. Найти S так, чтобы значение интеграла было равно нулю. Для этого применить формулу Грина.

- 10. Приведите пример поверхностного интеграла 1-го рода, который нельзя преобразовать с помощью формулы Остроградского-Гаусса.
- 11. Применяя формулу Остроградского-Гаусса, преобразовать интеграл, полагая, что гладкая поверхность S ограничивает конечный объем V и $\cos\alpha$, $\cos\beta$, $\cos\gamma$ направляющие косинусы внешней нормали к поверхности S:

$$\iint\limits_{S} \left[\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \cos \alpha + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \cos \beta + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cos \gamma \right] dS.$$

12. Применяя формулу Стокса, вычислить интеграл

$$\oint\limits_C y^2 z^2 dx + z^2 x^2 dy + x^2 y^2 dz,$$

где C — замкнутая кривая $x=a\cos t, y=a\cos 2t, z=a\cos 3t,$ пробегаемая в направлении возрастания параметра t.

13. С помощью формулы Остроградского-Гаусса вычислить интеграл

$$\iint\limits_{S} (x-y+z)dydz + (y-z+x)dzdx + (z-x+y)dxdy,$$

где S – внешняя сторона поверхности

$$|x - y + z| + |y - z + x| + |z - x + y| = 1.$$

- 14. Пусть вектор \mathbf{n} на плоскости x+y=1 характеризуется направляющими косинусами $(\cos \omega_1,\cos \omega_2)$ и функция u=u(x,y) дифференцируема на некотором множестве. По какой формуле вычисляется производная по направлению \mathbf{n} ?
- 15. Сопоставить название формулы и соответствующее утверждение.
 - I. Остроградского-Гаусса а. позволяет вычислять циркуляцию векторного поля по замкнутому контуру
 - II. Формула Стоксаb. позволяет вычислять поток векторного поля по замкнутому контуру

I	II

16. Пусть s – гладкая кривая, параметризованная уравнениями

$$x = x(t), y = y(t), a \le t \le b,$$

au – касательный вектор, n – внешняя нормаль к s.

С помощью доказательства теоремы о связи криволинейных интегралов 1-го и 2-го рода установите связь между $\cos\left(\hat{n,y}\right)$ и $\frac{dx}{ds}$, где ds – элемент длины дуги кривой, y – направляющий вектор оси Oy.

17. Доказать, что если u=u(x,y) – гармоническая функция 2 в замкнутой конечной области S, то

$$u(x,y) = \frac{1}{2\pi} \oint_C \left(u \frac{\partial \ln r}{\partial n} - \ln r \frac{\partial u}{\partial n} \right) ds,$$

где C — граница области S, \mathbf{n} — внешняя нормаль к контуру C, (x,y) — внутренняя точка области S и $r=\sqrt{(\xi-x)^2+(\eta-y)^2}$ — расстояние между точкой (x,y) и переменной точкой (ξ,η) контура C. Для этого вырезать точку (x,y) из области S вместе c ее бесконечно малой круговой окрестностью и применить вторую формулу Грина по оставшейся части области S.

18. Доказать теорему о среднем для гармонической функции u(M) = u(x,y) :

$$u(M) = \frac{1}{2\pi R} \oint_C u(\xi, \eta) ds,$$

где C – окружность радиуса R с центром в точке M.

19. Определить дважды непрерывно дифференцируемые функции P(x,y) и Q(x,y) так, чтобы криволинейный интеграл

$$I = \oint_C P(x, y + \beta)dx - Q(x, y + \beta)dy$$

для любого замкнутого контура C не зависел от постоянной $\beta.$

20. Из общей формулы Стокса⁵, определяемой в теории внешних дифференциальных форм, вывести формулу Грина.

Тест 5

1. Какое из следующих равенств является формальной записью формулы Остроградского-Гаусса?

a)
$$\int_{G} (\sum_{i=1}^{n} P_{i} x_{i}(\overline{x})) d\overline{x} = \int_{S} (\sum_{i=1}^{n} P_{i}(\overline{x}) \cos \omega_{i}) dS$$

6)
$$\mu(G) = \frac{1}{n} \int_{S} (\sum_{i=1}^{n} x_i cos\omega_i) dS$$

B)
$$\iint_{G} (Qx(x;y) - py(x;y)) dx dy = \oint_{\partial G} P(x;y) dx + Q(x;y) dy$$

$$\Gamma) \iint_{G} (\overline{\nu}, rot \overline{R}) dS = \int_{I} (\overline{\tau}, \overline{R}) dl$$

$$\Gamma) \iint\limits_{S} (\overline{\nu}, rot\overline{R}) dS = \iint\limits_{I} (\overline{\tau}, \overline{R}) dt$$

2. Какое из следующих равенств является формальной записью формулы вычисления объема области С в условиях применения формулы Остроградского-Гаусса?

a)
$$\mu(G) = \frac{1}{n} \int_{S} (\sum_{i=1}^{n} P_i(\overline{x}) \cos \omega_i) dS$$

6)
$$\mu(G) = \frac{1}{n} \int_{S}^{S} (\sum_{i=1}^{n} x_i cos\omega_i) dS$$

B)
$$\mu(G) = \frac{1}{n} \int_{S}^{S} (\sum_{i=1}^{n} x_i cos\omega_{n-i}) dS$$

$$\Gamma$$
) $\mu(G) = \frac{2}{n} \int_{S}^{S} (\sum_{i=1}^{n} x_i cos\omega_i) dS$

- 3. Формальной записью какой формулы является равенство $\iint\limits_{S} (\overline{\nu}, rot\overline{R}) dS = \iint\limits_{I} (\overline{\tau}, \overline{R}) dl?$
 - а) формула Стокса
 - б) формула Остроградского-Гаусса
 - в) формула Грина
- г) формула вычисления объема области С в условиях применения формулы Остроградского-Гаусса
- 4. Формальной записью какой формулы является равенство $\iint\limits_{G}(Qx(x;y)-py(x;y))dxdy=\oint\limits_{\partial G}P(x;y)dx+Q(x;y)dy?$
 - а) формула Стокса
 - б) формула Остроградского-Гаусса
 - в) формула Грина
- г) формула вычисления объема области G в условиях применения формулы Остроградского-Гаусса

- 5. Какие из следующих областей не являются односвязными в \mathbb{R}^2 ?
 - а) круг
 - б) пара непересекающихся кругов
 - в) прямоугольный треугольник
 - г) правильный шестиугольник
- 6. Какие типы интегралов связывает формула Остроградского-Гаусса?
- 7. Дайте определение потока векторного поля через поверхность S.
- 8. Сформулируйте теорему о вычислении ротора векторного поля.
- 9. Определена ли формула Стокса для кусочно-гладкой поверхности S? Ответ поясните.
- 10. Применяя формулу Грина, вычислить криволинейный интеграл $\oint\limits_C xy^2dy-x^2ydx$, где C окружность $x^2+y^2=a^2$.
- 11. Применяя формулу Грина, вычислить криволинейный интеграл $\oint\limits_{x^2+y^2=R^2} e^{-(x^2-y^2)}(\cos 2xy\,dx+\sin 2xy\,dy).$
- 12. С помощью формулы Стокса, преобразовать интеграл $\oint_C (z^2 + y^2) \, dx + \sin x \cos z \, dy + xy \, dz$ к поверхностному интегралу, где C замкнутый контур конечной кусочно-гладкой поверхности S.
- 13. С помощью формулы Стокса, преобразовать интеграл $\oint_C (2z+2y)\,dx+xz\,dy-(x-y)^2\,dz$ к поверхностному интегралу, где C замкнутый контур конечной кусочно-гладкой поверхности S.
- 14. Применяя формулу Остроградского, преобразовать поверхностный интерал $\iint_{S} x^3 \, dy \, dz + y^3 \, dz \, dx + z^3 \, dx \, dy$.
 - 15. Применяя формулу Остроградского, преобразовать поверх-

- ностный интерал $\iint_S \left(\frac{\partial u}{\partial x}\cos\alpha + \frac{\partial u}{\partial y}\cos\beta + \frac{\partial u}{\partial z}\cos\gamma\right) dS$.
- 16. Используя формулу Стокса, вычислить интеграл $\oint_C y \, dx + z \, dy + x \, dz$, где C круг, взятый из пересечения $x^2 + y^2 + z^2 = a^2$, x + y + z = 0, который пробегается против хода часовой стрелки, если смотреть с положительной стороны оси Ox.
- 17. С помощью формулы Грина преобразовать криволинейный интеграл $I=\oint\limits_C \sqrt{x^2+y^2}\,dx+y\left(xy+\ln x+\sqrt{x^2+y^2}\right)dy$, где контур C ограничивает конечную область S.
- 18. Доказать, что объём тела, ограниченного поверхностью S, равен $V=\frac{1}{3}\iint_S (x\cos\alpha+y\cos\beta+z\cos\gamma)\,dS$, где $(\cos\alpha,\cos\beta,\cos\gamma)$ направляющие косинусы внешней нормали в поверхности S.
- 19. Найти дивергенцию и ротор векторного поля $\bar{a}=(3x-y)\,\bar{i}+(6z+5x)\,\bar{k}.$
- 20. С помощью формулы Остроградского вычислить поверхностный интеграл $\iint_S x^3\,dy\,dz+y^3\,dx\,dz+z^3\,dx\,dy$, где S внешняя сторона сферы $x^2+y^2+z^2=a^2$.

Тест 6

- 1. Какое из следующих равенств является формальной записью формулы вычисления объема области G в условиях применения формулы Остроградского-Гаусса?
 - a) $\mu(G) = \frac{1}{n} \int_{S} (\sum_{i=1}^{n} x_i cos \omega_i) dS$
 - 6) $\mu(G) = \frac{1}{n} \int_{S}^{S} \left(\sum_{i=1}^{n} P_i(\overline{x}) \cos \omega_i \right) dS$
 - B) $\mu(G) = \frac{1}{n} \int_{S}^{S} (\sum_{i=1}^{n} x_i cos \omega_{n-i}) dS$
 - Γ) $\mu(G) = \frac{2}{n} \int_{S}^{S} (\sum_{i=1}^{n} x_i cos \omega_i) dS$

2. Какое из следующих равенств является формальной записью формулы Стокса?

a)
$$\mu(G) = \frac{1}{n} \int_{S} (\sum_{i=1}^{n} x_{i} cos \omega_{i}) dS$$

6) $\int_{G} (\sum_{i=1}^{n} P_{i} x_{i}(\overline{x})) d\overline{x} = \int_{S} (\sum_{i=1}^{n} P_{i}(\overline{x}) cos \omega_{i}) dS$
B) $\int_{S} (\overline{\nu}, rot \overline{R}) dS = \int_{S} (\overline{\tau}, \overline{R}) dl$

в)
$$\iint_{S} (\overline{\nu}, rot\overline{R}) dS = \int_{I} (\overline{\tau}, \overline{\overline{R}}) ds$$

r)
$$\iint_{G} (Qx(x;y) - py(x;y)) dxdy = \oint_{\partial G} P(x;y) dx + Q(x;y) dy$$

- 3. Формальной записью какой формулы является равенство $\int_{G} (\sum_{i=1}^{n} P_{i} x_{i}(\overline{x})) d\overline{x} = \int_{S} (\sum_{i=1}^{n} P_{i}(\overline{x}) \cos \omega_{i}) dS?$
- а) формула вычисления объема области G в условиях применения формулы Остроградского-Гаусса
 - б) формула Остроградского-Гаусса
 - в) формула Грина
 - г) формула Стокса
 - 4. Формальной записью какой формулы является равенство

$$\iint\limits_{G} (Qx(x;y) - py(x;y)) dx dy = \oint\limits_{\partial G} P(x;y) dx + Q(x;y) dy?$$

- а) формула вычисления объема области G в условиях применения формулы Остроградского-Гаусса
 - б) формула Остроградского-Гаусса
 - в) формула Грина
 - г) формула Стокса
- 5. Какие из следующих областей не являются односвязными в \mathbb{R}^{2} ?
 - а) кольцо
 - б) круг
 - в) половина круга
 - г) квадрат
 - 6. Какие интегралы связывает формула Грина?

- 7. Дайте определение дивергенции векторного поля в точке.
- 8. Сформулируйте теорему о вычислении дивергенции векторного поля.
- 9. Определена ли формула Стокса для параметрически заданной поверхности S? Ответ поясните.
- 10. Применяя формулу Грина, вычислить криволинейный интеграл $\oint_C (x+y)\,dx (x-y)\,dy$, где C эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 11. Применяя формулу Грина, вычислить криволинейный интеграл $\oint_C e^x[(1-\cos y)\,dx (y-\sin y)\,dy]$, где C пробегаемый в положительном направлении контур, ограничивающий область $0 < x < \pi, 0 < y < \sin x$.
- 12. С помощью формулы Стокса, преобразовать интеграл $\oint_C (2z+2y)\,dx+xz\,dy-(x-y)^2\,dz$ к поверхностному интегралу, где C замкнутый контур конечной кусочно-гладкой поверхности S.
- 13. С помощью формулы Стокса, преобразовать интеграл $\oint_C (3y-2z)\,dx+e^{xz}\,dy+(x-y)^2\,dz$ к поверхностному интегралу, где C замкнутый контур конечной кусочно-гладкой поверхности S.
- 14. Применяя формулу Остроградского, преобразовать поверхностный интерал $\iint\limits_{C} yz\,dy\,dz + zx\,dz\,dx + xy\,dx\,dy.$
- 15. Применяя формулу Остроградского, преобразовать поверхностный интерал:

$$\iint\limits_{S} \frac{x \cos \alpha + y \cos \beta + z \cos \gamma}{\sqrt{x^2 + y^2 + z^2}} dS.$$

16. Используя формулу Стокса, вычислить интеграл

$$\oint_C (y^2 + z^2) dx + (x^2 + z^2) dy + (x^2 + y^2) dz,$$

где C - кривая $x^2 + y^2 + z^2 = 2Rx$, $x^2 + y^2 = 2rx$ (0 < r < R, z > 0), которая пробегается так, что ограниченная ей наименьшая область на внешней стороне сферы остаётся слева.

- 17. Какому условию должна удовлетворять дифференцируемая функция F(x,y), чтобы криволинейный интеграл $\int F(x,y)(y\,dx+$ $x\,dy$) не зависел от вида пути интегрирования?
- 18. С помощью формулы Остроградского, вычислить поверхностный интеграл $\int \int x^2 \, dy \, dz + y^2 \, dz \, dx + z^2 \, dx \, dy$, где S - внешняя сторона границы куба $0 \le x \le a, \quad 0 \le y \le a, \quad 0 \le z \le a.$
- 19. Найти дивергенцию и ротор векторного поля $\bar{a} = (7x + z)\bar{i} +$ $(-4y - 8z) \,\bar{i} + (3z - 4x) \,\bar{k}.$
- 20. Доказать, что объём тела, ограниченного поверхностью S, равен $V = \frac{1}{3} \iint_S (x \cos \alpha + y \cos \beta + z \cos \gamma) dS$, где $(\cos \alpha, \cos \beta, \cos \gamma)$ - направляющие косинусы внешней нормали в поверхности S.

Тест 7

- 1. Какое из следующих равенств является формальной записью формулы Грина?
 - a) $\iint_{S} (\overline{\nu}, rot\overline{R}) dS = \int_{l} (\overline{\tau}, \overline{R}) dl$
 - б) $\mu(G) = \frac{1}{n} \int_{G} \left(\sum_{i=1}^{n} x_i cos \omega_i \right) dS$
 - B) $\iint_{G} (Qx(x;y) py(x;y)) dx dy = \oint_{\partial G} P(x;y) dx + Q(x;y) dy$ $\Gamma) \iint_{G} (\sum_{i=1}^{n} P_{i}x_{i}(\overline{x})) d\overline{x} = \iint_{G} (\sum_{i=1}^{n} P_{i}(\overline{x}) \cos \omega_{i}) dS$
- 2. Какое из следующих равенств является формальной записью формулы Стокса?
 - a) $\iint_{S} (\overline{\nu}, rot\overline{R}) dS = \iint_{I} (\overline{\tau}, \overline{R}) dl$
 - 6) $\mu(G) = \frac{1}{n} \int_{S} (\sum_{i=1}^{n} x_i cos\omega_i) dS$
 - B) $\iint_{G} (Qx(x;y) py(x;y)) dxdy = \oint_{\partial G} P(x;y) dx + Q(x;y) dy$

$$\Gamma \int_{G} \left(\sum_{i=1}^{n} P_{i} x_{i}(\overline{x}) \right) d\overline{x} = \int_{S} \left(\sum_{i=1}^{n} P_{i}(\overline{x}) \cos \omega_{i} \right) dS$$

- 3. Формальной записью какой формулы является равенство $\mu(G)=\frac{1}{n}\int\limits_{S}(\sum_{i=1}^{n}x_{i}cos\omega_{i})dS$?
 - а) формула Грина
- б) формула вычисления объема области G в условиях применения формулы Остроградского-Гаусса
 - в) формула Остроградского-Гаусса
 - г) формула Стокса
- 4. Формальной записью какой формулы является равенство $\int\limits_G(\sum_{i=1}^n P_i x_i(\overline{x})) d\overline{x} = \int\limits_S(\sum_{i=1}^n P_i(\overline{x}) \cos \omega_i) dS?$
 - а) формула Грина
- б) формула вычисления объема области G в условиях применения формулы Остроградского-Гаусса
 - в) формула Остроградского-Гаусса
 - г) формула Стокса
- 5. Какие из следующих областей не являются односвязными в \mathbb{R}^2 ?
 - а) круг
 - б) пара непересекающихся кругов
 - в) прямоугольный треугольник
 - г) правильный шестиугольник
- 6. Что определяют $(\cos \omega_1, \cos \omega_2, \dots, \cos \omega_n)$ в формуле Остроградского-Гаусса?
 - 7. Дайте определение ротора векторного поля.
- 8. Сформулируйте теорему о вычислении дивергенции векторного поля.
- 9. Определена ли формула Стокса для кусочно-непрерывной поверхности S? Ответ поясните.

- 10. Применяя формулу Грина, вычислить криволинейный интеграл $\oint\limits_{x^2+y^2=R^2} e^{-(x^2-y^2)}(\cos 2xy\,dx+\sin 2xy\,dy).$
- 11. Применяя формулу Грина, вычислить криволинейный интеграл $\oint (x+y)\, dx (x-y)\, dy,$ где C эллипс

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

.

- 12. С помощью формулы Стокса, преобразовать интеграл $\oint_C z\,dx + x^2\cos z\,dy + e^xy^2\,dz$ к поверхностному интегралу, где C замкнутый контур конечной кусочно-гладкой поверхности S.
- 13. С помощью формулы Стокса, преобразовать интеграл $\oint_C (z^2 + y^2) \, dx + \sin x \cos z \, dy + xy \, dz$ к поверхностному интегралу, где C замкнутый контур конечной кусочно-гладкой поверхности S.
- 14. Применяя формулу Остроградского, преобразовать поверхностный интерал $\iint\limits_{S} yz\,dy\,dz + zx\,dz\,dx + xy\,dx\,dy.$
- 15. Применяя формулу Остроградского, преобразовать поверхностный интерал $\iint_S \left(\frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma \right) dS$.
- 16. Применяя формулу Стокса, вычислить интеграл: $\oint_C (y-z) \, dx + (z-x) \, dy + (x-y) \, dz$, где C эллипс $x^2 + y^2 = a^2$, $\frac{x}{a} + \frac{y}{h} = 1$, (a > h, h > 0), пробегаемый против хода часовой стрелки, если смотреть с положительной стороны оси Ox.
- 17. Применяя формулу Грина, вычислить криволинейный интеграл $I=\oint\limits_K (x+y)^2\,dx-(x^2-y^2)\,dy$, где K пробегаемый в положительном направлении контур треугольника ABC с вершинами $A(1,1),\,B(3,2),\,C(2,5).$
- 18. С помощью формулы Остроградского, преобразовать интеграл $\iint\limits_{S} ((\frac{\partial R}{\partial y} \frac{\partial Q}{\partial z})\cos\alpha + (\frac{\partial P}{\partial z} \frac{\partial R}{\partial x})\cos\beta + (\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y})\cos\gamma)\,dS.$

- 19. Найти дивергенцию и ротор векторного поля $\bar{a} = (-7x - z)\,\bar{i} + (-8y - 7x)\,\bar{j} + (x + 2z)\,\bar{k}.$
- 20. Какому условию должна удовлетворять дифференцируемая функция F(x,y), чтобы криволинейный интеграл $\int\limits_{AmB}F(x,y)(y\,dx+y)$ $x\,dy$) не зависел от вида пути интегрирования?

Тест 8

1. Какое из следующих равенств является формальной записью формулы Стокса?

a)
$$\iint_G (Qx(x;y) - py(x;y)) dx dy = \oint_{\partial G} P(x;y) dx + Q(x;y) dy$$

б)
$$\iint_{S} (\overline{\nu}, rot\overline{R}) dS = \iint_{I} (\overline{\tau}, \overline{R}) dI$$

в)
$$\mu(G) = \frac{1}{n} \int_{S} (\sum_{i=1}^{n} x_i cos \omega_i) dS$$

г)
$$\int_{G} \left(\sum_{i=1}^{n} P_{i} x_{i}(\overline{x})\right) d\overline{x} = \int_{S} \left(\sum_{i=1}^{n} P_{i}(\overline{x}) \cos \omega_{i}\right) dS$$

2. Какое из следующих равенств является формальной записью формулы Грина?

a)
$$\iint_{S} (\overline{\nu}, rot \overline{R}) dS = \iint_{l} (\overline{\tau}, \overline{R}) dl$$

6)
$$\mu(G) = \frac{1}{n} \int_{S} \left(\sum_{i=1}^{n} x_i cos\omega_i \right) dS$$

B)
$$\iint_{G} (Qx(x;y) - py(x;y)) dx dy = \oint_{\partial G} P(x;y) dx + Q(x;y) dy$$

$$\Gamma) \iint_{G} (\sum_{i=1}^{n} P_{i}x_{i}(\overline{x})) d\overline{x} = \iint_{G} (\sum_{i=1}^{n} P_{i}(\overline{x}) \cos \omega_{i}) dS$$

$$\Gamma \int_{G} \left(\sum_{i=1}^{n} P_{i} x_{i}(\overline{x}) \right) d\overline{x} = \int_{S} \left(\sum_{i=1}^{n} P_{i}(\overline{x}) \cos \omega_{i} \right) dS$$

- 3. Формальной записью какой формулы является равенство $\iint\limits_{S} (\overline{\nu}, rot\overline{R}) dS = \iint\limits_{I} (\overline{\tau}, \overline{R}) dl?$
 - а) формула Стокса
 - б) формула Остроградского-Гаусса
 - в) формула Грина
- г) формула вычисления объема области С в условиях применения формулы Остроградского-Гаусса

- 4. Формальной записью какой формулы является равенство $\mu(G)=\frac{1}{n}\int\limits_{S}(\sum_{i=1}^{n}x_{i}cos\omega_{i})dS?$
 - а) формула Стокса
- б) формула вычисления объема области G в условиях применения формулы Остроградского-Гаусса
 - в) формула Остроградского-Гаусса
 - г) формула Грина
- 5. Какие из следующих областей не являются односвязными в \mathbb{R}^2 ?
 - а) кольцо
 - б) круг
 - в) половина круга
 - г) квадрат
- 6. Какие понятия векторного анализа связывает формула Стокса?
 - 7. Дайте определение поверхностно-односвязной области.
- 8. Сформулируйте теорему о вычислении ротора векторного поля.
- 9. Определена ли формула Стокса для непрерывной поверхности S? Ответ поясните.
- 10. Применяя формулу Грина, вычислить криволинейный интеграл $\oint\limits_C xy^2dy-x^2ydx$, где C окружность $x^2+y^2=a^2$.
- 11. Применяя формулу Грина, вычислить криволинейный интеграл $\oint_C e^x[(1-\cos y)\,dx (y-\sin y)\,dy]$, где C пробегаемый в положительном направлении контур, ограничивающий область $0 < x < \pi, 0 < y < \sin x$.
- 12. С помощью формулы Стокса, преобразовать интеграл $\oint\limits_C z\,dx+x^2\cos z\,dy+e^xy^2\,dz$ к поверхностному интегралу, где C замкнутый

контур конечной кусочно-гладкой поверхности S.

- 13. С помощью формулы Стокса, преобразовать интеграл $\oint_C (3y-2z)\,dx + e^{xz}\,dy + (x-y)^2\,dz$ к поверхностному интегралу, где C замкнутый контур конечной кусочно-гладкой поверхности S.
- 14. Применяя формулу Остроградского, преобразовать поверхностный интерал

$$\iint\limits_{S} \frac{x \cos \alpha + y \cos \beta + z \cos \gamma}{\sqrt{x^2 + y^2 + z^2}} dS.$$

- 15. Применяя формулу Остроградского, преобразовать поверхностный интерал $\iint_S x^3 \, dy \, dz + y^3 \, dz \, dx + z^3 \, dx \, dy$.
- 16. Применяя формулу Грина, найдите, на сколько отличаются друг от друга криволинейные интегралы $I_1=\int\limits_{AmB}(x+y)^2\,dx-(x-y)^2\,dy$ и $I_1=\int\limits_{AnB}(x+y)^2\,dx-(x-y)^2\,dy$, где $A(1,1),\,B(2,6),\,AmB$ прямая, AnB парабола, проходящая через (0,0).
- 17. Применяя формулу Стокса, вычислить интеграл: $\oint (y^2-z^2)\,dx + (z^2-x^2)\,dy + (x^2-y^2)\,dz,$ где C сечение поверхности куба $0 \le x \le a, \quad 0 \le y \le a, \quad 0 \le z \le a$ плоскостью $x+y+z=\frac{3}{2}a,$ пробегаемое против хода часовой стрелки, если смотреть с положительной стороны оси oX.
- 18. С помощью формулы Остроградского вычислить поверхностный интеграл $\iint\limits_S x^3\,dy\,dz+y^3\,dx\,dz+z^3\,dx\,dy$, где S внешняя сторона сферы $x^2+y^2+z^2=a^2$.
- 19. Найти дивергенцию и ротор векторного поля $\bar{a}=(3y+4z)\,\bar{i}+(-2y+x)\,\bar{j}+(2z+5y)\,\bar{k}.$
- 20. С помощью формулы Остроградского, преобразовать интеграл $\iint\limits_{S}((\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z})\cos\alpha+(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x})\cos\beta+(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})\cos\gamma)\,dS.$

Примечания

1 По теореме о связи криволинейных интегралов,

$$\int_{\widetilde{AB}} f(x,y)dx + g(x,y)dy = \int_{\widetilde{AB}} (f(x,y)\cos\alpha + g(x,y)\sin\alpha)dl,$$

где α – угол, образованный положительным направлением оси Ox и касательной к кривой l, направленной в сторону возрастания дуг при движении по кривой.

2 Функция u = u(x,y), определенная и дважды непрерывно дифференцируемая в некоторой области, называется гармонической, если

$$\Delta u \stackrel{def}{=} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

3 Вторая формула Грина на плоскости имеет вид

$$\iint\limits_{S} \left| \begin{array}{cc} \Delta u & \Delta v \\ u & v \end{array} \right| dxdy = \oint\limits_{C} \left| \begin{array}{cc} \frac{\partial u}{\partial n} & \frac{\partial v}{\partial n} \\ u & v \end{array} \right| ds,$$

где гладкий контур C ограничивает конечную область S и $\frac{\partial}{\partial n}$ – производная по направлению внешней нормали к C.

4 Пусть $X = \mathbb{R}^n$. Выражение

$$\omega \stackrel{def}{=} \sum_{1 \le j_1 < \dots < j_p \le n} a_{j_1 \dots j_p}(x) dx_{j_1} \wedge \dots \wedge dx_{j_p}$$

называется внешней дифференциальной формой p-го порядка. B частности,

$$\omega_1 = a_1(x)dx_1 + \ldots + a_n(x)dx_n$$

– дифференциальная форма 1-го порядка,

$$d\omega = \sum_{1 \le j_1 < \dots < j_p \le n} (da_{j_1 \dots j_p}(x)) \wedge dx_{j_1} \wedge \dots \wedge dx_{j_p}$$

 $- \partial u \phi \phi$ еренциальная форма (p+1)-го порядка.

5 Теорема Стокса.

Пусть $\Omega\subset X$ – некоторая область, Γ – граница области, $\dim\Gamma=p,\ \dim\Omega=p+1,\ \omega$ – дифференциальная форма p-го порядка на Γ . Тогда

$$\int_{\Gamma} \omega = \int_{\Omega} d\omega.$$

(общая формула Стокса)

Список литературы

- [1] Демидович, Б. П. Сборник задач и упражнений по математическому анализу: учебное пособие / Б. П. Демидович. Москва: Издательство «АСТрель», Издательство «АСТ», 2002. 558 с. ISBN 5-17-010062-0, 5-271-03601-4.
- [2] Кудрявцев Л. Д. Сборник задач по математическому анализу. Том 3. Функции нескольких переменных: учебное пособие / Л. Д. Кудрявцев, А. Д. Кутасов, В. И. Чехлов, М. И. Шабунин. -Москва: ФИЗМАТЛИТ, 2003. - 472 с. - ISBN 5-9221-0308-3.
- [3] Берман, Г. Н. Сборник задач и упражнений по математическому анализу: учебное пособие / Г. Н. Берман. Санкт-Петербург: Профессия, 2001. 432 с. ISBN 5-93913-009-7
- [4] Виноградова, И. А. Задачи и упражнения по математическому анализу. Часть 1. Дифференциальное и интегральное исчисление: учебное пособие / И. А. Виноградова, С. Н. Олехник, В. А. Садовничий. - Москва: Дрофа, 2001. - 725 с. - ISBN 5-7107-4294-5.

Учебное издание

Алякин Владимир Алексеевич Узбеков Роман Фатихович

ТЕСТЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

Практикум

Набор и верстка Токарева Захара Редакционно-издательская обработка А.С. Никитиной

Подписано в печать 03.05.2023. Формат $60\times84\ 1/16$. Бумага офсетная. Печ. л. 8,0. Тираж 27 экз. Заказ . Арт. – 2 (ПР/Р1)2023.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА» (САМАРСКИЙ УНИВЕРСИТЕТ) 443086, САМАРА, МОСКОВСКОЕ ШОССЕ, 34.

Издательство Самарского университета. 443086, Самара, Московское шоссе, 34.