МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РСФСР

КУЙБЫШЕВСКИЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ АВИАЦИОННЫЙ ИНСТИТУТ имени С. П. КОРОЛЕВА

А. И. Белоусов, В. А. Фролов

МЕТОДЫ ПОВЫШЕНИЯ ВИБРАЦИОННОЙ ПРОЧНОСТИ ЛОПАТОК ТУРБОМАШИН

Учебное пособие

КУИБЫШЕВ 1983

УДК 531:539.3

Белоусов А. И., Фролов В. А. Методы повышения вибрационной прочности лопаток турбомашин: Учебное пособие. — Куйбышев: КуАИ, 1983. — 71 с.

В учебном пособии рассмотрены вопросы расчета на кожбания лопаток авиационных ГТД и показаны основные пути новышения их вибрационной падежности.

Пособие предназначено для студентов специальностей 0537, 0538, 1610, изучающих курсы «Конструкция двигателей», «Динамика и прочность двигателей летательных аппаратов», а также для выполняющих курсовые и дипломные проекты на кафедре «Конструкция и проектирование ДЛА».

Рецензенты: Н. Г. Трофимов, В. И. Цейтлип

оглавление

В	ведение	5
1.	ИСТОЧНИКИ ВОЗБУЖДЕНИЯ КОЛЕБАНИИ ЛОПАТОК	6
	 1.1. Входное и выходное устройство 1.2. Направляющие, сопловые и рабочие лопатки 1.3. Опорные стойки свловых корнусов 1.4. Системы отбора и перепуска воздуха 1.5. Камеры сгорания 1.6. Другие источники возбуждения колебаний лопаток 1 	789990
2.	Резонансные режимы и выявление опасных резонансов 1	0
3.	Факторы, обусловливающие резонацсиые напряжения в долатках 1	5
4.	Расчет собственных частот и форм колебаний лонатки 1	9
	 4.1. Вывод дифференциального уравнения изгибных колебаний лопатки 2 4.2. Решение уравнения свободных изгибных колебаний лопатки постоянного сечения 4.3. Определение формы колебаний лопатки постоянного сечения 4.4. Распределение динамических напряжений изгиба в лопатке 4.5. Определение собственных частот и форм колебаний лопатки переменного сечения 4.5. Определение собственных уравнений 4.5.1. Метод интегральных уравнений 4.6.1. Влияние схемы закрепления лопатки, ее геометрии. 	20 23 26 27 30 30 35 38
5.	материала и нагрева 4.6.2. Влияние поля центробежных сил 4.6.3. Влияние угла установки лопатки 4.6.4. Влияние податливости (упругости) заделки 4.6.5. Влияние технологических отклонений 4.6.5. Мияние технологических отклонений Методы обеспечения вибрационной надежности лопаток турбомашин)8 10 12 13 14 15
	5.1. Конструктивно-технологические методы повышения предела выносливости лопаток	15

З

5.2.	Конст	рукти	зные	метод	ы спи	женна	а дей	ствую	ЩИХ	вибрат	1И-
	онных	с напр	яжени	ий в.	попати	(a x					. 46
	5.2.1.	Возде	йствие	е на в	зозбух	кдени	е			-	. 48
	5.2.2.	Метод	отст	ройки	от ре	зонан	сов				. 51
	5.2.3.	Повыі	цение	демпо	рирую	щих с	войст	в лопа	аток		. 53
Заключен	ние										. 69
Литерату	ура										. 70
									1		

введение

Тенденция создания двигателей с высокими удельными параметрами связана с уменьшением массы всех конструктивных элементов. В результате двигатели имеют облегченные лопатки, диски, опоры, что затрудняет их прочностную и, особенно, вибропрочностную доводку.

Одними из важных и многочисленных деталей ГТД являются лопатки компрессоров и турбин. Лопатки работают в сложных условиях: они подвергаются силовому нагружению от газовых и центробежных сил, действию периодических (возмущаюцих) сил, повышенных температур и теплосмен, коррозии и эрозии. Поломка на двигателе даже одной из многих сотен лопаток может привести к повреждению и разрушению других, следовательно, и двигателя в целом.

Статистика показывает, что более 60% отказов ГТД связано с разрушением деталей из-за недостаточной их прочности. Причем примерно 70% деталей из этого количества разрушается вследствие воздействия вибраций [8]. Значительная доля внбрационных разрушений приходится на лопатки и диски, следовательно, борьба с опасными колебаниями является весьма важной и актуальной проблемой в современном авиадвигателестроении. Решать ее приходится каждому инженеру, связанному с конструированием, производством и эксплуатацией авиационной техники. Несмотря на значительные успехи, достигнутые в области борьбы с опасными вибрациями, многие ее вопросы до настоящего времени далеки от окончательного решения.

В данном пособии рассмотрен частный вопрос колебаний в двигателях — колебания лопаток и методы их снижения. Однако изучение этого вопроса позволит разобраться и в колебаниях других деталей двигателя.

1. ИСТОЧНИКИ ВОЗБУЖДЕНИЯ КОЛЕБАНИЙ ЛОПАТОК

Если к упругой лопатке (упругой системе) приложить мгновенный импульс силы *P* (рис. 1,а), то лопатка сначала сдеформируется (рис. 1,б), а затем, после прекращения действия импульса, под действием сил упругости и инерционных сил придет в колебательное движение (рис. 1,в). Колебания, происходящие

Рис. 1. Свободные колебания лопаток: а — приложение имнульса силы; б — форма прогиба; в — свободные колебания; г — зависимость амплитуды по времени для затухающих колебаний

без воздействия внешних пернодических или импульсных сил, называются свободными или собственными. Если импульсы силы будут продолжать воздействовать на лопатку, то колебания ее сохранятся. Такие колебания называются вынужденными.

Колебательный процесс характеризуется частотой колебаний и амплитудой. Частота свободных колебаний оо определяется массой и упругостью лопатки. Частота вынужденных колеба-

ний равна частоте возбуждающих сил. При свободных колебаниях из-за различного рода сил трения амплитуда колебаний со временем уменьшается, т. е. колебания затухают (рис. 1,г).

Если к лопатке приложить внешнюю силу, частота которой будет плавно изменяться, то при совпадении частоты собственных колебаний ω_0 с частотой следования импульсов силы ω (частотой возбуждающей силы) наступит явление резонанса (рис. 2). Оно характеризуется резким возрастанием амплиту-

ды S, которая может достигнуть опасных величин и вызвать разрушение лопатки.

Причины появления в двигателях возбуждающих сил, действующих на лопатки турбин и компрессоров, различны. Так как лопатки расположены в газовоздушном тракте, их возбуждение обусловлено неравномерностью параметров потока (полей температур, давлений, скоростей) в окружном направлении. Основными источниками этой неравномерности являются вход-

Рис, 2. Резонансная кривая

ные и выходные устройства, направляющие, сопловые и рабочие лопатки, опорные стойки силовых корпусов, системы отбора гоздуха, камеры сгорания и др.

Рассмотрим их более подробно.

1.1. ВХОДНОЕ И ВЫХОДНОЕ УСТРОЙСТВО

При полете самолета в возмущенном потоке со скольжением или при боковом ветре вход воздуха в двигатель не будет осевым (рис. 3). Часть входа в двигатель будет затенена конструктивными элементами двигателя. Аналогичный эффект наблюдается и при затенении входа в двигатель самолетными конструкциями, например фюзеляжем. В результате появляется неравномерность по окружности параметров потока, и если она

Рис. 3. Неравномерность потока на входе в двигатель

не будет устранена, то это послужит причиной появления возбуждающих сил для лопаток первых ступеней компрессора.

Но даже в случае осевого входа потока с идентичными параметрами по сечению неравномерность потока может появиться из-за несимметричности входного устройства. Особенно большая неравномерность образуется при несимметричном воздухозаборнике самолета. Поэтому необходимо проектировать входное устройство таким образом, чтобы оно сохраняло осесимметричную форму в процессе эксплуатации двигателя и самолета. Обледенение входного устройства в полете также приводит к появлению неравномерности потока по окружности.

Несимметричность выходного устройства вследствие его неточного изготовления или деформаций в процессе эксплуатации создает возмущения, которые воздействуют на лопатки турбины.

1.2. НАПРАВЛЯЮЩИЕ, СОПЛОВЫЕ И РАБОЧИЕ ЛОПАТКИ

Наличие сопловых, направляющих и рабочих лопаток неизбежно приводит к изменению давления, скорости и температуры газовоздушного потока по окружности колеса. При обтекании лопаток потоком воздуха или газа за лопатками образуется аэродинамический след, в котором параметры потока отличаюгся от параметров в межлопаточном канале [5]. В результате соявляется переменная по окружности колеса сила. При прохождении рабочей лопатки мимо лопаток направляющего или соплового аппарата она будет подвергаться действию переменных сил. С другой стороны, рабочая лопатка также создает неременную по величине нагрузку, которая, вращаясь относительно направляющих и сопловых лонаток, будет воздействовать на них, вызывая колебания.

Рабочие и направляющие лопатки получают возбуждение одновременно от решеток, расположенных с обеих сторон, т. е. волна возмущений распространяется как по потоку, так и против движения потока. Поэтому при одинаковом числе лопаток в решетках, расположенных по обе стороны от рабочего колеса, уровень возбуждения может значительно возрасти.

Величина силы возбуждения зависит от толщины кромок лопаток и зазора между решетками. С уменьшением толщины кромок лопаток и с увеличением осевого зазора между решетками улучшается равномерность по окружности параметров потока и снижается величина силы возбуждения.

Коробление лонаток, выгорание кромок, перавномерная вытяжка лопаток из замка, перавномерное их удлинение за счет ползучести материала, забоины ,износ, эрозия, перавномерная радиальная деформация корпусов компрессора и турбины также приводят к появлению перавномерности потока в лопаточной части турбомашин. Поэтому требуется тщательно отрабатывать процессы в камере сгорания и применять соответствующие матерпалы, исключающие повышенные коробления, износы, деформации конструкции.

1.3. ОПОРНЫЕ СТОЙКИ СИЛОВЫХ КОРПУСОВ

Для передачи нагрузок от ротора к силовому наружному корпусу двигателя корпуса подшинников связаны с наружными корпусами при помощи опорных стоек. Эти стойки пересекают газовоздушный поток и тем самым вносят возмущение в поток. Параметры потока в следе за стойками зависят от их формы.

При переходе к стойке обтекаемой формы поток становится более равномерным. Равномерность потока также улучшается с увеличением расстояния от стоек до рабочего колеса, однако ири этом увеличиваются осевые размеры двигателя, следовательно, и масса.

1.4. СИСТЕМЫ ОТБОРА И ПЕРЕПУСКА ВОЗДУХА

Устойчивая работа компрессора возможна в том случае, если до выхода двигателя на рабочие режимы будет обеспечен перенуск воздуха из отдельных ступеней компрессора. С этой целью компрессор оснащается системой перепуска, которая включает в себя следующие элементы:

окна перепуска (отверстия или щели, расположенные неравномерно между лопатками направляющих аппаратов);

реснверы (полости, образованные корпусом компрессора и кожухами);

клапаны или ленты, открывающие окна перепуска.

При работе системы перепуска, при отборе воздуха для подогрева входного устройства и кабины самолета, разгрузки подшипников от действия осевых сил или охлаждения горячих деталей двигателя нарушается симметрия течения потока воздуха в части компрессора, расположенной вблизи места отбора. Это создает неравномерный по окружности поток и приводит к интенсивным колебаниям лопаток нескольких ступеней.

1.5. КАМЕРЫ СГОРАНИЯ

Камеры сгорания двигателя создают неравномерные поля температур и давления перед лопатками турбины. Это происходит из-за ограниченного числа форсунок, расположенных по окружности камеры сгорания, исидентичной их работы вследствие неточности изготовления, износа, несимметричного распыла топлива, из-за наличия стоек, расположенных в газовоздушном тракте двигателя.

Кроме того, пульсация топлива в подающей системе, вибрационное горенис, коробление жаровых труб и корпусов камер сгорания, элементы конструкции, предназначенные для стабилизации горения и охлаждения, вносят различного рода возмущения. Все это создает перавномерные поля давления, и скоростей по окружности перед лонатками турбины.

Наибольшую неравномерность потока создают индивидуальвые камеры сгорания. Неравномерность синжается при переходе к трубчато-кольцевым и кольцевым камерам сгорания.

Опыт показывает, что неравномерность потока газа перед лопатками турбины может быть существенно снижена применением многофорсуночных камер сгорания и хорошей организацией подвода вторичного воздуха.

1.6. ДРУГИЕ ИСТОЧНИКИ ВОЗБУЖДЕНИЯ КОЛЕБАНИЙ ЛОПАТОК

Причинами появления вибраций лопаток могут быть возмущения потока датчиками замера температур и давлений, сигнализаторами обледенения и т. д., которые расположены в газовоздушном тракте двигателя, а также системы шумоглушения, реверса тяги, форсажные камеры.

Интенсивные колебания лопаток могут вызываться кинематически, например, вследствие колебаний дисков, валов и ряда других причии.

2. РЕЗОНАНСНЫЕ РЕЖИМЫ И ВЫЯВЛЕНИЕ ОПАСНЫХ РЕЗОНАНСОВ

Как видно из предыдущего параграфа, в газотурбинном двигателе можно обнаружить большое число источников возмущения газовоздушного потока. Частота возбуждающей силы $f_{\rm B}$; вызывающая колебания лонаток, определяется секундной частотой вращения ротора $n_{\rm c}$ и числом импульсов k, получаемых лопаткой за один оборот ротора, т. е.

$$f_{\rm B} = k \cdot n_{\rm c},\tag{1}$$

где k — целое число (k = 1, 2, 3, ...).

Целое число k называется помером гармоники возбуждаюшей силы. Номер гармоники соответствует числу конструктивных элементов, находящихся в тракте двигателя и вносящих возмущения в поток. Так, k = 1 означает, что возмушение в поток вносится одним конструктивным элементом, например датчиком обледенения. При k = 4 в тракте имеется, например, четыре стойки или винт с четырьмя лопастями. Если число лопаток направляющего аппарата равно z, то возмущенный поток будет иметь гармонику k = z, и лопатки рабочего колеса станут подвергаться действию возбуждающей силы с частотой $\int_{B} =$ $= z \cdot n_{c}$. Выражение (1) представляет собой уравнение прямой в координатах $\int_{B} - n_{c}$, а гармоника возбуждения k — тангенс угла наклона этой прямой.

Зависимость частот возбуждающих сил от числа конструктивных элементов, расположенных в тракте двигателя, и сскундного числа оборотов ротора представляется в виде диаграммы возбуждения (рис. 4). Она включает в себя все гармо-

ники возбуждения, которые могут иметь место на работающем двигателе. Эти гармоники обычно известны при проектировании двигателя (число лопаток, стоек, отборы воздуха и т. п.).

Лопатка представляет собой упругую колебательную систему с распределенными параметрами [10]. Из теорин колебаний следует, что такая система обладает бесчис-

Рис. 4. Диаграмма частот возбуждения

ленным множеством собственных движений или собственных форм колебаний (форма колебаний представляет собой относительное распределение амплитуд деформаций). Каждому движению (форме колебаний) соответствует своя собственная частота колебаний. И наоборот, каждой собственной частоте соответствует свое собственное движение (форма колебаний). Собственных движений у систем с распределенными параметрами бесчисленное множество, следовательно, лопатка обладает бесчисленным множеством собственных частот и форм колебаний. Не вдаваясь в подробпости определения собственных частот и форм колебаний лопатки, отметим, что лопатка совершает колебания по изгибным, крутильным и пластиночным формам. Наинизшая собственная частота ост соответствует первой изгибной форме колебаний (рис. 5,а). С повышением частоты що появляются вторая (рис. 5,б), третья (рис. 5,в) и т. д. изгибные формы. То же самое можно сказать о крутильных и пластиночных формах. Такие частотные характеристики лопатки определяются для каждой ступени компрес-

Рис. 5. Формы изгибных колебаний лонатки: а — первал; б — вторая; в — третья

сора или турбицы, и по этим данным строится диаграмма собственных частот ступени (рис. 6).

На рис. 6 условно изображены частоты f_0 ряда изгибных, крутильных и пластиночных собственных форм в зависимости от секундной частоты вращения ротора n_c . Причем показано, что по оборотам собственные частоты лопаток могут измеияться.

Если теперь диаграмму собственных частот лопатки какойлибо ступени компрессора или турбины (см. рис. 6) нанести на

Рис. 6. Диаграмма собственных частот (форм колебаний) лопатки

диаграмму возбуждения (см. рис. 4), соответствующую этой ступени, то получим частотную диаграмму ступени (рис. 7). В точках пересечения прямых соответствующих гармоник возбуждения с кривыми собственных частот лопатки на различных формах (на диаграмме они отмечены кружками) собственные частоты лопатки совпадают с частотами возбуждения, т. е. наступают резонансы, амплитуды колебаний лопатки могут достигнуть опасных пределов.

Рис. 7. Частотная диаграмма ступени (О — резонансы)

Как видно из диаграммы, лопатка имеет плотный спектр резонансных режимов. Он еще более уплотнится, если собственные частоты различных форм колебаний будут сближаться. Это происходит в том случае, когда лопатки выполняются более тонкими, ажурными. Поэтому тенденция снижения массы двигателей приводит к значительному уплотнению спектра собственных частот лопаток. Кроме того, в многороторных двигателях значительно уплотняется спектр возбуждающих сил и появляются новые гармоники, обусловленные разночастотностью вращения роторов.

Однако, как показывает практика турбостроения, не все резонансные режимы являются одинаково опасными. На одних резонансах лопатки быстро разрушаются, на других работают без поломок длительное время.

Степень опасности резонансных режимов оценивается запасом прочности *n_v*, представляющим собой отношение предельных напряжений, при которых лопатка разрушается, к максимальным, возникающим на данном резонансе, т. е.

$$n_{\nu} = \frac{\sigma_{\text{npeh}}}{\sigma_{\nu \max}} , \qquad (2)$$

где σ_{пред} — предельные напряжения для данной конструкции лопатки;

σ_{V max} — максимальные напряжения, возникающие в лопатке при ее колебаниях по данной форме.

В качестве предельных напряжений обычно принимается условный предел выносливости при симметричном цикле нагружения (σ_{-1}^t). Как известно, величина предела выносливости зависит от многих факторов, в числе которых необходимо отме-

тить масштабный и технологический. Поэтому предел выносливости следует определять отдельно для каждой конструкции лонатки при условиях, максимально приближенных к эксплуатационным. На рис. 8 показана характерная усталостная криеая для лопатки компрессора [3]. Такие кривые получают экснериментально при проведении на вибростендах усталостных испытаний лопаток, обработанных по соответствующей технологии.

Рис. 8. Кривые усталости деталей из сплава ХН70МВТЮБ: 1,2 — плоские образцы при асимметричном нагружении (t = 750°C) после полирования (1) и упрочиения микрошариками (2); 3,4,5 — лопатки компрессора при симметричном цикле нагружения (t = 20°C) после полирования (3), гидроструйного упрочнения (4) и упрочнения микрошариками (5)

Максимальные резонансные напряжения $\sigma_{v_{max}}$ определяются расчетом или экспериментально при тензометрировании лопаток на работающем двигателе.

Следует отметить, что $\sigma_{V max}$ можно определить расчетным путем только в том случае, если известны возбуждающие нагрузки и закон распределения их по перу лопатки, форма колебаний и величина демпфирования. Эти сведения при проектировании неизвестны. Поэтому единственный источник информации о максимальных вибрационных напряжениях, возникаюших в лопатках, — тензометрирование их на двигателе. С этой целью на лопатки наклеиваются тензодатчики в местах, где ожидают получить максимальные папряжения при колебаниях по данной форме. Сигнал с тензодатчика поступает через усилитель на регистрирующую аппаратуру. В процессе работы двигателя производится регистрация сигнала с датчика, после его обработки получают информацию об уровне напряжения в лопатке при ее колебапиях на различных частотах (рис. 9). Зная максимальные напряжения в лопатке, по формуле (2) рассчитывают запас прочности и сравнивают его с нормами. Если найденный запас не укладывается в нормы прочности, то следует провести мероприятия, обеспечивающие вибрационную надежность лопатки.

В первую очередь необходимо выявить гармонику возбуждения, ответственную за повышенный уровень вибраций. Для этого используются частотная диаграмма (см. рис. 7) и диаграмма напряжений (см. рис. 9). Выделяя максимальные йапряжения

Рис. 9. Зависимость вибронапряжений в лопатке от частоты вращения

в лопатке, определяют частоту вращения ротора и частоту колебания лопатки. По ним находят номер гармоники возбуждения. Следовательно, можно спределить те конструктивные элементы тракта двигателя, которые вносят повышенные возмущения в поток и приводят к опасным резонансным колебаниям лопатки.

Следует особо отметить, что в ряде случаев к опасным резонансам относятся колебания лопаток по основному тону (1-я изгибная форма), а также резонансы в области рабочих режимов (заштрихованные области на рис. 7). Поэтому длительная работа лопаток на этих режимах совершенно не допускается.

3. ФАКТОРЫ, ОБУСЛОВЛИВАЮЩИЕ РЕЗОНАНСНЫЕ НАПРЯЖЕНИЯ В ЛОПАТКАХ

При обтекании лопатки неоднородным (неравномерным) в окружном направлении потоком могут возникнуть резонансные колебания. Амплитуда деформаций резко возрастает, и при определенных условиях наблюдаются поломки лопаток. Чтобы выявить условия и факторы, обусловливающие резонансные на-

Рис. 10. Расчетная схема лопатки

колебания денные лопаток. Предположим, что на лопатку произвольного сечения действует произвольная возмушающая нагрузка интенсивностью q(x,t) (рис. 10).

пряжения, рассмотрим вынуж-

В спектре возбуждающей силы q(x,t) содержатся различные гармоники возбуждения (рис. 11). В общем виде

спектр возбуждения может быть представлен разложением Фурье:

 $q(x,t) = Q_0(x) + Q_1(x) \cos(\omega t + \alpha_1) + Q_2(x) \cos(2\omega t + \alpha_2) + \alpha_1 + \alpha_2 + \alpha$ $\dots + Q_k(x) \cos (k \omega t + \alpha_k),$ (3)

где $Q_0(x)$ — статическая составляющая распределенной по длине лопатки нагрузки;

 $Q_1(x), Q_2(x), ..., Q_k(x)$ — амплитудные значения переменных нагрузок, соответствующих 1, 2, ..., к гармоникам возбуждения;

> ω — частота возбуждающей силы; $\alpha_1, \alpha_2, ..., \alpha_k$ — фазовые сдвиги силы (см. рис. 11).

Резонансные колебания лопатки наступают тогда, когда частота возбуждающей силы одной из гармоник совпадает с одной из собственных частот лопатки. Для резонанса характерно: 1) увеличение амплитуды колебаний, следовательно, и вибронапряжений;

> 2) совпадение формы колебаний с одной из собственных форм;

> 3) наличне сдвига фазы между возбуждающей силой и амплитудой на угол $\pi/2$;

> 4) сохранение баланса энергин, которая вводится в систему возбуждающей снлой затра-П чивается этой системой в процессе преодоление сил колебаний на трения.

В дальнейшем мы будем рассматривать только резонансные режимы,

Резонанс наступает при совпадении любой из частот k w с

Рис 11. Разложение возбуждающей силы на гар-MOHIIKH

одной из собственных частот лопатки ω_0 , т. е. при выполнении одного из условий: $k \omega = \omega_0$ или

$$\omega/\omega_0 = 1, 1/2, \dots, 1/k.$$

Кроме того, для появления резонанса необходима амплитуда возмущающей силы $Q_k(x)$.

Следовательно, при $\omega = \omega_{01}$ резонанс наступит, если $Q_1(x) \neq 0$. Для резонанса с частотой $2\omega = \omega_{02}$ необходима сила $Q_2(x)$ в разложении Фурье (3), т. е. $Q_2(x) \neq 0$ и т. д.

Внешшие гармонические возбуждающие силы вызывают гармонические перемещения лопатки, которые в общем случае могут быть представлены в следующем виде [11]:

$$S(x,t) = \sum_{i=1}^{n} \underline{y}_i(x) \cos(\omega_i t + \alpha_i),$$

где $y_i(x)$ форма колебаний; α_i — фазовый угол.

При резонансе частота возбуждающей k_{ω_i} совпадает с одной из собственных частот лопатки ω_{0i} , т. е. $\omega_{0i} = k\omega_i$. При этом одно из слагаемых выражения (3) будет значительно больше остальных, поэтому можно рассматривать колебания лопатки на резонансе этой формы. Допустим, что возбуждающая нагрузка q(x, t) вызывает гармоническое перемещение

$$S(x,t) = y(x) \cos(\omega_0 t + \pi/2) = y(x) \sin \omega_0 t.$$
 (4)

Здесь учтен сдвиг силы относительно перемещения на угол л/2.

Определнм работу сил возбуждения $W_{\rm B}$ за цикл колсбаний лопатки. Возмущающая сила интенсивности q(x, t), распределенная на участке длиной dx, будет совершать элементарную работу на перемещении $dS: dW_{\rm B} = q(x,t) dx dS$, (5) где $dS = y(x) \cos \omega_0 t d(\omega_0 t)$. (6)

Подставив в уравнение (5) значения q(x, t) из (3) и dS из (6), получим

$$dW_{\rm B} = Q(x) \cos \omega_0 t \cdot y(x) \cos \omega_0 t \cdot dx \cdot d(\omega_0 t).$$

Найдем работу возбуждающей силы по всей длине лопатки за цикл колебаний:

$$W_{\rm B} = \int_{0}^{l} Q(x) y(x) dx \int_{0}^{2\pi} \cos^{2\omega_{0}t} d(\omega_{0}t) = \pi \int_{0}^{l} Q(x) y(x) dx.$$

Перейдем к относительной длине лопатки, относительным прогибам и относительной силе, обозначив $\bar{x} = \frac{x}{l}$, $\bar{y}(x) = \frac{y(x)}{y_{\max}}$, $\bar{Q}(x) = \frac{Q(x)}{Q_{\max}}$, где l — длина лопатки; y_{\max} и Q_{\max} — максимальные значения функций y(x), Q(x). Тогда окончательно работа возбуждающей силы за цикл колебаний лопатки

$$W_{\rm B} = \pi \cdot l \cdot Q_{\rm max} \cdot y_{\rm max} \int_{0}^{1} \overline{Q}(x) \ \overline{y}(x) \ d\overline{x}. \tag{7}$$

На установившемся резонансном режиме колебания лопатки будут поддерживаться за счет баланса вводимой и отводимой энергии, т. е.

$$W_n = W_p$$

где W_p — работа сил трения (сил демпфирования) за период колебаний, которая необратимо теряется в процессе колебаний и характеризуется площадью петли гистерезиса (рис. 12). Она

Рис. 12. Циклическая днаграмма деформирования

представляет собой работу, которая необратимо теряется (рассенвается) в процессе циклического деформирования. При изучении физических свойств петли гистерезиса была установлена связь между энергней рассеяния W_p и наибольшей потенциальной энергисй деформации лопатки П_{тах}, которая характеризуется площадью треугольника ОАВ. Эта связь устанавливается при помощи коэффициента поглощения (рассеяния) Ψ :

$$W_{\rm p} = \Psi \Pi_{\rm max}. \tag{8}$$

Обычно Ψ определяется экспериментально путем снятия и обработки вибропрограмм затухающих колеба-

ний, статических или динамических петель гистерезиса, резонансных кривых [4, 5].

Из курса «Сопротивление материалов» известно, что максимальная потенциальная эпергия деформации балки может быть выражена через уравнение упругой линии в виде

$$\Pi_{\max} = \frac{1}{2} \int_{0}^{1} E(x) I(x) \left(\frac{d^{2}y(x)}{dx^{2}}\right)^{2} dx.$$

Это же выражение остается в силе и для колеблющейся лонатки по любой из форм.

Перейдем к относительным координатам, сделав дополнительную подстановку:

$$\bar{I}(x) = \frac{I(x)}{I(0)}; \ \bar{E}(x) = \frac{E(x)}{E(0)},$$

где *I*(0), *E*(0) — момент инерции корневого сечения и модуль упругости материала пера лопатки,

Тогда

$$\Pi_{\max} = \frac{E(0) I(0)}{l^3} y^2_{\max} \cdot \overline{\Pi}_{\max} , \qquad (9)$$

где

$$\overline{\Pi}_{\max} = \frac{1}{2} \int_{0}^{1} \overline{E}(x) \overline{I}(x) \left(\frac{d^2 \overline{y}(x)}{d\overline{x}^2}\right)^2 d\overline{x}.$$

Подставив выражение (9) в уравнение (8), получим

$$W_{\rm p} = \Psi \frac{E(0) I(0)}{l^3} y_{\rm max}^2 \cdot \widetilde{\Pi}_{\rm max}.$$
 (10)

Так как на резонансе $W_{\rm B} = W_{\rm p}$, то, приравняв уравнения (7) и (10), получим

$$\pi \cdot l \cdot Q_{\max} y_{\max} \int_0^1 \overline{Q}(x) \overline{y}(x) d\overline{x} = \Psi \frac{E(0) I(0)}{l^3} y_{\max}^2 \cdot \overline{\Pi}_{\max}.$$

Отсюда величина максимального прогиба на любой из форм колебаний определяется выражением

$$y_{\max} = \frac{\pi}{\Psi} \cdot \frac{\overline{\mathcal{O}}_{\max} \cdot I^{t}}{E(0) I(0)} \cdot \frac{\int_{0}^{t} \overline{\mathcal{Q}}(x) y(x) dx}{\overline{\Pi}_{\max}} .$$
(11)

Из формулы (11) можно установить основные факторы, обусловливающие уровень резонансных напряжений в лопатке. К ним следуст отнести уровень и распределение по длине возбуждающей нагрузки, форму колебаний, величину сил демпфирования. При данных размерах лопатки максимальные прогибы, а следовательно, и максимальные напряжения в лопатке прямо пропорциональны величине возбуждающей силы (Q_{\max}), обратно пропорциональны коэффициенту поглощения Ψ , зависят от распределения возбуждающих сил по длине лопатки Q(x) и формы колебаний $\bar{y}(x)$.

Таким образом, чтобы выявить опасные резонансы лопаток, необходимо определить собственные частоты и формы колебаний, иметь сведения о демпфирующих свойствах на этих формах, а также знать величину и распределение по лопатке сил возбуждения. Некоторые из этих сведений можно получить расчетом, другие — только при испытаниях. К последним относятся сведения о демпфирующих свойствах лопаток, работающих на двигателе. Поэтому первый этап вибрационной доводки ГТД связан с определением частот и форм собственных колебаний лопаток.

4. РАСЧЕТ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ ЛОПАТКИ

При выявлении резонансов лопатки необходимо знать собственные частоты и формы колебаний. Такие сведения могут быть получены экспериментально или расчетом. Для расчета частот и форм колебаний лопатки необходимо составить дифференциальное уравнение колебаний, а затем решить его.

4.1. ВЫВОД ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ИЗГИБНЫХ КОЛЕБАНИЙ ЛОПАТКИ

Для вывода дифференциального уравнения изгибных колебаний лопатки примем ряд допущений, касающихся схемы ее крепления и условий работы. Эти допущения не влияют на качественную картину колебаний, но существенно упрощают расчеты и позволяют понять физику явлений.

Лопатка представляет собой закрученное в пространстве тело сложной геометрии. Заменим ее стержнем, имеющим прямую ось и переменную по его длине площадь сечения. Соответственно масса стержня и моменты инерции будут изменяться по длиие (m(x), I(x)). Предполагается также, что ось стержня проходит через центры тяжести сечений. Этим исключаются из рассмотрения статические силы, например силы тяжести.

Рассмотрим малые изгибные колебания такого стержия, которым соответствует пропорциональность между силами и деформациями (действует закон Гука).

Выделим из лопатки (рис. 10) на расстоянии x от начала координат (от заделки) элемент dx (рис. 13) и приложим к нему внешнюю распределенную нагрузку интенсивностью q(x,t), а действие отброшенных частей лопатки в сечении x заменим

Рис. 13. К выводу дифференциального уравнения колебаний лопатки

моментом M(x) и перерезывающей силой Q(x), а в сечений x + dx — моментом $M(x) + \frac{\partial M(x)}{\partial x} dx$ и силой $Q(x) + \frac{\partial Q(x)}{\partial x} dx$. При колебаниях на элемент dx будет действовать инерционная нагрузка интенсивностью

$$q_{\rm HH}(x,t) = -m(x) \frac{\partial^2 y(x,t)}{\partial t^2} .$$

Из курса «Сопротивление материалов» [4] известно, что распределенная нагрузка q(x), перерезывающая сила Q(x) и изгибающий момент M(x) связаны между собой соотношениями

$$q(x) = Q'(x) = M''(x).$$

Следовательно,

$$\frac{\partial^2}{\partial x^2} \left[E(x) I(x) - \frac{\partial^2 y(x,t)}{\partial x^2} \right] = q(x,t) - m(x) - \frac{\partial^2 y(x,t)}{\partial t^2}$$

ИЛИ

$$\frac{\partial^2}{\partial x^2} \left[E(x) I(x) - \frac{\partial^2 y(x,t)}{\partial x^2} \right] + m(x) - \frac{\partial^2 y(x,t)}{\partial t^2} = q(x,t).$$
(12)

В выражении (12) первый член левой части представляет собой упругую, второй — инерционную, а правая часть — внешнюю возбуждающую нагрузки. Это линейное неоднородное дифференциальное уравнение 4-го порядка с переменными коэффициентами. Оно записано в частных производных, поскольку функция y(x, t) является функцией двух переменных -- длины стержня x и времени t.

При свободных колебаниях внешняя нагрузка отсутствует, и уравнение (12) принимает вид

$$\frac{\partial^2}{\partial x^2} \left[E(x) I(x) \frac{\partial^2 y}{\partial x^2} \left[x, t \right] + m(x) \frac{\partial^2 y}{\partial t^2} \left[x, t \right] = 0.$$
(13)

Уравнение (13) решается методом Фурье (методом разделения переменных). В соответствии с этим методом решение уравнения (13) будем искать как сумму произведений функций, зависящих только от времени T(t), и функций, зависящих только от длины стержня y(x), т. е.

$$y(\mathbf{x},t) = \sum_{l=1}^{\infty} y_i(\mathbf{x}) T_i(l).$$

Знак суммы ($\sum\limits_1^\infty)$ показывает, что система с распределенны-

ми параметрами имеет бесконечное множество собственных форм изгибных колебаний $y_i(x)$ (спектр собственных форм). Запишем решение уравнения (13) для *i*-й собственной фор-

Запишем решение уравнения (13) для *i*-й собственной формы колебаний в виде

$$y_i(x,t) = y_i(x) T_i(t).$$
 (14)

21

Подставив решение (14) в уравнение (13), получим

$$T(t) \frac{d^2}{dx^2} \left[E(x) I(x) \frac{d^2 y(x)}{ax^2} \right] + m(x) y(x) \frac{d^2 T(t)}{at^2} \doteq 0.$$

Разделим переменные

$$\frac{\frac{d^2}{dx^2} \left[E(x) I(x) \frac{d^2 y(x)}{dx^2} \right]}{\frac{d^2 T(x)}{dx^2}} = -\frac{\frac{d^2 T(t)}{dt^2}}{\frac{d^2 T(t)}{dt^2}} = \omega_0^2. \quad (15)$$

В равенстве (15) левая часть зависит только от координаты x, а правая — только от времени t. Тождественное равенство этих функций возможно лишь в том случае, если обе функции будут равны некоторому постоянному числу, которое обозначим через ω_0^2 .

В результате получаем два самостоятельных уравнения для определения y(x) и T(t):

$$\frac{d^2 T(t)}{\partial t^2} + \omega_0^2 T(t) = 0,$$
(16)

$$\frac{d^2}{dx^2} \left[E(x) I(x) \frac{d^2 y(x)}{ax^2} \right] = \omega_0^2 m(x) y(x).$$
(17)

Решением уравнения (16) является функция $T(t) = T\cos(\omega_0 t + \alpha)$ [1, 2, 11]. Она показывает, что свободное движение лопатки носит колебательный характер и совершается по гармоническому закону с частотой ω_0 . Отсюда следует, что в решении (16) постоянная обозначена в виде квадрата частоты, чтобы в решении не было радикалов.

Для определения собственной частоты изгибных колебаний лопатки и соответствующей ей собственной формы y(x) необходимо решить уравнение (17). Это уравнение с переменными коэффициентами E(x), l(x) и m(x), поэтому решить его в общем виде невозможно.

Во многих практических случаях лопатку можно заменить стержнем постоянного сечения. Такая замена возможна, когда илощадь поперечного сечения по высоте лопатки изменяется незначительно или если лопатку разбивают на участки, у которых так же незначительно изменяется площадь поперечного сечения. Тогда уравнение (17) превращается в однородное уравнение с постоянными коэффициентами ($EI = \text{const}, m = \rho F = = \text{const}$) для равномерно нагретой лопатки

$$EI\frac{d^{4}y(x)}{dx^{4}} - \omega_{0}^{2}\rho F y(x) = 0, \qquad (18)$$

где р — плотность материала лопатки; *F* — площадь сечения; *I* — момент инерции.

Это однородное уравнение имеет аналитическое решение.

1)2

4.2. РЕШЕНИЕ УРАВНЕНИЯ СВОБОДНЫХ ИЗГИБНЫХ КОЛЕБАНИЙ ЛОПАТКИ ПОСТОЯННОГО СЕЧЕНИЯ

Уравнение (18) свободных колебаний лопатки постоянного сечения является дифференциальным линейным уравнением четвертого порядка с постоянными коэффициентами. Введем относительную длину $\bar{x} = x/l$ и представим уравнение (18) в виде

$$\frac{d^4 y(x)}{d\bar{x}^4} - a_i{}^4 y(x) = 0,$$
(19)

где

$$\alpha_i^{\ 4} = \frac{ml^4}{El} \ \omega_{ol}^2 \ . \tag{20}$$

Здесь *m* — распределенная масса, *l* — длина лопатки, *EI* — жесткость, ω₀ — собственная угловая частота.

Из выражения (20) может быть определена собственная угловая частота по формуле:

$$\omega_{0i} = \frac{\alpha^{2}_{i}}{l^{2}} \sqrt{\frac{EI}{m}} \,. \tag{21}$$

Собственные частоты f_0 связаны с угловыми частотами ω_0 выражением

$$f_0 = \frac{\omega_0}{2\pi} \,.$$

В формуле (21) неизвестным является коэффициент α_i . Он может быть найден из решения уравнения (19). Для решения уравнения (19) составим характеристическое уравнение

$$r^4 + \alpha_i^4 = 0,$$

корни которого дают

$$r_{1,2} = \pm \alpha_i,$$

$$r_{3,4} = \pm i \alpha_i.$$

Как известно [1], в этом случае общий интеграл, или решение уравнения (19), выражается через тригонометрические и показательные функции аргумента $\alpha_i x$ и соответственно порядку уравнения (19) содержит четыре постоянных C_1' , C_2' , C_3' , C_4' , т. е.

 $y_i(x) = C_1' \sin \alpha_i \bar{x} + C_2' \cos \alpha_i \bar{x} + C_3' \sin \alpha_i \bar{x} + C_4' \operatorname{ch} \alpha_i \bar{x}.$

Однако значительно удобнее использовать комбинации этих функций, представляя решение в виде

 $y_i(x) = C_1 S(a_i \bar{x}) + C_2 T(a_i \bar{x}) + C_3 U(a_i \bar{x}) + C_4 V(a_i \bar{x}).$ (22) Здесь C_1, C_2, C_3, C_4 — постоянные интегрирования;

 $S(\alpha \bar{x}) = 1/2 (\operatorname{ch} \alpha \bar{x} + \cos \alpha \bar{x}), T(\alpha \bar{x}) = 1/2 (\operatorname{sh} \alpha \bar{x} + \sin \alpha \bar{x}),$

 $U(\alpha \bar{x}) = 1/2 (\operatorname{ch} \alpha \bar{x} - \cos \alpha \bar{x}), V(\alpha \bar{x}) = 1/2 (\operatorname{sh} \alpha \bar{x} - \sin \alpha \bar{x}) -$ функции Крылова [1].

При дифференцировании они обладают свойством круговой нерестановки, т. е. последовательные производные функции Крылова связаны зависимостями

$$S(a\bar{x}) = \frac{1}{\alpha} T'(a\bar{x}), T(a\bar{x}) = \frac{1}{\alpha} U'(a\bar{x}),$$
$$U(a\bar{x}) = \frac{1}{\alpha} V'(a\bar{x}), V(a\bar{x}) = \frac{1}{\alpha} S'(a\bar{x}).$$

Производные выражения (22), нужные нам в дальнейшем, записываются в виде

$$y'(x) = \frac{dy_{i}(x)}{dx} = \frac{\alpha_{i}}{l} \Big[(C_{1}V(a\bar{x}) + C_{2}S(a\bar{x}) + C_{3}T(a\bar{x}) + C_{4}U(a\bar{x}) \Big], + C_{4}U(a\bar{x}) \Big], y''(x) = \frac{d^{2}y_{i}(x)}{dx^{2}} = \frac{\alpha_{i}^{2}}{c^{2}} \Big[(C_{1}U(a\bar{x}) + C_{2}V(a\bar{x}) + C_{3}S(a\bar{x}) + C_{4}T(a\bar{x}) \Big], + C_{4}T(a\bar{x}) \Big], y'''(x) = \frac{d^{3}y_{i}(x)}{dx^{3}} = \frac{\alpha_{i}^{3}}{l^{3}} \Big[(C_{1}T(a\bar{x}) + C_{2}U(a\bar{x}) + C_{3}V(a\bar{x}) + C_{4}S(a\bar{x}) \Big].$$
(24)

Для определения постоянных интегрирования C₁, ..., C₄ необходимо иметь четыре граничных условия. Они определяются из условий закрепления концов лопатки.

Можно установить, что постоянные $C_1, ..., C_4$ в выражении (22) связаны с амплитудными значениями прогиба y(x), угла поворота $\varphi(x) = y'(x)$, изгибающего момента $M(x) = EI \cdot y''(x)$ и поперечной силы $Q(x) = EI \cdot y'''(x)$ в начальном сечении (при $\bar{x} = 0$) равенствами

$$C_{1} = y(0), \ C_{2} = -\frac{l}{\alpha} \varphi(0), \ C_{3} = -\frac{l^{2}}{\mathcal{L} l \, \alpha^{2}} M(0),$$
$$C_{4} = -\frac{l^{3}}{\mathcal{L} l \, \alpha^{3}} Q(0).$$

Обычно при определении коэффициентов C_1 , ..., C_4 используют условия, ограничивающие перемещения концов лопатки, и условия, налагающие ограничения на изгибающий момент и поперечную силу. Таковы, например, условия закрепления лопатки, в силу которых равны нулю прогиб, угол поворота, изгибающий момент и перерезывающая сила. В некоторых случаях условия закрепления концов лопатки выражаются более сложным образом. Например, при упругом закреплении конца ло-

патки граничные условия должны учитывать характер возможных смещений конца и возникающих при этом упругих восстанавливающих сил.

Рассмотрим нахождение собственных частот и форм колебаний для консольной лопатки (см. рис. 10). При жестком креплении лопатки в диске прогиб и угол поворота в заделке будут равны нулю. На свободном конце равны нулю изгибаюший момент и поперечная сила. Поэтому граничные условия будут следующие:

ири
$$\overline{x} = 0$$
 $y(0) = 0$, $y'(0) = 0$;
при $\overline{x} = 1$ $EIy''(1) = 0$, $EIy'''(1) = 0$.
Подставив эти условия в уравнения (22) и (24), найдем:
 $C_1 = C_2 = 0$,
 $C_3S(\alpha_i) + C_4T(\alpha_i) = 0$,

$$C_3 V(\alpha_i) + C_4 S(\alpha_i) = 0.$$
⁽²⁵⁾

Условием ненулевых решений для постоянных C_3 и C_4 будет равенство нулю определителя

$$\begin{vmatrix} S(a_i) & T(a_i) \\ V(a_i) & S(a_i) \end{vmatrix} = 0.$$
 (26)

Это трансцендентное уравнение частот, имеющее бесчисленное множество решений. Решая его относительно частоты a_i , найдем множество корней уравнения (26). Подставив в уравнения (26) вместо функций Крылова тригонометрические и гиперболические функции, получим уравнение частот

 $ch \alpha_i \cos \alpha_i = -1$

или

$$\cos \alpha_i = -\frac{1}{\operatorname{ch} \alpha_i} \quad . \tag{27}$$

Р п.с. 14. К нахождению корней частотного уравнения

Построим графики функций левой и правой частей уравнения (27) (рис. 14). Точки пересечения их будут корнями уравнения (22), т. е. имеем корни α_1 , α_2 , ..., α_i . Наименьшее значение корня α_1 соответствует первой форме изгибных колебаний, второе значение — второй форме и т. д. Наличие множества корней отражает физическую сущность процесса колебаний систем с распределенными параметрами, т. е. такие систомы имеют множество собственных частот и форм колебаний.

После получения корней α_i частотного уравнения по формуле (21) определяют собственные частоты колебаний лопатки, а затем и форму колебаний.

4.3. ОПРЕДЕЛЕНИЕ ФОРМЫ КОЛЕБАНИЙ ЛОПАТКИ ПОСТОЯННОГО СЕЧЕНИЯ

Для определения формы колебаний лопатки в уравнение (22) подставим значения C_1 , C_2 , C_3 , C_4 из выражения (25). В результате получим

$$y_i(\bar{x}) = C_3[U(a_i\bar{x}) - rV(a_i\bar{x})], \qquad (28)$$

где $r = S(\alpha)/T(\alpha)$.

Прогиб на свободном конце лопатки при $\bar{x} = 1$, определяемый выражением

$$y_i(1) = C_3[U(a_i) - rV(a_i)],$$
(29)

будет максимальным для рассматриваемой схемы крепления лопатки (левый конец защемлен, правый — консольный, см. рис. 10).

Форма колебаний представляет собой относительное распределение прогибов (или амплитуд колебаний) по длине лопатки. Для определения формы колебаний найдем отношение

Для определения формы колебаний найдем отношение $\vec{y}_i(\vec{x}) = \frac{y_i(\vec{x})}{y_i(1)}$. Тогда, согласно уравнениям (28) и (29), форма колебаний консольной лопатки будет

$$\bar{y}_i(\bar{x}) = \frac{U(\alpha_i \bar{x}) - r V(\alpha_i \bar{x})}{U(\alpha_i) - r V(\alpha_i)} .$$
(30)

Абсолютная величина амплитуды в любой точке по длине лопатки определяется через форму колебаний

$$y_i(\bar{x}) = y_i(1) \cdot \bar{y}_i(\bar{x}). \tag{31}$$

Следовательно, *y_i*(1) есть масштаб колебаний, и его можно связать с уровнем напряжений по длине лопатки.

4.4. РАСПРЕДЕЛЕНИЕ ДИНАМИЧЕСКИХ НАПРЯЖЕНИЙ ИЗГИБА В ЛОПАТКЕ

Зная форму колебаний (30), можно построить эпюры напряжений по сечениям лопатки и определить места, где появляются максимальные уровни напряжений. Для этого воспользуемся зависимостью, связывающей внутренний изгибающий, момент и напряжение в данном сечении,

$$\sigma_i(x) = \frac{M_i(x)}{W(x)}, \qquad (32)$$

где σ— напряжение; *М* — изгибающий момент; *W* — момент сопротивления изгибу сечения.

Изгибающий момент, возникающий в сечении *х* при изгибных колебаниях лопатки, защемленной с одного и свободной с другого конца, определим из соотношения (11) с помощью зависимостей (24), (30) и (31):

$$M_{i}(x) = EI \cdot y''_{i}(\bar{x}) = EI \frac{\gamma^{2}_{i}}{l^{2}} y_{i}(1) \frac{S(\alpha_{i}\bar{x}) - r T(\alpha_{i}\bar{x})}{U(\alpha_{i}) - r V(\alpha_{i})} .$$
(33)

Подставив выражение (33) в уравнение (32), получим

$$\sigma(x) = \frac{\alpha_i^*}{l^2} \frac{EI}{W} - \frac{y_i(1) \cdot \overline{\sigma_i}(\overline{x})}{\overline{\sigma_i}(\overline{x})}, \qquad (34)$$

где

$$\overline{\sigma_{\ell}}(\overline{x}) = \frac{S(\alpha_{\ell}\overline{x}) - r T(\alpha_{\ell}\overline{x})}{U(\alpha_{\ell}) - r V(\alpha_{\ell})} - \text{относительное распределение}$$

напряжений по перу лопатки при ее колебаниях по данной форме.

На рис. 15 показан характер распределения относительных вибрационных напряжений по лопатке при ее колебаниях по первой и второй изгибным формам.

Рис. 15. Характер распределения динамических напряжений по изгибным формам: а-первая изгибная; б-вторая изгибная

Аналогично могут быть получены уравнения частот, форм колебаний, выражения для распределения напряжений и для других граничных условий, связанных со схемами крепления лопаток. Наиболее типичные конструктивные схемы креплений лопаток, соответствующие им граничные условия, уравнения частот и форм колебаний, а также корни частотных уравнений приведены в табл. 1. Подставив соответствующие корни в выражение (21), можно определить собственную круговую частоту лопатки при ее колебаниях по той или иной форме.

Используя табл. 1 и выражение (34), можно постронть распределение напряжений для данной схемы крепления лопаток.

Пример 1. Определить первую собственную частоту колебаний и распределение напряжений консольной лопатки направляющего аппарата, параметры которой приведены на рис. 16. Материал лопатки — сталь X17H2. Так как лопатка направляющего аппарата имеет слабую изогнутость, закрутку и постоянную по высоте площадь поперечного сечения (рис. 16,а), то заменим ее пластиной постоянной толщины (рис. 16,6).

Рис. 16. К расчету лопатки на колебания (*l* = 0,07 м; *h* = 0,003 м; *b* = 0,05 м)

Собственную частоту колебаний определим по формуле

$$_{0}=\frac{\alpha_{1}^{2}}{2\pi l^{2}}\sqrt{\frac{EI}{m}}.$$

28

Таблица 1

Уравнения Форт колебаний	y(x) = [sina+Sin()(ohax - - c0Sa(x) - (cha+ + c0Sa(x))(shaz - sinax)	y (K) = (Sin al - Shel) (Chal K- - Cobal X) - (Chal A - CoSal) (Shal K - Sin al X)	y (X) = (Sin oc + Shx) lehus - coso(X) - (choc + + coso(X) (Sho(X - - Sin oc X)	3 4(R)=(8(1)ck+Shec)(chax- - cosaz)-(cosac+ + chac)(Shecz - - Sinaz)	$y(\vec{x}) = (chol + COSal) ghav+ sin a(\vec{x}) - (Shol ++ sin a(\vec{x}) - (Shol ++ sin a((chol + t ++ coSal + 1))$	$y(\bar{X}) = sinck\bar{X}$
Уравнения частат и корни	cos a Ch a = -1 a, = 1,875 a2 = 4,694 a3 = 7,855	$\begin{array}{l} \alpha_{2}^{\prime}=4,730\\ \alpha_{2}^{\prime}=2,859\\ \alpha_{3}^{\prime}=10,996 \end{array}$	ct,=3,927 tgα=that α2=7,069 α3=50,210	$\alpha^{3} Chacos \alpha + i = -\frac{\Omega}{E7}$	$t_{g\alpha} = t_{h\alpha} \propto_{c=3,927}^{\alpha_{r}=0}$	$\delta_{1}^{t} = 3.142$ $\delta_{2}^{t} = 6.283$ $\sigma_{3}^{2} = 9.425$
і раничные уславия	$\vec{x} = 0 y = 0; y' = 0;$ $\vec{x} = f y'' = 0; y''' = 0$	$\frac{\overline{x}=0}{x^{-1}} \frac{y^{-0}}{y^{-0}}, \frac{y^{-0}}{y^{-0}}, \frac{x^{-1}}{y^{-1}}$	$\overline{X}=0 y=0; y'=0;$ $\overline{X}=t y''=0; y=0$	$\begin{array}{cccc} x & \tilde{x} \in \mathcal{O} & y = \mathcal{O}; & y' = \mathcal{O}; \\ \tilde{x} = f & y = \mathcal{O}: & y' = \mathcal{C}y \end{array}$	$\tilde{\vec{x}} = 0 y = 0; y'' = 0; \\ \tilde{\vec{x}} = f y'' = 0; y''' = 0;$	$\vec{x} = 0 y = 0; y^{n} = 0;$ $\vec{x} = x = y = 0; y^{n} = 0$
Скема крепления лопатки	Консольная с жеотной у заделкой (рабичая rarpsdляrowas)	жеотное крепление 44 кончов (направлянощан)	жесткое крепление с исонирный опиранием 4 Пробочия, ниправляющия 64 — 25 и сопловия с полкати)	жескокое креимение с 4 (инузам окиранием с 4 (Пабочан, изпрабляющая)	Консольная с шарнир- 4 ным креплением (направляницая)	С шарнирным крепле- И нием концов (каправ- а лязощая, сопловоя)
22	N	0	<i>b</i> -1	-2-	5	e

Для первой формы колебаний корень α_1 (см. табл. 1) равен 1,875. Для материала X17H2 примем модуль упругости $E = 2 \cdot 10^{11}$ H/m², плотность $\rho = 7.8 \cdot 10^3$ кг/м³.

Распределенияя масса $m = \frac{\rho F l}{l}$, где F — площадь ноперечного сечения. Тогда $m = 9,36 \cdot 10^{-1}$ кг/м, момент инерции $l = 9 \cdot 10^{-11}$ м⁴.

Подставим числовые значения в формулу (21) и найдем

$$f_0 = \frac{1.875^2}{2 \cdot 3.14 \cdot 7^2 \cdot 10^{-4}} \sqrt{\frac{2 \cdot 10^{11} \cdot 9 \cdot 10^{-11}}{9.36 \cdot 10^{-1}}} = 500.2 \ (\Gamma u).$$

Распределение напряжений определим по формуле (34).

Функцин Крылова S и T по аргументу α , \bar{x} выпишем из таблиц, приводенных в [1], и поместим в табл. 2.

Таблица 2

0.7.11.0.0.11		Функции	Крылова	Распрата.
тельная длина, x	Аргумент, α ₁ - <i>х</i>	$S(\alpha, \bar{x})$	$T(\alpha, \bar{x})$	ление па- пряжений, σ(x)
_				
0	0	1	0	1
0,4	0,75	1,01	0,75	0,46
0,5	0,93	1,03	0,93	0,35
0,8	1,5	1,21	1,56	0,06
1	1,87	1,52	2,08	0

Как видно из рис. 16,в и табл. 2, по основной форме колебаний максимальное напряжение будет у заделки лопатки. В этом месте следует ожидать разрушение лопатки.

Аналогично можно определить частоты и распределения напряжений по другим формам колебаний, только в этих случаях следует брать из табя. 1 соответствующие значения корней частотного уравнения α_i , обусловленные конструкцией крепления лопатки.

4.5. ОПРЕДЕЛЕНИЕ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ ЛОПАТКИ ПЕРЕМЕННОГО СЕЧЕНИЯ

Собственную частоту колебаний лопатки переменного сечения можно рассчитать различными методами, например, методом интегральных уравнений, энергетическим (методом Рэлея), начальных параметров, конечных элементов и другими. Рассмотрим некоторые из них.

4.5.1. Метод интегральных уравнений

Когда известно распределение масс и жесткостей по длине лопатки, ее собственную частоту и форму можно определить 30 прямым интегрированием дифференциального уравнения (17) [1,9].

Проинтегрируем дифференциальное уравнение свободных колебаний консольной лопатки с жесткой заделкой, имеющей прямую ось.

Введем в уравнение (17) относительную координату $\bar{x} = x/l$, где \bar{x} изменяется в пределах от 0 до 1. Тогда уравнение (17) примет вид

$$\frac{1}{l^{4}} \left[\frac{d^{2}}{d\bar{x}^{2}} E(\bar{x}) I(\bar{x}) \frac{d^{2}y(\bar{x})}{d\bar{x}^{2}} \right] = \omega^{2} m(\bar{x}) y(\bar{x}).$$
(35)

Проведя интегрирование (35) в пределах от 0 до \bar{x} , где функции $E(\bar{x}), I(\bar{x}), m(\bar{x}), y(\bar{x})$ непрерывны, получим выражение для перерезывающей силы

$$Q(\bar{x}) = \frac{1}{l^4} \frac{d}{d\bar{x}} \left[E(\bar{x}) I(\bar{x}) \frac{d^3 y(\bar{x})}{d\bar{x}^2} \right] =$$

= $\omega^2 \int_{0}^{\bar{x}} m(\bar{x}) y(\bar{x}) d\bar{x} + C_1.$ (36)

Постоянная интегрирования C_1 определяется из граничных условий. Так как при $\bar{x} = 1$ Q(1) = 0, то $C_1 = -\omega^2 \int_0^1 m(\bar{x}) y(\bar{x}) d\bar{x}$. Подставив C_1 в равенство (36), получим

$$Q(\bar{x}) = \omega^{2} \left[\int_{0}^{\bar{x}} m(\bar{x}) y(\bar{x}) d\bar{x} - \int_{0}^{1} m(\bar{x}) y(\bar{x}) d\bar{x} \right] = \\ = \omega^{2} \int_{1}^{\bar{x}} m(\bar{x}) y(\bar{x}) d\bar{x} .$$

Аналогично найдем выражения для коэффициента C₂ и изгибающего момента

$$C_{2} = -\omega^{2} \int_{0}^{1} \int_{1}^{\bar{x}} m(\bar{x}) y(\bar{x}) d\bar{x}^{2}.$$
$$M(\bar{x}) = \omega^{2} l^{4} \int_{1}^{\bar{x}} d\bar{x} \int_{1}^{\bar{x}} m(\bar{x}) y(\bar{x}) d\bar{x}.$$

Углы поворота и прогибы на любой из форм колебаний будут определяться выражениями

$$\underline{y}'(\bar{x}) = \omega^2 l^4 \int_0^{\bar{x}} \frac{d\bar{x}}{\overline{E}(\bar{x})/(\bar{x})} \int_1^{\bar{x}} d\bar{x} \int_1^{\bar{x}} m(\bar{x}) y(\bar{x}) d\bar{x} + C_3,$$

$$y(\bar{x}) = \omega^2 l^4 \int_0^{\bar{x}} d\bar{x} \int_0^{\bar{x}} \frac{d\bar{x}}{l(\bar{x})l(\bar{x})} \int_1^{\bar{x}} d\bar{x} \int_1^{\bar{x}} m(\bar{x}) y(\bar{x}) d\bar{x} + \bar{C}_4.$$

Постоянные интегрирования C_3 и C_4 найдем из граничных условий для консольной лопатки: $\bar{x} = 0$, y'(0) = 0, y''(0) = 0, тогда $C_3 = C_4 = 0$.

Окончательно выражение для форм колебаний будет

$$y(\bar{x}) = \omega^2 l^4 \int_{0}^{\bar{x}} a\bar{x} \int_{0}^{\bar{x}} \frac{d\bar{x}}{\mathcal{L}(\bar{x})I(\bar{x})} \int_{1}^{\bar{x}} d\bar{x} \int_{1}^{\bar{x}} ni(\bar{x}) y(\bar{x}) d\bar{x}.$$
 (37)

Уравнение (37) является интегральным уравнением форм колебаний. Оно удовлетворяется точным выражением формы собственных колебаний $y(\bar{x})$ с учетом граничных условий. При этом правая часть уравнения, построенная в интегральной форме на основе заданной функции $y(\bar{x})$, пропорциональна самой функции. Коэффициентом пропорциональности будет квадрат собственной частоты для данной формы колебаний. Сокращенно уравнение (37) записывается в виде

$$y(\bar{x}) = \omega^2 K_y, \tag{38}$$

где *К_у* — линейный интегральный оператор.

Значения интегрального оператора Ку определяются условиями закрепления лопатки.

Для консольной лопатки

$$K_{y} = l^{4} \int_{0}^{\bar{x}} d\bar{x} \int_{0}^{\bar{x}} \frac{d\bar{x}}{E(\bar{x})I(\bar{x})} \int_{1}^{\bar{x}} d\bar{x} \int_{1}^{\bar{x}} m(\bar{x}) y(\bar{x}) d\bar{x}.$$
 (39)

Решение интегральных уравнений обычно производится методом последовательных приближений. Расчет строится однотипно для большого класса задач. В результате расчета определяются собственные частоты и формы колебаний.

Для сравнения двух различных функций одного класса вводится понятие нормы функции. Физический смысл нормы функции — это численное значение одного из параметров, присущего всем сравниваемым функциям, или масштаб функции. Норма обозначается через ||y|| или y|. В некоторых задачах колебаний за норму функции принимают наибольшее значение функции на заданном интервале ее изменения. Тогда норма функции обозначается через $y|_{max}$.

Если некоторая функция y(x) задана численно, то нормирование может состоять в делении каждого значения этой функции на се максимальное значение: $\overline{y}(\overline{x}) = \frac{y(x)}{|y|_{\max}}$.

При решении уравнения (37) необходимо задаться нулевым приближением пормированной $\bar{y}(\bar{x})$ функции, подставить ее в выражение (39) для интегрального оператора K_y и найти первое приближение функции $y_1(x)$. Полученную функцию следует пронормировать и вновь подставить в интегральный оператор (39) и определить следующее приближение функции $y_2(x)$. Прочесс повторяется до тех пор, пока два смежных приближения ие дадут близкого совпадения нормированных функций, т. е.

$$y_{i+1} \mid = y_i \mid.$$

Собственная частота колебаний определится из формулы

$$\omega_0^2 = \frac{n_i |_{m^{s-1}}}{K_{yi} |_{\max}} \,.$$

Метод последовательных приближений приводит всегда к пахождению только первой формы колебаний и соответствующей ей первой собственной частоты.

Для определения более высоких форм колебаний и собственных частот необходимо использовать так называемые условия ортогональности собственных форм [1,9] и в каждом приближении исключать низшие формы. Подробно этот процесс изложен в работе [9].

При нахождении частот и форм колебаний лопатки интегральным методом обычно задаются численными значениями масс и жесткостей в сечениях лопатки. Процесс интегрировашия заменяется суммированием (например, используется правило трапеции или формула Симпсона).

Численчые методы интегрирования лифференциального уравчения (17) позволяют применять ЭВМ или ручной счет для быстрого определения частот и форм колебаний.

Пример 2. Методом интегральных уравнений определить собственную частоту колебаний лопатки, параметры которой представлены на рис. 16.

Разобьем перо лопатки на 10 сечений (9 участков), параметры каждого сечения занесем в строки 1 и 2 (см. табл. 3). В строке 3 записаны значения исрмированного прогиба $\mu_0(x)$ в иулевом приближении. Этч значения для всех участков, кроме первого и десятого, взяты произвольно. Учтено, что в заделке (при $\bar{x} = 0$) прогиб консольной лопатки равен нулю, а на конце он максимален и равен единице.

В строке 4 проведено умножение массы каждого участка на соответствующий прогиб. Так как площадь сечения лопатки постоянная, то значения массы участков являются также величинами постоянными. Вынесем эти значения в графу «множитель».

В строке 5 провелено численное интегрирование функции $y_0(\bar{x})$ по правилу транеций. В результате перед интегралом появляется множитель, равный l/2n, где l — длина лонатки, n — число участков.

Интегрирование начинаем вести с конца лопатки, где известно, что перерезывающая сила равна нулю. Направление суммирования показано стрелками (см. табл. 3).

Аналогично проведено интегрирование в строке 6. В строке 7 предыдуцая функция разделена на постоянную жесткость сечения лонатки. В стро

Таблица

					H	DARD	1 Yacn	7 M G				
строки Чатер	вплиниф	<i>фиашпжону</i>	~	2	6	4	2	6	с.	90	6	10
+	m p w m	9.36 10 1	F.	1	7	1		×	7	1	7	+
2	EJ H.M2	18	t	1	4	4	1	1	1	4	1	1
5	$\overline{\gamma}_{0}(\xi)$	1	0	0,1	0.15	0.17	0.2	0,3	0.5	0,7	0,8	1
4	17. 10 (5)	3.36.10-1	0	0,1	0. 5	0.17	0.2	0.3	05	07	0,8 1	1
5	Im Yole)de	9.36.10-1 2	7,37	7,27	7,02	6.7	5.8	5.3	4.5	3.3 7	00	0
9	11m Yo (2) d&2	936 10-1 (FB)	00.3	6.1	518	48.1	35.6	24.5	4.7	5.9	13	0
2	= 11m % (\$) a \$ 2	$\frac{9,36}{18}\frac{0}{18}\frac{0}{18}\frac{0}{18}$	30,8	-76.1	701.8	48.1	35.6	24.5	14.7	6.9	1.8	0
8	1 - 1 (1 20 / 4) 0/ 5 3	0,52.10-1(2) 3	0	166,9	304.8	414.7	4384	5585	597.7	6.9,3	6280	629,8
9	ift Jim Yo (ξ) d ξ4	0,52 10-1(-13) 4	0	165,9	038.5	1353.0	227	3328	44843	70.3	5948,5	82054
10	Y1(5)	1	0	0,021	0.03	0.166	0,277	0.404	0.546	0.530	0 5 46	•
11	m / ({ })	9,36-10-1	0	0,021	0.078	0,166	0,277	9 404	0,5 6	2.630	0.846	1
12	Jm Y, (E) dE	9.36 10-1 73	7.07	7,05	0.95	6.70	6.25	5.57	4 23	3.30	B 0	0
13	[[m Yy (\$) d \$ 2	9.36.101 (2/18)2	91,8	7.5	63.7	50,0	37.1	25.3	15	203	1.845	0
14	15 15 m 4 (\$) d \$ 2	0,52.10-1 (8/2)2	91.8	77,6	<i>6</i> 3,7	50,0	37,1	25.3	15.1	7.09	1845	0
15	SET (Sm Y, (E) dE3	0.52 10 1 (1/18) 3	0	169,4	311.10	424 2	51.8	574.2	545	6.6.7	645.6	6474
16	JSEJ Jim VIE) dE4	0.52.10-1 (2/18)4	0	169.4	650,2	1385	2322	3408	4597	5348	7430	8423
17	Y2(5)	1	0	0,021	0,077	0.160	0,275	0.405	0,545	0 690	0.846	t

ках 8, 9 получены значения углов поворота и прогибов по сечениям. В строке 10 показана нормированная функция прогибов в первом приближении.

При сравнении строк 10 и 3 видно, что полученное первое приближение $y_1(\bar{x})$ существенно отличается от нулевого $y_0(x)$. Поэтому необходимо повторить вычисления, взяв за исходную функцию $y_1(\bar{x})$. Процесс интегрирования показан в строках 11-16. В строке 17 получена нормированная функция второго приближения $y_2(\bar{x})$. Эта функция, как видно из сравнения строк 10 и 17, с достаточной точностью совпадает с функцие первого приближения, поэтому процесс интегрирования может быть закончен.

Собственная частота лопатки определится из выражения (40):

$$\omega_{0} = \sqrt{\frac{1}{K_{\mu|\max}}} = \sqrt{\frac{1}{8423 \cdot 0.52 \cdot 10^{-1} \left(\frac{0.07}{18}\right)^{4}}} = 3162 \ (c^{-1}),$$

иЛИ

$$f_0 = \frac{\omega_0}{2\pi} = 503.1 \ (\Gamma u).$$

Частота колебаний, полученная решением интегрального уравнения совпадает с точностью до 0,6% с частотой, полученной точным методом в примере 1.

Следует обратить внимание на тот факт, что частоты, полученные по методу интегральных уравнений, будут завышенными по сравнению с истинными. Это обусловлено произвольным заданием формы колебаний, что эквивалентно ужесточению лопатки, и в процессе последовательных приближений мы не достигаем истинной формы колебаний. Чем ближе мы к ней будем приближаться, тем меньше погрешность расчета.

4.5.2. Метод Рэлея

Для определения низшей собственной частоты колебаний лопатки весьма удобен энергетический метод Рэлея. Этот метод основан на том, что в консервативной системе имеется равенство максимальных значений потенциальной П_{max} и кинетической K_{max} энергий, т. е.

$$\Pi_{\max} = K_{\max}.$$

Максимальная потенциальная энергия упругой деформации определяется максимальным отклонением лопатки от положения равновесия

$$\Pi_{\max} = \frac{y^2_{\max} E(0) I(0)}{2 l^3} \int_{0}^{1} \overline{E}(\bar{x}) \overline{I}(\bar{x}) (\bar{y}^{\prime\prime}(\bar{x}))^2 d\bar{x}, \qquad (41)$$

где y_{max} — максимальный прогиб; l — длина лопатки; \bar{y} — нормированная форма колебаний; $\bar{x} = x/l$ — относительная координата (относительная длина); E(0) I(0) — жесткость корневого сечения; $\vec{E}(\vec{x})$, $\vec{I}(\vec{x})$ — относительное распределение жесткости сечений по длине лопатки.

Максимальная кинетическая энергия K_{max} определяется наибольшей скоростью, которая достигается в момент прохождения лопатки через положение равновесия:

$$d K_{\max} = \frac{1}{2} dm(x) \left(\frac{\partial y(x,t)}{\partial t}\right)_{\max}^{2}, \qquad (42)$$

где $dm(x) = \rho F(\bar{x}) d\bar{x}$ — элементарная масса; $F(\bar{x})$ — площадь сечения лопатки.

Так как прогиб y(x,t) изменяется по гармоническому закону, $u(\bar{x},t) = u(\bar{x}) \cos \omega t$,

скорость деформации будет

$$\frac{\partial y(\bar{x},t)}{\partial t} = -\omega y(\bar{x}) \sin \omega t.$$
(43)

При $\sin \omega t = 1$ скорость принимает максимальное значение. Вводя обозначения

$$\overline{F}(\overline{x}) = \frac{\overline{F}(x)}{\overline{F}(0)}, \quad \overline{y}(\overline{x}) = \frac{y(\overline{x})}{y_{\max}}$$

и подставляя их в формулу (42) с учетом выражения (43), после интегрирования будем иметь

$$K_{\max} = \frac{1}{2} \omega^2 F(0) y_{\max}^2 l \int_0^1 m(\bar{x}) y^2(\bar{x}) d\bar{x}.$$
(44)

Приравнивая уравнения (41) и (44), получим

$$y_{\max}^{2} \frac{L(0) I(0)}{l^{3}} \int_{0}^{1} E(\bar{x}) I(\bar{x}) (y''(\bar{x}))^{2} d\bar{x} = \omega^{2} F(0) y_{\max}^{2} \times L \int_{0}^{1} m(\bar{x}) y^{2}(\bar{x}) d\bar{x},$$

откуда частота собственных колебаний

$$\omega_0^2 = \frac{E(0) I(0)}{F(0) l^4} \frac{\int_0^1 E(\bar{x}) I(\bar{x}) (y''(\bar{x}))^2 d\bar{x}}{\int_0^1 m(\bar{x}) y^2(\bar{x}) d\bar{x}}$$
(45)

Это и есть формула Рэлея.

Таким образом, если заданы площадь и момент инерции корневого сечения и известно их распределение по длине лопатки, то можно, задаваясь формой упругой линии $y(\vec{x})$, опреде-36 лить собственную частоту колебаний лопатки переменного сечения.

Так как формой колебаний необходимо задаваться, что эквивалентно ужесточению лопатки, то энергетические методы дают завышенные значения собственных частот. Чем ближе к истинной будет задана форма колебаний, тем точнее будет определена и собственная частота.

Пример 3. Определить методом Рэлея собственную частоту лопатки постоянного сечения, имеющей параметры, заданные в примере 1.

Для лопатки постоянного сечения формула Рэлея (45) будет иметь вид

$$\omega_{\theta}^{2} = \frac{EI}{l^{4}m} \quad \frac{\int_{0}^{1} (\bar{y}''(\bar{x}\,))^{2} \, d\bar{x}}{\int_{0}^{1} \bar{y}^{2}(\bar{x}) \, d\bar{x}} \, .$$

Форму колебаний лопатки зададим в виде уравнения упругой линии консольной балки постоянного сечения под действием силы *P*, приложенной на ее конце (рис. 17).

Рис. 17. К расчету лопатки на колебания методом Рэлея

В этом случае уравнение упругой линии будет [4]

$$\tilde{y}\left(\tilde{x}\right) = \frac{Pl^3}{6 EI} \left(3\bar{x}^2 - \bar{x}^3\right),$$

а вторая производная —

$$\bar{y}''(\bar{x}) = \frac{Pl^3}{EI} (1-\bar{x}).$$

Собственную круговую частоту колебаний лопатки определим из выражения

$$\omega_0^2 = \frac{EI}{l^5m} - \frac{\int\limits_0^1 \left(\frac{Pl^3}{EI}\right)^2 (1-\bar{x})^2 d\bar{x}}{\int\limits_0^1 \left(\frac{Pl^3}{6EI}\right)^2 (3\bar{x}^2 - \bar{x}^3) d\bar{x}} = 12,73 \frac{EI}{l^4 \cdot m} .$$

При условии, что $EI = 18 \text{ H/м}^2$, $m = 9,36 \cdot 10^{-1} \text{ kr/m}$, l = 7 см,

$$\omega_0 = \sqrt{\frac{18}{12.73} \frac{18}{(0.07)^4 \cdot 9.36 \cdot 10^{-1}}} = 3193 \,\mathrm{c}^{-1}$$

37

или

$$\dot{f}_0 = \frac{\omega_0}{2\pi} = \frac{3193}{2\pi} = 508,2 \ (\Gamma n).$$

Как видно, частота колебаний, полученная методом Рэлея, совпадает с погрешностью $\approx 1,5\%$ с частотой, полученной при точном решении примера 1.

Решим этот же пример при условии, что форма колебаний лопатки соогветствует форме упругой линии под действием распределенной нагрузки $q(\bar{x})$ (ј.нс. 17,6).

Для этого случая уравнение упругой линии будет [4]

$$y(\bar{x}) = \frac{q(\bar{x})}{2\pi EI} (3 - 4 \bar{x} + \bar{x}^4),$$

соответственно вторая производная ---

$$y''(\bar{x}) = \frac{q(\bar{x})}{2EI} \bar{x}^2.$$

Собственную частоту колебаний определим по формуле (45):

$$\omega_0^2 = 12,46 \frac{EI}{l^4 \cdot m} (c^{-1})$$

ыли

$$f_0 = \frac{\omega_0}{2\pi} = \frac{1}{2\pi} - \sqrt{\frac{12,46 \cdot 18}{(0,07)^4 \cdot 9,36 \cdot 10^{-1}}} = 502,8 \ (\Gamma u).$$

Этот результат отличается на 0,5% от точного решения (см. пример 1).

Как видно из примера 3, определение собственной частоты по формуле Рэлея не требует знания точной формы колебаний. Ее можно задавать аналитически произвольно, удовлетворяя только граничные условия на концах лопатки. При этом собственные частоты получаются завышенными по сравнению с истинными, что обусловлено ограничениями на форму колебаний при ее произвольном задании.

4.6. ФАКТОРЫ, ВЛИЯЮЩИЕ НА СОБСТВЕННЫЕ ЧАСТОТЫ КОЛЕБАНИЙ ЛОПАТОК

4.6.1. Влияние схемы закрепления лопатки, ее геометрии, материала и нагрева

Для успешной борьбы с опасными резонансными колебаниями лопаток необходимо знать те факторы, которые влияют на величину их собственных частот. Анализ начнем с лопатки постоянного сечения. Для этого выразим момент инерции и распределенную массу через геометрические параметры сечения и подставим их в формулу (21):

$$\omega_0 = \alpha_l^2 \left(\frac{h}{l^2}\right) \sqrt{\frac{E(x)}{r}} \sqrt{\frac{1}{12}}, \qquad (46)$$

где 1, h — длина и толщина лопатки; p — массовая плотность матернала; a_i — корень частотного уравнения; E(x) — модуль упругости, в общем случае зависящий от температуры.

Из формулы (46) видно, что на собственные частоты колебаний лопатки постоянного сечения влияет ряд факторов: схема закрепления (α_i), геометрия (l, h), свойства материалов (ρ, E).

Корень частотного уравнения α_i оказывает существенное влияние на собственные частоты. Воздействовать на него можно путем изменения схемы крепления лопатки, например, пере-ходом от консольной лопатки ($\alpha_1 = 1,875$) к лопатке с шарнир-ным опиранием по полке ($\alpha_2 = 3,927$) (см. табл. 1). При увеличении длины лопатки собственная частота ее ко-лебаний уменьшается пропорционально квадрату отношения

ллин:

$$\frac{\omega_{01}}{\omega_{02}} = \left(\frac{l_2}{l_1}\right)^2.$$

Частота собственных колебаний с увеличением толщины пера h растет. Например, отклонение толщины профиля h = 2 мм от расчетной на $\pm 0,15$ мм может вести к отклонению частоты на 10-15%.

Важно, что для лопаток постоянного сечения изменение ши-рины лопатки (b) не приводит к изменению ее собственной частоты.

Для лопатки переменного сечения увеличение клиновидности (уменьшение отношения толщины наружного профиля с_и к корневому ск) при неизменном корневом сечении лопатки увеличивает частоту собственных колебаний лопатки. На графике рис. 18 приведено изменение корня частотного уравнения (27) в зависимости от отношения $c_{\rm H}/c_{\rm K}$ для консольной лопатки. При расчете частот необходимо значение корня α , взятого из графика (рис. 18), подставить в формулу (21).

Из формулы (44) видно, что частота колебаний зависит от отношения Е/о, характеризующего материал лопатки. Для кон-

Рис. 18. Зависимость корня частотного уравнения от клиновидности лопатки

струкционных материалов, из которых изготавливаются лопатки, это отношение меняется мало. Поэтому частоты колебаний лопаток, выполненных из разных материалов, изменяются на 5—8% (при прочих одинаковых условиях). Отсюда следует ьажный вывод: замена материала лопатки практически не приводит к изменению ее собственных частот колебаний и экспериментальную доводку лопатки можно осуществлять на лопатках, изготовленных из менее дорогих материалов. Повышение температуры лопатки во время ее работы на двигателе снижает частоту ее собственных колебаний вследствие уменьшения модуля упругости при слабо уменьшающейся плотности. При равномерпом нагреве лопатки по всей длине собственная частота определяется по формуле

$$\omega_{0\,t} = \omega_0 \sqrt{\frac{E(t)}{E}}.$$

В случае перавномерного нагрева по длине лопатки модуль будет изменяться неравномерно. Поэтому в расчетах следует задать закон изменения жесткости *E*)*х*) *I* (*x*) по длине лопатки и произвести вычисление частот как лопатки переменного сечения.

4.6.2. Влияние поля центробежных сил

Центробежная сила P_n, развиваемая лопаткой во время работы, стремится выпрямить ось лопатки, отклоненную в прокессе колебаний (рис. 19). В поле центробежных сил лопатка становится как бы более жесткой, частота ее увеличивается.

Для определения частоты колебаний лопатки в поле центробежных сил можно воспользоваться энергетическим методом Рэлея. В этом случае к максимальной потенциальной энергии упругой деформации лопатки (41) добавляется энергия перемещения элементов лопатки в радиальном направлении. Добавка П_о вычисляется как интеграл работ центробежных сил элементарных участков лопатки [9] на перемещении r₁ (рис. 19):

$$\Pi_{\omega} = \int_{0}^{l} r_{1} d P_{u}(x) = \frac{1/2}{\int_{0}^{l} (r_{0} + x) \cdot m(\bar{x}) \, \omega^{2} d\bar{x} \cdot \int_{0}^{x} (y'(x))^{2} dx,$$
(47)

где r₀ — раднус диска; r₁ — вертикальное смещение элементов лопатки; ω — частота вращения.

Следовательно, частота колебаний лопатки, находящейся в поле центробежных сил, с учетом выражений (41), (44), (45) и (47) будет

$$\omega_0^2 = \omega_0^2 + \omega_\omega^2$$

Рис. 19. Схема колеблющейся лопатки в поле центробежных сил

нли

$$\omega_{0\,\omega} = \sqrt{\omega_0^2 + \omega_\omega^2} \quad , \tag{48}$$

где ω_0 — частота, определяемая по формуле (45);

$$\omega_{\omega}^{2} = \frac{\Pi_{\omega}}{\kappa_{\max}^{2}} = B \cdot \omega^{2}.$$
⁽⁴⁹⁾

Как видно из формулы (49), собственная частота колебаний лопатки в поле центробежных сил меняется в зависимости от оборотов ротора. График измещения собственных частот представлен на рис. 20. Кривая 1

ставлен на рис. 20. Кривая 1 соответствует традиционной схеме установки лопатки, при которой центробежная сила ее растягивает. Кривая 2 соответствует случаю, когда действие центробежной силы направлено так, что перо подвергается сжатию. В этом случае как бы уменьшается жесткость пера и частота понижается. Снижение частоты коле-

Рис. 20. Изменение собственных частот лопатки в поле центробежных сил

баний по оборотам может быть вызвано и другими причинами, например, более быстрым снижением частоты ω_0 в формуле (49), чем возрастание ω_{ω} , что может быть обусловлено повышением температуры пера лопатки, следовательно, снижением модуля упругости в формуле (46).

При ориентировочном выборе коэффициента *B*, входящего в формулу (49), для первой формы колебаний можно вос-

Рис. 21. График для определения коэффициента $B: m = C / C_{\kappa}$ -клиновидность; \vec{a} -относительный диаметр втулки; l — длина лопатки; R — раднус днска

пользоваться выражениями для лопаток турбин [5] постоянного сечения

$$B = 0.8 \frac{D_{\rm cp}}{l} - 0.85,$$

переменного сечения без закрутки

$$B=0,72\frac{D_{\rm cp}}{l}-1,$$

переменного сечения с закрут-кой

$$B = 0.81 \frac{D_{\rm cp}}{l} - 0.37 - \cos^2 \alpha_{\rm cp}$$

где $D_{\rm cp}$, l, $\alpha_{\rm cp}$ — средний радиус, длина лопатки, средний угол закрутки по длине лопатки.

Для лопаток компрессора коэффициент *В* может быть определен по графику (рис 21).

4.6.3. Влияние угла установки лопатки

На собственные частоты лопатки большое влияние оказывает угол установки β относительно плоскости вращения колеса (рис. 19). Это связано с тем, что при изгибе лопатки в плоскости колебаний появляются распределенные по длине лопатки силы $P_{\rm u}$, которые стремятся увеличить ее прогиб. С увеличением угла установки β собственные частоты лопаток уменьшаются. Эти частоты можно определить по формуле

$$\omega_{\beta}^{2} = \omega_{0 \omega}^{2} - \omega^{2} \sin^{2}\beta,$$

где ω_{β} — частота собственных колебаний лопатки, установленьой под углом β ; $\omega_{0}\omega$ — собственная частота колебаний лопатки с учетом вращения при нулевом угле установки ($\beta = 0$).

При наличии угла установки повышение частоты вследствие вращения будет меньше, чем показано на рис. 20 (кривая 3). 42

4.6.4. Влияние податливости (упругости) заделки

При расчете частот и форм колебаний предполагали. что лопатки имеют абсолютно жесткую заделку. Во многих случаях такой подход оправдан, но если жесткость заделки существенно снижается (увеличивается податливость), то собственные частоты лопатки будут также существенно снижаться. Это необходимо учитывать так как конструкции современных авиационных ГТД связаны с тенденцией непрерывного уменьшения весовых характеристик. Диски становятся более ажурными и податливыми. В результате колебания одной лопатки передаются другим через упругий диск, т. е. диск вовлекается в колебания совместно с лопатками. Образуется сложная упругая колебательная система лопатки — диск (лопаточный венец, колесо). Для анализа спектра частот и форм колебаний такой сложной упругой системы, какой является лопаточный венец, на нем условно выделены семейства первых изгибных форм, первых крутильных форм, вторых изгибных форм и т. д. Эти семейства соответствуют аналогичным формам колебаний изолированной лопатки.

На каждом резонансе форма колебаний венца характеризуется числом узловых диаметров m. Она показывает, сколько целых чисел волн деформаций укладывается по окружности венца. Например, если m = 2, то это означает, что по окружности венца укладываются две волны деформаций (рис. 22,а).

Рис. 22. Формы колебаний венца (m = 2)

Точки 2, 4, 6, 8 имеют максимальные амплитуды, т. е. расположены в пучностях. Точки 1, 3, 5, 7 неподвижны, они расположены в узлах колебаний. Прямые 1—5, 3—7 называются узловыми линиями или узловыми диаметрами (рис. 22,6). Число таких узловых диаметров и соответствующее им число воли деформаций лопаточного венца связано с количеством лопаток z, устанавливаемых на диск. Для четного числа лопаток m = z/2, для нечетного — $m = \frac{z-1}{2}$.

Если z одинаковых лопаток установить на абсолютно жесткий диск, то в пределах любого из семейств форм можно зафиксировать z одинаковых частот, отвечающих различным числам волн деформаций венца. Численные значения этих частот будут совпадать со значениями частот по соответствующим

Рис. 23. Собственные частоты облопаченного диска: 1 — жесткий диск; 2 — упругий диск

формам колебаний для изолированной лопатки (кривая 1 на рис. 23).

При сообщении диску у п р у г и х свойств частоты каждого семейства, ранее совпадавшие, станут различными (кривая 2 на рис. 23). Каждое из семейств займет определенный диапазон

частот, который будет зависеть от податливостей диска. Чем больше податливость диска, тем шире этот диапазон. Он будет также зависеть и от того, к какому семейству форм принадлежат частоты. По отношению к одним семействам диск может оказаться более податливым, по отношению к другим — менее податливым. Податливость диска оказывает сильное влияние на частоты семейства первых изгибных форм, значительно более слабое — на частоты семейства крутильных форм. Степень влияния зависит от конкретной геометрии лопатки и диска, а также от ряда других конструктивных факторов.

Расчет частот и форм колебаний с учетом податливости диска позволяет более точно определить частоты венца, выявить новые качественные явления, обусловленные упругостью диска. Такие расчеты требуют применения ЭВМ.

4.6.5. Влияние технологических отклонений

Наибольшее влияние на собственные частоты лопаток оказывает допуск на толщину профиля, причем в большей степени это касается тонких профилей лопаток компрессора. Например, если при расчетной толщине профиля 2 мм задать технологическое отклонение $\pm 0,15$ мм, частоты изготовленных лопаток будут отличаться от номинала на $\pm 8-10\%$. Установка на одну ступень лопаток с таким разбросом частот может в дальнейшем затруднить устранение вибрационных дефектов.

5. МЕТОДЫ ОБЕСПЕЧЕНИЯ ВИБРАЦИОННОЙ НАДЕЖНОСТИ ЛОПАТОК ТУРБОМАШИН

Анализ частотной диаграммы (рис. 7) показывает, что полностью исключить резонансные режимы работы лопаток при эксплуатации двигателя не удается. Поэтому необходимо восиользоваться выражением (2), найти запасы прочности n_v на различных резонансах и наметить меры, повышающие n_v .

Как известно, запас вибрационной прочности определяется по формуле

$$n_{\psi} = \frac{\sigma_{-1} - \psi \sigma_m}{\sigma_{\pi \max}},$$

где σ_{-1} — предел выносливости при симметричном цикле нагружения; σ_m — среднее напряжение цикла; ψ — коэффициент влияния среднего напряжения (для сталей $\psi = 0,2 - 0,5$, для титана $\psi = 0,4$).

Следовательно, чтобы увеличить n_v , необходимо повысить предел выносливости σ_{-1} , уменьшить среднее напряжение цикла σ_m и снизить максимальные вибрационные напряжения $\sigma_{v max}$, возникающие в лопатках при их колебаниях по той или иной форме (рис. 24). Последнее может быть выполнено на основе анализа выражения (11). Решение этой сложной научной и инженерной задачи производится различными путями. Некоторые из них отражены в настоящем пособии.

Рис. 24. Структурная схема обеспечения вибропрочности лопатки

5.1. КОНСТРУКТИВНО-ТЕХНОЛОГИЧЕСКИЕ МЕТОДЫ ПОВЫШЕНИЯ ПРЕДЕЛА ВЫНОСЛИВОСТИ ЛОПАТОК

Выносливость материала определяет долговечность деталей (лопаток, дисков, валов и др.), испытывающих большие переменные нагрузки. При этом в деталях накапливаются необратимые механические изменения даже в тех случаях, когда максимальные переменные нагрузки далеки от предела упругости материала. Если число циклов нагружения достаточно велико, то в результате накопления механических изменений в какойлибо точке детали образуется макротрещина. Постепенное развитие ее приводит к усталостному разрушению детали.

Под пределом выносливости понимают наибольшее мапряжение цикла, которое может выдержать образец, не разрушаясь при заданной базе испытаний (число циклов нагружения). Обычно предел выносливости при симметричном цикле $\sigma_{-1} =$ = (0,2 — 0,4) σ_{B} ,

где о_в — предел прочности [6].

На сопротивление усталостному разрушению лопаток существенное влияние оказывают различные конструкционные и техиологические факторы (рис. 25).

Из конструкционных методов повышения предела выносливости отметим правильное назначение материала с учетом нагружения, технологических и эксплуатационных факторов. Важное значение имеет конструирование входных и выходных кромок пера, а также мест перехода пера к полке и замку крепления. Этим самым снижается влияние концентраторов напряжений, что приводит к повышению пределов выносливости.

В числе технологических мероприятий повышения вибрационной надежности лопаток значительное место занимают методы поверхностного пластического деформирования, термические, химико-термические и термомеханические способы обработки рабочих поверхностей деталей. С помощью этих методов обработки прочность деталей приводится в соответствие с услоснями нагрузки и местными воздействиями.

Таким образом, одни из этих методов способствуют снижению местных концентраторов напряжений, другие создают повышенную прочность, улучшают чистоту поверхности, коррозионную стойкость, жаростойкость, износостойкость.

5.2. КОНСТРУКТИВНЫЕ МЕТОДЫ СНИЖЕНИЯ ДЕЙСТВУЮЩИХ ВИБРАЦИОННЫХ НАПРЯЖЕНИЙ В ЛОПАТКАХ

Анализ формулы (11) показывает, что уровень максимальных резонансных напряжений в лопатке при ее колебаниях по той или иной форме зависит от уровня возбуждения и его распределения по поверхности лопатки, формы колебаний и демпфирующих свойств пера. На рис. 26 показана структурная схема факторов, обусловливающая уровень резонансных напряжений в лопатке.

Анализ частотной диаграммы (рис. 7) и результатов натурного тензометрирования лопаток (рис. 9) позволяет установить форму колебаний и гармонику возбуждения, ответственную за повышенный уровень вибронапряжений в пере. После этого выбирается один или несколько методов борьбы с опасными колебаниями. Рассмотрим эти методы.

резопансных напряжений

5.2.1. Воздействие на возбуждение

В настоящее время разработаны следующие пути воздействня на переменные силы, возбуждающие колебания лопаток (рис. 27): снижение величины возбуждения, изменение гармоники и закона распределения возбуждающей нагрузки по лопатке.

При воздействии на величину возбуждающих сил главное внимание обращают на уменьшение окружной неравномерности потока воздуха или газа. Это достигается профилированием обтекаемых элементов конструкции таким образом, чтобы они меньше всего вносили возмущений в поток, не создавали неравномерных полей скоростей и давлений. В процессе производства двигателя требуется строгое соблюдение технических требований к изготовлению деталей и сборочных единиц.

Равномерность потока в значительной степени зависит от осевого расстояния между решетками конструкции. Увеличение этого расстояния приводит к выравниванию полей скоростей и давлений. Этим обстоятельством часто пользуются на практике. Например, увеличивают осевой зазор между направляющим аппаратом и рабочим колесом путем их раздвижки. При этом уровень возбуждающих сил может быть существенно снижен, но возрастут осевые габариты и масса конструкции. На практике иногда применяют подрезку кромок лопаток, что позволяет увеличить расстояния между решетками без изменения осевых габаритов двигателя.

Распределение возбуждающих сил по рабочей лопатке можно изменить путем изготовления направляющего аппарата с нерадиально установленными лопатками. В этом случае импульсы, действующие на рабочие лопатки, смещаются по окружности для каждого радиуса. Рабочая лопатка будет входить в кромочный след от лопатки направляющего аппарата не сразу по ьсей своей длине, а постепенно, от одного конца к другому. Аналогичный эффект будет наблюдаться при выполнении направляющего аппарата с переменным по окружности шагом установки лопаток, а также при выборе оптимального соотношения шагов лопаток рабочего и направляющего аппарата. При этом наблюдается сдвиг фазы воздействия возбуждающей силы по длине лопатки, и уровень возбуждения понижается. В результате усложняется производство направляющих аппаратов, следовательно, и технологичность ГТД.

Как было показано в разделе 3, в спектре возбуждающих спл содержатся различные кратные гармоники возбуждения (см. уравнение (3)). Поэтому, используя конструктивные приемы, можно изменять состав гармоник возбуждения и тем самым оказывать необходимое влияние на возбуждающие силы. Например, пусть имеем строго симметричное расположение четырех стоек на входе в двигатель (рис. 28,а). Тогда за каждый оборот рабочие лопатки будут подвергаться воздействию четырех импульсов. Теперь предположим, что стойки 2 и 4 будем сближать соответственно со стойками 1 и 3 (рис. 28,б). В результате изменится состав гармоник возбуждения. Лопатки будут испытывать импульсы от стойки 1 и стойки 2, совместного действия стоек 1 и 2, раздельно от стоек 3, 4, совместного действия стоек 3 и 4. Воздействие возбуждения с гармоникой k = 4начнет снижаться, в то время как воздействие возбуждения с гармоникой k = 2 станет возрастать. Максимальное возбуждение этой гармоникой будет в том случае, когда стойки 1 и 2, 3 и 4 полностью совместятся.

Аналогичный эффект наблюдается при асимметричном рас-

положении окон перепуска, отбора воздуха и других конструктивных элементов в тракте двигателя.

Воздействие на возбуждение — одна из сложных проблем, исследования ее только начаты. Зафиксировано, например, что разношагица лопаток, асимметрия расположения стоек значительно снижают вибронапряжения по основной форме. В то же время могут существенно возрасти колебания по более высоким формам и ухудшиться другие характеристики турбомащии.

Рис. 28. К изменению состава гармоник возбуждающих сил

5.2.2. Метод отстройки от резонансов

Метод частотной отстройки является нанболее традицион-вым и эффективным средством в борьбе с опасными колебаниями лонаток. Он начал применяться с появлением паровых турбин и получил широкое развитие при создании авиационных газотурбинных двигателей. Суть метода состоит в том, что измехарактеристик нением жесткостных и массовых лопаток (рис. 29) можно создать лопатки, имеющие другие собственвые частоты, т. е. удается изменять диаграмму собственных частот (см. рис. 6). Такое изменение может быть выполнено методами, изложенными в разделе 4.6. Кроме того, используя способы, изложенные в предыдущем разделе (см. рис. 27), можно изменять диаграмму возбуждения (см. рис. 4). Следовательно, появление резонансов лопаток (см. частотную днаграмму рис. 7) будет происходить на других частотах вращения ротора, и тем самым могут быть исключены опасные вибрации лонаток. Метод отстройки наиболее эффективен для двигателей с узким диапазоном рабочих частот вращения ротора. В этом случае

лопатки могут быть полностью освобождены от резонансных режимов. Для двигателей с широким диапазоном рабочих частот вращения стараются опасные резонансы переводить на проходные частоты вращения.

Воздействием на геометрические и массовые характеристики лопатки в соответствии с формулой (46) изменяют се собственные частоты. Для этого используется, например, утолшение корневого сечения и сечений пера, близких к нему. Простым и эффективным средством изменения собственных частот лопатки является подрезка уголков пера у периферии. Иногда, если позволяет конструкция, изменяют длицу или даже условия крепления лопаток.

Следует отметить, что эффективность метода отстройки для борьбы с колебаниями лопаток современных двигателей, особенно многороторных, не всегда высокая. Современные двигатели работают в широком днапазоне частот вращения, лопатки выполняются ажурными, что существенно уплотняет спектр их собственных частот. Поэтому не исключена возможность, что уход с одного резонанса может привести к псявлению другого, не менее опасного, резонанса на другой частоте вращения ротора. Во всех случаях собственные частоты лопаток проверяются экспериментально [10].

5.2.3. Повышение демпфирующих свойств лопаток

Как показывает опыт вибрационной доводки лопаточной части авиационных ГТД, полностью устранить усталостные разрушения лопаток рассмотренными выше способами не всегда представляется возможным. Поэтому в последнее время все большее внимание уделяется демпфированию колебаний лопаток как большому резерву повышения надежности компрессоров и турбин (рис. 26). Следует отметить, что по отношению к лопаткам ГТД проблема демпфирования представляет собой сложную техническую и научную задачу, и решение ее позволит существенно повысить надежность двигателей.

Колебания любого элемента конструкции, в том числе и лопаток, сопровождаются естественными энергетическими потерями, которые и ограничивают амплитуды колебаний. Эти потери возникают вследствие появления сил трения, на преодоление которых затрачивается энергия колебаний, в результате чего амплитуда вибрации уменьшается. Способность поглощать энергию колебаний на необратимые процессы, происходящие в лопатках при их циклическом деформировании, характеризует демпфирующие свойства системы.

В работающем двигателе амплитуда вибрационных напря-

жений в лопатках ограничивается демпфирующими свойствами за счет внутреннего трения в материале, аэродинамического и конструкционного демпфирования (рис. 30).

Рис. 30. Структурная схема демпфирования лопаток

Внутреннее трение материале В возникает при циклическом нагружении лопатки. Вместе с упругими πeформациями появляются местные пластические деформации в микрообъемах конструкции. Они проявляются в том, **UTO** ветвь нагрузки не совпадает с ветвью разгрузки (см. рис. 12). Энергия, затраченная в процессе нагрузки на создание микропластических леформаний в материале, не

гозвращается в процессе разгрузки. В результате образуется замкнутая истля, называемая пстлей гистерезиса. Площадь этой истли характеризует потери энергии на внутреннее трение в материале лопатки за цикл колебаний. Эти потери зависят от свойств материала, температуры, величины амплитуды напряжений, термообработки и ряда других факторов.

Для сравнительной оценки величины внутренних потерь в материале вводится понятие так называемого коэффициента поглощения, представляющего собой отношение поглощенной за цикл колебаний энергии (работы рассеяния) к общей энергии системы, т. е.

$$\Psi = \frac{W_{\rm p}}{\Pi_{\rm max}},$$

где Ψ — коэффициент поглощения; W_p — работа рассеяния, пропорциональная площади петли гистерезиса; Π_{max} — потенциальная энергия деформации, пропорциональная площади треугольника AOB.

Коэффициент поглощения Ψ, определяющий демпфирующие свойства системы, как правило, находится экспериментально, путем снятия статических петель гистерезиса. Для этого испытуемая лопатка подвергается статическому нагружению и разгружению, при этом фиксируются деформации при данной силе. Однако отмечено, что коэффициент поглощения во многих случаях зависит от частоты колебаний, поэтому оценку демпфирования часто проводят сиятнем динамических петель гистерезиса на специальных стендах.

При оценке демпфирующих свойств материала широко используется логарифмический декремент колебаний δ, определяемый по виброграмме затухающих колебаний (рис. 31):

Рис. 31. Виброграмма затухающих колебаний

где y_i и y_{i+1} — амплитуды колебаний.

Коэффициент поглощения Ψ и декремент колебании δ связаны между собой соотношением $\Psi = 2 \delta$.

На практике широкое распространение получила оценка демпфирования по параметрам резонансной кривой.

С этой целью на вибростенде снимается резонансная кривая (рис. 32) при постоянном

уровне возбуждения. Демпфирование оценивается по формуле

$$\delta = \frac{\pi \cdot \Delta f}{f_c}$$

где \int_0 — резонансная частота; Δf — разность частот на уровне напряжений, соответствующем 0,707 σ_{max} .

Этот метод хорошо себя зарекомендовал не только для линейных систем, по и для систем со слабой нелинейностью.

Рис. 32. К определению демифирования по ширине резонансной кривой

Существуют и другие, менее распространенные, методы оценки демпфирования, описание которых можно найти в специальной литературе.

В табл, 4 приведены значения логарифмических декремен-

тов для некоторых конструкционных матерналов, применяемых для изготовления многих деталей ГТД.

Таблица 4

Материал	Декремент б , %	Амплитуда напряжений, σ · 10 ⁻⁷ Н/м ²	Температура образца, <i>t</i> °C
1	2	3	<i>*</i> 4
Сталь 45	0,5 -1,0	6 20	
30XI°CA	0,1 - 0,2	15 - 25	
20Х3МВФ (Э]1415)	0,6 = 2,5	5 30	
IX18H9T	0,7 - 1,34	10 20	
ЭИ612	0,35 0,72	4 - 20	600
ЖС6-К	0,3	4 - 12	700
ЖС6-К	3,12 - 4,0	2 - 4	100
ЖС6-К	0,1	4 — 12	
ЭИ437Б	0,2 - 1,52	5 30	
ЭИ617	0,19 0,87	5 - 30	
ВД17	0,71 0,94	2 7	100
BTI	0,08 — 0,i83	2 10	

Следует отметить, что декременты реальных лонаток могут значительно отличаться от данных, приведенных в табл. 4. Эти отличия связаны с геометрией лопатки, с условиями ее крепления, формами колебаний.

А эродинамическое демпфирование возникаєт в результате взаимодействия колеблющейся лопатки с набегаюинм потоком воздуха или газа. При этом колебания лопаток обычно происходят по собственным формам, в которых преобладают крутильные деформации, и вызываются переменной аэродинамической силой, действующей на профиль лопатки со стороны потока. Типичная зависимость аэродинамической силы *P* от угла атаки потока *i* представлена на графике рис. 33. Как видно, с увеличением угла атаки подъемная аэродинамическая сила возрастает, при критическом угле атаки *i*_{кр} достигает максимума, а затем убывает.

При случайном воздействии какой-либо силы, вызвавшей колебательное движение лопатки со скоростью $V = V_0 \cos \omega t$, угол атаки изменяется на величину $\Delta i \simeq V/W$, где W — относительная скорость потока. Изменение угла атаки ведет к изменению аэродинамической силы на величину $\Delta P = \Delta i \cdot \text{tg} \alpha$, где α —угол наклона характеристики аэродинамической силы от угла атаки на данном режиме. Возникшая при отклонении лопатки пере-

Рис. 33. Зависимость аэродинамической силы от угла атаки

менная сила ΔP за период колебаний T будет совершать работу

$$A \simeq \int_{0}^{T} \Delta P \cdot V dt = -\operatorname{tg} \alpha \frac{V_{0}^{2}}{W} \int_{0}^{T} \sin^{2} \omega_{0} t dt.$$
 (50)

Анализ выражения (50) показывает, что положительная или отрицательная работа силы ΔP определяется знаком при tg α . Если угол атаки потока меньше критического, то tg $\alpha > 0$, и работа аэродинамической силы за цикл колебаний будет отрицательной. Это означает, что поток тормозит случайное отклонение лопатки, т. е. он демпфирует ее колебания аэродинамическими силами. Это демпфирование зависит от скорости набегающего потока W, частоты ω и амплитуды колебаний лопатки, ее геометрии, свойств материала. Во многих случаях аэродинамическое демпфирование лопаток на двигателях достигает значительных величин ($\delta = 0, 1 - 0, 3$) и способствует снижению их вибронапряженности. Однако природа этого сложного явления недостаточно изучена, и управлять аэродинамическим демпфированием затруднительно. Кроме того, бывают случаи, когда компрессор начинает работать на режимах, при которых наблюдается тенденция к отрыву потока от лопаток, приводящая к их автоколебаниям.

Автоколебания являются колебаниями особого рода. Они отличаются от вынужденных колебаний как механизмом возникновения, так и механизмом сохранения амплитуды. Автоколебательным системам характерно наличие источника энергии, не обладающего колебательными свойствами, из которого в систему поступает энергия, необходимая для возмещения неизбежных энергетических потерь. Причем подвод энергии происходит не произвольно, а осуществляется в нужный момент при помощи механизма управления, приводимого в действие самой системой (рис. 34). Обратная связь осуществляет регулирование поступлением энергии в колебательную систему.

Рис. 34. Схема автоколебательной системы

16

В частности, если колебательная система представляет собой упругую лопатку, то источником энергии будет служить набегающий поток. Обратная связь здесь осуществляется путем изменения переменных сил взаимодействия воздушного потока и колеблющейся лопатки.

Автоколебания наиболее часто возникают в компрессорах и являются весьма опасными из-за резкого возрастания амплитуды вибронапряжений в лопатках.

При автоколебаниях [7] уменьшается расход воздуха через компрессор и существенно возрастает угол атаки потока, он становится больше критического. На таком режиме tg a отрицателен (рис. 33), а работа A переменной силы ΔP положительна. Поток будет снабжать энергней колеблющуюся лопатку, приводя ее к быстрому разрушению. Чтобы исключить разрушение лопатки на этом опасном режиме работы компрессора, необходимо увеличить механическое демпфирование за счет трения в материале лопатки или за счет специальных устройств. Однако, как показано выше, внутреннее трение в материале мало, и его совместное действие с аэродинамическим демпфированием во многих случаях не способно обеспечить вибронапряженность лопаток. В то же время установлено, что рассеяние энергии в специально вводимых в конструкцию лопаток элементах (демпgepax) может оказаться во много раз значительнее, чем рассеяние энергии, обусловленное внутренним трением и аэродинамическим демпфированием.

Конструкционное демпфирование связано с потерями энергии на трение в малоподвижных контактных соединениях (в замках, постыкам полок, в специальных элементах, имеющих ограниченную подвижность сопрягаемых поверхностей). Особенность этого вида демпфирования состоит в том, что его величина может быть достаточно высокой и ею можно управлять. Как показали многочисленные работы отечественных 58 и зарубежных исследователей, уровень конструкционного демифирования определяется величиной сдавливающего (нормального) усилия на подвижных контактных поверхностях и соотношением жесткостей демифера и упругой системы, колебания которой требуется понизить. Конструкционное демифирование в механической системе оценивается теми же способами, что и внутреннее трение в материале.

Лопатки компрессоров и турбин первых авиационных ГТЛ не имели специальных средств конструкционного демпфирования. Рост аэродинамической нагрузки на лопатки компрессоров и турбин, повышение частот вращения, увеличение ресурса и удовлетворение требований высокой эксплуатационной надежности двигателей при малой массе последних потребовали интенсивных поисков новых решений защиты лопаток от опасных зибраций. Поэтому всеми ведущими авиадвигателестроительными фирмами был проявлен повышенный интерес к вопросам конструкционного демпфирования колебаний лопаток как наиболее эффективному, а иногда и единственному средству повышения вибронадежности турбомашин, о чем свидетельствует непрерывный рост патентной информации как у нас в стране, так и за рубежом. Приводимые в этой информации конструктивные схемы (рис. 35) исполнения лопаток с конструкционным демпфированием можно условно разделить на две группы: схемы с распределенным демпфированием, схемы с сосредоточенным лемпфированием.

рования

К схемам с распределенным конструкционным демпфированием (рис. 36) отнесены такие, в которых тем или иным способом создается возможность возникновения сил трения по всей или большей части пера как в объсме, так и по поверхности.

Примером распределенного демпфирования является демпфирование за счет внутреннего трения в материале. Однако этэ демпфирование, как показано выше, невелико, и оно не способ-

но в некоторых случаях оказать существенного влияния на вибропрочность лопаток.

Поэтому разрабатываются новые материалы для лопаток с более высоким внутренним трением. В частности, ведутся работы по сплавам высокого демпфирования и спецпокрытиям, а также по созданию и применению композитных лопаток, у которых величина логарифмического декремента составляет 0,05—0,07 [2].

Более перспективным представляется использование полых лопаток с различными наполнителями или сердечниками, расчоложенными внутри пера (рис. 37), а также применение составных или разрезных лопаток (рис. 38). Распределенное демифирование возникает в результате трения по поверхностям коитакта пера 1, вставных элементов наполнителя 3 или в результате внутренного трения в самом наполнителе 2.

Рис. 37. Полые лопатки с наполнителями: *а* — пат. США № 2920868/61: *б* — пат. США № 2984453/61; *в* — пат. США № 2689107/54; *г* — пат. США № 2643263/54; *д* — пат. США № 2999669/61; *1* — перо; *2* — наполнитель

Рис. 38. Составные лонатки: *а* — нат. США № 2947274/59; *б* — нат. США № 2933286/54; *I* — неро; 2 — замок

На рис. 37,а представлена полая лопатка 1, внутри которой расположен пучок проволок 2. При колебаниях лопатки происходит взаимное смещение проволок относительно друг друга, и в результате работы сил трения осуществляется демпфирование колебаний. Как показали эксперименты, рассеяние энергии колебаний с указанным типом демпфера оказалось в 8—10 раз выше, чем у такой же лопатки без демпфера.

В качестве элемента с высоким демпфированием использован упруго-вязкий наполнитель, состоящий из стержня пористой структуры и демпфирующей жидкости, например масла (рис. 37,6). При колебаниях лопатки 1 изменяются объемы пор в стержне 2, и жидкость, перетекая через эти объемы, затрачивает значительную энергию на насосный эффект, что приводит к демпфированию колебаний лопатки.

На рис. 37,в,г показана лопатка, в канале пера которой размещены гофрированные сердечники 2. Сила нормального давления на поверхностях контакта возникает при сборке с натягом и под действием центробежных сил. При колебаниях пера вибрация лопатки гасится трением между гофрированным сердечником и стенками канала пера. Аналогичный эффект достигастся и в конструкции, представленной на рис. 37.д. Здесь в качестве демпфера использованы шайбы 2 различных диамстров, расположенных в канале пера 1. Под действием центробежных сил шайбы прижимаются друг к другу и при колебаниях лопатки в результате взаимного смещения гасят их вибрации.

На рис. 38 показаны составная и разрезная лопатки. Обычно на поверхности стыка наносится высокодемпфирующее специальное слабоизнашиваемое покрытие. В результате работы сил трения на поверхностях контакта составных элементов лонатки осуществляется демпфирование колебаний. В некоторых случаях на поверхность пера может быть нанесено слоистое покрытие, в результате чего декремент колебаний возрастает. Главное достоинство схем с распределенным демпфированием заключается в том, что лопатки обладают относительно хороизими демпфирующими свойствами и сохраняют их на многих формах колебаний, что подтверждено рядом экспериментов. В частности, опыты показывают, что в отдельных случаях декремент колебаний составляет 0,08—0,2. Однако широкое применение таких схем лимитируется толщиной профиля пера. По этой причине их трудно использовать для борьбы с вибрациями лопаток компрессора, имеющих малую толщину профиля, и постановка демпферов во внутрь пера ослабляет их статическую прочность. Следует отметить, что поиск повых конструктивных и технологических решений позволит применить этот способ и для лонаток компрессора.

Конструкции лопаток с сосредоточенным демпфированием (рис. 39) характеризуются дискретным иключением демифирующих устройств. В частности, таким лемпфером является замковое соединение лопаток с диском. Рассеяние энергии в этом узле происходит в результате действия сил трения на контактных поверхностях замкового соединения при микросмещении хвостовика лопатки в пазу диска. Для лопаток компрессора с креплением типа «ласточкин хвост» величина демпфирования незначительна, так как в поле центробежных сил существенно возрастает жесткость соединения лоиаток с диском. При этом смещение контактных поверхностей замка лопатки относительно сопрягаемых поверхностей диска становится крайне малым, следовательно, снижается и демпфирование.

Для повышения демпфирующих свойств замковых соединений подобного типа необходимо обеспечить их подвижку или существенно снизить нагрузку на рабочие поверхности замка от центробежных сил.

В лопатках компрессора увеличение демпфирования достигается изменением геометрии замка типа «ласточкин хвост». В отдельных случаях осуществляется переход на меньшие углы а скоса рабочих граней. Хорошие результаты дает скругленный замок. Исследования показывают (рис. 40), что за счет конструкции замкового соединения демпфирующую способность лопаток компрессора можно изменить в несколько раз. Однако величина декрементов остается довольно низкой, резко падает с увеличением частоты вращения (центробежной силы) и на рабочих частотах соизмерима с рассеянием энергии в материале пера. Это в большей или меньшей степени присуще любым замкам и является следствием высоких контактных давлений,

Рис. 40. Зависимость декрементов колебания лопатки от величины пагрузки на замок для разных типов креплений: p — центробеждая нагрузка на замок; s — ширина замка; О — замок с $\alpha = 75^{\circ}$; Δ замок с $\alpha = 60^{\circ}$; \Box — цилиндрический замок; $\sigma_{\text{реа}} = 10 \text{ кг} \cdot \text{с/Mm}^2$

лействующих на рабочие поверхности соединения и затрудняющих смещение в замке.

В лопатках турбин с замком типа «елка» демпфирование существенно возрастает, если разгружена первая пара зубцов. Здесь можно проследить, хотя и не совсем четко, тенденцию к разделению функций элементов крепления. Сопрягаемые поверхности первой пары зубцов выполняют функции демпфирования, остальные — несущие функции (восприпимают центробежную нагрузку). Однако такое изготовление замка представляет значительные технологические трудности.

На рис. 41 представлены замковые соединения турбины, в которых демпфирующие устройства 1 вынесены из замка 2 и полностью освобождены от несущих функций. В то же время демпфер расположен вблизи малоподвижного жесткого соединения, поэтому подобные конструкции обладают также низкими демпфирующими свойствами.

Аналогичными свойствами обладают лопатки компрессора, выполненные по схемам, представленным на рис. 42. Демпфирование в конструкции на рис. 42,а будет происходить при условии, что неопасный впбрационный момент преодолевает момент трения на опорных поверхностях замка. При реально действующих нагрузках такое условие не всегда выполнимо. Поэтому предусматривается другой вариант (рис. 42,6) с использова-

Рис. 41. Конструкционное демпфирование в замках типа «елка»: *а* — пат. США № 3037741/62; *б* — пат. США № 2912223/59; *1* — демпфер; *2* — замок

нием резиноподобного элемента 1, расположенного между лопатками под ободом диска.

Главное затруднение в создании высокого демпфирования в рассмотренных конструкциях связано со сложностью обеспечения такой подвижки по контактным поверхностям, при которой возможна эффективная и стабильная работа демпфирую-

Рис. 42. Демпфирование компрессорных лопаток (пат. Англин № 750397/56): *I* — демпфер; 2 — замок

щих устройств. В этом смысле большой интерес представляют замки шарнирного типа, хотя сами по себе они высокого демпфирования не обеспечивают, так как трение качения значительно ниже трения скольжения. Для шарнирного соединения определяющим являются потери на трение на специально выделенных поверхностях. Обычно это поверхности контакта торцов проушин хвостовика 1 и выступа диска 2, полок соседних лопаток 3 и т. п. Нормальные усилия могут создаваться и регули-

CILIA с удлиненной ножкой и демпфе - пат. 61; 2937849/60 Ne 299' - 3aMOK фep; 2 CIIIA Nº в — пат. 44. Лопатки a - nar. Ne 3104093/63; P M C. Uar. DaT. штифт; ı 8 A Nº 293849/60; рование шарнирных лопаток: 3 ANCK: nepo III 0 10 3aMOK; 6 - nar. - пружина;

демп-

67

LeMI Ne 297080 Nº 84496

43.

CULA PAC.

роваться различными способами, в частности, при помощи конического штифта 4 (рис. 43,а), пружины 5 (рис. 43,б) или раскруткой пера 6 в поле центробежных сил (рис. 43,в). При применении в компрессорных лопатках шарнирных замков демпфирование возрастает, но резко увеличивается масса.

При ограниченном смещении в замке рекомендуется примеиять лопатку с удлиненной упругой ножкой (рис. 44). Это дает возможность расположить демпфирующее устройство 1 на таком удалении от замка 2, где амплитуда смещений значительна при неопасном уровне вибрационных напряжений. В конструкциях такого типа несущие и демпфирующие функции четко разграничены между отдельными элементами конструкции, что значительно повышает эффективность демпфирующих устройств, упрощает их настройку и опытную доводку. В качестве демпферов обычно используются упругие подвижные элементы, устанавливаемые на отдельную лопатку, между лопатками или между лопатками и диском. Опыты показывают, что эффективность подобных конструкций очень высока. Декременты колебаний могут составлять величины $\delta = 0, 1 - 0, 3.$

На некоторых двигателях лопатки турбины устанавливаются в один замковый паз диска (парные лопатки) (рис. 45). Это иозволило существенно поднять уровень демпфирования по поверхности контакта парных лопаток, что привело к снижению

Рис. 45. Парные лопатки турбины (пат. СІША № 2990156/61)

вибрационных напряжений в несколько раз. В последние годы проработаны дополнительные варианты конструкций, чтобы повысить эффективность демифирования парных лопаток более перспективных двигателей. Здесь в конструкцию вводятся дополнительные подвижные элементы.

С целью повышения вибрационной прочности лопаток вентилятора и турбин в отдельных случаях применяется бандажирование [2, 8, 9] с помощью периферийных или промежуточных полок, цельного или разрезного проволочного бандажа, многослой-

ных лент / (рис. 46,а) или вкладышей / различной формы (рис. 46,6), расположенных между лопатками 2. Демифируюние бандажные устройства с подвижными элементами дают возможность использовать работу сил трения с целью снижения уровня вибраций. Однако в ГТД с большими частотами вра-

Рис. 46 Бандажированные лопатки: а—пат. США № 2970808/61; б—пат. США № 2942843/60; 1— демифериая связь; 2— лопатка

щения ротора эффективность подвижных элементов снижается вследствие больших центробежных сил, ограничивающих их подвижность. Эти конструкции с успехом можно использовать для демпфирования опасных колебаний на проходных частотах вращения ротора.

B отдельных случаях эффект может быть достигнут за счет ударного демпфирования (рис. 47), нашариков 1, расположенпример, ных в пространстве 2 между лопатками 3. Однако эффект демпфировазначительной степени ния в 38частоты вращения D0висит OT тора.

Рис. 47. Ударное демпфирование (пат. Франции № 1263677/60): 1— лопатка; 2— удлиненная пожка; 3— подвижные элементы (шарики, ролики)

Заключение

В настоящем пособии рассмотрены вопросы колебаний лопаток и методы борьбы с ними. Следует отметить, что наиболее перспективный метод борьбы с опасными вибрациями — конструкционное демпфирование.

Из анализа имеющихся патентов можно выделить наиболее нерспективное направление развития средств демпфирования с применением подвижных элементов. Однако это направление

требует новых конструкторских решений, которые должны изменить не только конструкцию лопатки, но и конструкцию дисков, проставок и других роторных элементов. Требует решения н ряд технологических проблем, связанных с изготовлением и сборкой демпфированных лопаточных венцов. При этом появляются новые проблемы, обусловленные, например, износом сопрягаемых поверхностей. Тем не менее развитие ГТД требует решения этих комплексных задач, включая также и решение ряда теорстических вопросов.

ЛИТЕРАТУРА

1. Бабаков И. М. Теория колебаний. — М., Наука, 1968. 560 с.

2. Вибрация в технике: Справочник. В 6-ти т. / Под ред. Ф. М. Диментберга и К. С. Колесникова. — М.: Машиностроение, 1980. Т. З. 544 с.

3. Кузпецов Н. Д., Цейтлин В. И. Эквивалентные испытания газотурбинных двигателей. — М.: Машиностроение, 1976. 212 с. 4. Курс сопротивления материалов/Под ред. М. М. Филоценко-

Бородич. — М.: Гос. изд-во техи.-теорет. литературы, 1955. Ч. 1. 644 с. 5. Паллей З. С., Королев И. М., Ровинских Э. В. Кон-струкция и прочность авиационных газотурбиных двигателей. — М.: Трач-

спорт, 1967. 425 с. 6. Прочность. Устойчивость. Колебания: Справочник. В 3-х т./Под гед. И. А. Биргера и Я. Г. Пановко. — М.: Машиностроение, 1968. Т. 3. 567 с.

7. Самойлович Г. С. Возбуждение колебаний лопаток турбомашин. — М.: Машиностроение, 1975. 275 с.

8. Скубачевский Г. С. Авиацюнные газотурбинные двигатели: Конструкция и расчет деталей. 4-е изд. — М.: Машиностроение, 1974. 519 с. 9. Хронин Д. В. Колебация в двигателях летательных аппаратов.

2-е изд. — М.: Машиностроение, 1980. 295 с.

 Динамика элементов и узлов роторов двигателей летательных аппа-ратов: Лабораторные работы / Белоусов А. И., Бузникий В. Н., Иванов В. П., Панин Е. А., Пичугин Д. Ф., Чегодаев Д. Е. — Куйбышев, 1977. 47 с. 11. Пановко Я. Г. Внутреннее трение при колебаниях упругих сн-

стем. - М.: Гос, Изд-во физико-математ. литературы, 1960. 194 с.