МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» (СГАУ)

Исследование характеристик робота-манипулятора

Электронное методическое пособие

Работа выполнена по мероприятию блока 1 «Совершенствование образовательной деятельности» Программы развития СГАУ на 2009 – 2018 годы по проекту «Разработка образовательных контентов в рамках мастер-класса по внедрению и использованию СЭДО в реальном учебном процессе» Соглашение № 1/27 от 03 июня 2013 г.

CAMAPA 2013 УДК 621.6-52 И 889

Составители: Илюхин Владимир Николаевич, Грешняков Павел Иванович, Рыбальченко Максим Дмитриевич

Рецензент: Михеев В.А., д.т.н., профессор кафедры ОМД

Компьютерная верстка: Гаврилова

Доверстка: Кошелев

Исследование характеристик робота-манипулятора [Электронный ресурс]: электрон. метод.пособие / М-во образования России, Самар. гос. аэрокосм. ун-т им.С. П. Королева (нац.исслед. ун-т); сост. В.Н. Илюхин, М.Д. Рыбальченко, П.И. Грешняков -Электрон. текстовые и граф. дан. (6,3 Мбайт). - Самара, 2013. - 1 эл. опт. диск (CD-ROM).

Электронное методическое пособие является учебно-теоретическим изданием, необходимым при выполнении студентами лабораторной работы, по специальности 150802.65 Гидравлические машины, гидроприводы и гидропневмоавтоматика (семестр 8) и по направлениям 151000.62 Технологические машины и оборудование (6 семстр), 141100.62 Энергетическое машиностроение (6 семестр), 150700.62 Машиностроение, 220700.62 "Автоматизация технологических процессов и производств" (6 семестр), и магистрантов по направлению 160700.68 «Двигатели летательных аппаратов» (семестр А) Методические указания целесообразно использовать при изучении дисциплины «Основы мехатроники». В лабораторной работе студентам предлагается выполнить ряд заданий, применяя знания, полученные в ряде предшествующих дисциплин. Выполнение данной лабораторной работы позволит студентам освоить промышленное оборудование, его компоновку, настройку и программирование с целью автоматизации производственных процессов.

Разработано на кафедре на кафедре АСЭУ.

© Самарский государственный аэрокосмический университет, 2013

Содержание

ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ										
Введение										
1 Модуль «Робот-Манипулятор										
2 Типы робототехники DENSO	8									
2.1 Шестиосевые роботы DENSO	8									
2.2Характеристики робототехники DENSO	11									
2.3Спецификация робота	13									
3 Механика электромеханических роботов	15									
3.1 Уравнения кинематики исполнительного устройства робота	15									
3.2 Кинетостатический расчет исполнительного устройства	17									
робота										
3.3 Определение линейных скоростей и ускорений точек звеньев	20									
3.4 Уравнения Лагранжа 2-го рода	20									
3.5 Уравнения движения исполнительного устройства	21									
4 Моделирование системы манипулятора в программных	22									
комплексах MATLAB Simulink и AMESim										
4.1 Математический анализ объекта	22									
4.2 Моделирование объекта в программе Simulink Version 5.0	25									
(R13)										
4.3 Математический анализ объекта в программе AMESim	27									
4.4 Сравнение результатов, полученных с использованием	28									
различного ПО										
5 Программирование манипулятора	29									
Выводы	35									
Список литературы	36									
Приложение А	37									

ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

- ПР- промышленный робот
- ЛСК локальная система координат
- БСК базовая система координат
- ХРТ характеристическая рабочая точка

Введение.

Гибкая производственная линия имитирует различные производственные процессы и представляет собой законченный вариант автоматизированной производственной линии, на которой возможны сортировка, контроль качества, имитация перемещение, сверления И штамповки заготовок различного материала и цвета.

Данный учебный стенд состоит шести отдельных программноаппаратных модулей, взаимодействующих между собой в режиме реального времени. Для каждого отдельного модуля в рамках лабораторной работы предусмотрены несколько задач различной сложности, рассчитанные на три уровня подготовленности студента.

Рисунок 1 - Внешний вид гибкой производственной линии

- 1 Модуль «Распределение» («Distribution»)
- 2 Модуль «Проверка» («Testing»)
- 3 Модуль «Обработка» («Processing»)
- 4 Модуль «Манипулирование» («Handling»)
- 5 Модуль «Буферизация» («Buffering»)
- 6 Модуль «Робот-Манипулятор» («Robot Assembly»)

1 Модуль «Робот-Манипулятор» («Robot Assembly»)

Шестой модуль имитирует распределение готовой продукции в зависимости от ее типа.

Рисунок 2 - Внешний вид модуля «Робот-Манипулятор»

Программа работы модуля состоит в следующем:

- 1. Приведение руки в исходное положение.
- 2. Ожидание сигнала о готовности с предыдущего модуля.
- 3. Захват детали.
- 4. Перенос детали на склад, соответствующий её типу.
- 5. Повторение цикла.

Рисунок 3 - Пневматическая схема модуля «Робот-Манипулятор»

Таблица	1 - Да	тчики	модуля	«Робот	-Манипч	«сотяки»
						<i>j</i> • mi • c • p ^{<i>m</i>}

№ п/п	Тип датчика	Расположение датчика
1	Фотодатчик F1	Датчик заполнения склада
2	Магнитоконтактный (геркон) D1	Захват
3	Магнитоконтактный (геркон) D2	Захват

Блок-схема работы модуля «Робот-Манипулятор» приведена в

Приложении А.

2 Типы робототехники DENSO

DENSO предлагает широкий выбор роботов, каждый со своими сферами применения и преимуществами.

2.1 Шестиосевые роботы DENSO

Гамма шестиосевых роботов DENSO включает в себя серии VP, VS, VM, а также новые модели DENSO VS с короткой и длинной рукой.

Эти роботы обеспечивают большую гибкость и улучшенные эксплуатационные показатели по сравнению с четырехосевыми аналогами. Благодаря увеличенному размаху движения они обладают более широким диапазоном применений без ущерба для скорости и точности. Шестиосевые роботы DENSO обладают лучшими в этой отрасли спецификациями.

Рисунок 4 – Шестиосевой манипулятор DENSO

Рисунок 5 – Шестиосевой манипулятор DENSO (схематично)

(9) VS-6577G-B (With brakes)

Таблица 2 - Основные характеристики:

Период цикла	от 0.99 до 0.33 секунды							
Постоянная точность	между ±0.07 мм и ±0.02 мм							
Максимальная суммарная скорость	от 3 900 мм/сек до 11 000 мм/сек							
Длина руки	между 430 мм и 1298 мм							
Грузоподъемность	до 10 кг							
Для максимальной эффективности в ограниченных пространствах все модели								
включают внутреннюю прово	одку и воздухопровод							

Новые шестиосевые роботы серии VS отличаются исключетельными показателями:

- Скорость (до 11 000 мм/сек)
- Точность (±0.03 мм и ±0.02 мм)
- Универсальность (устанавливаются на полу, потолке и стенах)
- Исключительно узкая и компактная конструкция позволяет экономить

установочное пространство

• Возможность расположить двигатель и кабель подключения энкодера под основанием робота

• Грузоподъемность до 7 кг обеспечивает максимально возможные эксплуатационные показатели

2.2Характеристики робототехники DENSO

Кроме экономичности и простоты в эксплуатации, еще одним преимуществом этих роботов является то, что у них всего один тип контролера для всех моделей.

Роботы DENSO были разработаны для эксплуатации практически в любых условиях, включая пыль, влагу или сложные условия эксплуатации. Классификация уровней защиты роботов:

- Стандартный
- Защищенный от пыли и брызг (IP65)

- Защищенный (IP67)
- Чистые комнаты класса 10 и 100

• Устойчивый к H2O2 (перекись водорода; обычно используется для стерилизации в фармацевтике и медицине)

• Спецификации UL (для США и Канады)

Для простоты все контролеры роботов DENSO имеют стандартное подсоединение к сети Ethernet для подключения к другому устройству, как, например, ПЛК или промышленному компьютеру.

Гибкий выбор различных методов ввода инструкций в робототехнику DENSO включает в себя следующее:

• Сенсорный экран подвесного пульта обучения DENSO

• WINCAPS III

Собственное программное обеспечение DENSO для автономного программирования, мониторинга и моделирования.

• ORiN2

Инновационное промежуточное программное обеспечение позволяет использовать существующие языки высокого уровня, такие как C++, C#, Visual Basic и Java для программирования роботов DENSO, что избавляет от необходимости учить язык программирования каждого нового робота.

2.3 Спецификация робота

Таблица 3 - Спецификация

	Спецификация						
Konnonan	Стандартный тип	Защищенный от					
Компонент	(VM)	пыли и брызг					
		(VM-W)					
Номер робототехнического	VM-6083G	VM-6083GW					
комплекса							
(Примечание 1)							
Серийный номер робота	VM-6083D/GM	VM-6083D/GM-					
		W					
Полная длина руки	385(первое плеч	о)+445(второе					
	плечо)=8	830 мм					
Смещения руки	J1(сдвиг):180мм	и, J3 (переднее					
	плечо): 1	100мм.					
Максимальное рабочее	R=1,111 мм (пос	адочное место					
пространство	рабочего	органа)					
	R=1,021 мм (Позиц	ия Р: оси J4, J5, J6					
	в цен	гре)					
Диапазон перемещения	J1: ±170°, J2:+135°	, -90°, J3:+165°, -					
	80	0					
	J4: ±185°, J5: ±120°, J6: ±360°						
Максимальная грузоподъемность	10 1	КГ					
Максимальная составная скорость	8300 мм/с (в центре посадочного						
	места рабочего органа)						
Точность позиционирования	В каждом из напр	авлений, Х,Ү,Ζ:					
(Примечание 2)	±0,05 мм (в цент	ре посадочного					
	места рабоче	его органа)					
Максимально допустимый момент	Вокруг Ј4 и Ј	5:0,36 кг*м ²					
инерции	Вокруг Ј6: 0	,064 кг*м²					
Измерение положения	Абсолютный дат	чик положения					
Привод мотора и тормоза	АС сервомоторы	для всех узлов					
	Наличие тормозов в	в узлах от J2 до J6					
Пользовательские пневмопроводы	7 систем(ф 4х6, ф 6х1)						
(Примечание 3)	Содержит 3 электромагнитных						
	клап	ана					
	(двух позиционны	е, бистабильные)					

Пользовательская	сигнальная линия	10 (для приближенных сигналов с						
		датчика и т.д.)						
Источник	Рабочее	0,10 ~ 0,39 МПа						
воздуха	давление							
	Масимально	0,49 N	ſПа					
	допустимое							
	давление							
Воздушный п	іум (уровень	80 дБ или	меньше					
взвешенного эн	квивалентного							
продолжительн	юго звукового							
давле	ния)							
Степень	защиты	IP40	IP54 (Рука:					
			IP65)					
Be	c	Приблизительно	Приблизительно					
		82 кг (180 фунтов)	86 кг (189					
			фунтов)					
Примечание 1: Но	мер робототехниче	ского комплекса явля	яется к серийным					
номером всего ком	плекса включая ро	бота и контроллер.						
Примечание 2: Точ	ность позициониро	ования указывается д	ля постоянного					
диапазона рабочих	температур							
Примечание 3: Тол	ько пневматическа	ия система ф 4х6 може	ет управляться с					

помощью встроенных электромагнитных клапанов

3 Механика электромеханических роботов

Рисунок 7 – Положение звеньев робота

3.1 Уравнения кинематики исполнительного устройства робота

Уравнения кинематики исполнительного устройства робота устанавливают связь между взаимным положением звеньев исполнительного устройства, их линейными и угловыми скоростями и ускорениями как в относительном, так и в абсолютном движении и обобщенными координатами обобщенными скоростями и обобщенными ускорениями ... ,

Соотношения между координатами центра рабочего органа и обобщенными координатами можно записать в виде:

в системе декартовых координат: $\overline{r_0} = A_N \cdot (q_1, ..., q_N) \overline{r_N} + \overline{b_N} \cdot (q_1, ..., q_N)$, в системе однородных координат: $\overline{r_0} = B_N \cdot (q_1, ..., q_N) \overline{r_N}$, ,где:

$$\begin{aligned} A_N(q_1,...,q_N) &= \prod_{j=1}^N A_{j-1,j}(q_j), \\ \overline{r}_0 &= A_N \cdot (q_1,...,q_N) \overline{r}_N + b_N \cdot (q_1,...,q_N) \\ \overline{b}_N &= \sum_{j=1}^N A_1(q_1)...A_{j-1}(q_{j-1}) \overline{b}_j(q_j), \\ B_N(q_1,...,q_N) &= \prod_{j=1}^N A_{j-1,j} \cdot (q_j). \end{aligned}$$

Эти уравнения и представляют собой векторные уравнения кинематики исполнительного устройства робота, определяющие положение и ориентацию рабочего органа в пространстве.

в дальнейших расчетах будем пользоваться только системой однородных координат.

В системе однородных координат положение и ориентацию рабочего органа полностью определяет матрица ВN.:

$$B_{N} = \prod_{j=1}^{N} A_{j-1,j} = \begin{bmatrix} \cos(x_{N}^{\wedge} x_{0}) & \cos(y_{N}^{\wedge} x_{0}) & \cos(z_{N}^{\wedge} x_{0}) & b_{1} \\ \cos(x_{N}^{\wedge} y_{0}) & \cos(y_{N}^{\wedge} y_{0}) & \cos(z_{N}^{\wedge} y_{0}) & b_{2} \\ \cos(x_{N}^{\wedge} z_{0}) & \cos(y_{N}^{\wedge} z_{0}) & \cos(z_{N}^{\wedge} z_{0}) & b_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

где матрица 3х3 представляет собой матрицу направлявших косинусов, т.е. косинусов углов между соответствующими осями БСК и ЛСК рабочего органа.

Например, cos(y^N/z₀) — угол между осью Z₀ БСК и осью Y_N ЛСК рабочего органа.

Вектор начала 0 ЛСК рабочего органа записывают в виде $\overline{r}_{N} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{T}$. Тогда положение ХРТ рабочего органа в БСК может быть определено радиус-вектором:

$$\overline{r}_0 = B_N \cdot \overline{r}_N = B_N \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} = \begin{bmatrix} b_1\\b_2\\b_3\\1 \end{bmatrix},$$

где $\overline{r_0} = \begin{bmatrix} x_0 & y_0 & z_0 & 1 \end{bmatrix}^T$ — радиус-вектор XPT в БСК; Хо Уо Zo проекции вектора го на оси БСК ОоХо, ОоУо , ОоZo соответственно.

Тогда положение оси Z_N относительно осей БСК можно записать в виде:

$$\overline{n}_N = B_N \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} = \begin{bmatrix} \cos(z_N \hat{x}_0)\\ \cos(z_N \hat{y}_0)\\ \cos(z_N \hat{z}_0)\\ 0 \end{bmatrix},$$

где $\overline{n}_N = \begin{bmatrix} n_{N_x} & n_{N_y} & n_{N_z} & 0 \end{bmatrix}^T$ - вектор ориентации оси Z_N относительно осей БСК.

Положение оси X_N относительно осей БСК определяют вектором:

$$\bar{m}_{N} = B_{N} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos(x_{N} \, x_{0}) \\ \cos(x_{N} \, y_{0}) \\ \cos(x_{N} \, z_{0}) \\ 0 \end{bmatrix},$$

где $\overline{m}_N = \begin{bmatrix} m_{N_x} & m_{N_y} & m_{N_z} & 0 \end{bmatrix}^T$ — вектор ориентации оси X_N относительно осей БСК.

Векторы ro, nn, mn полностью определяют положение и ориентацию рабочего органа в пространстве.

3.2 Кинетостатический расчет исполнительного устройства робота

Кинетостатический расчет исполнительного устройства робота заключается в определении реактивных сил и моментов в кинематических

парах при известных внешних нагрузках и инерционных силах и моментах. При решении задач кинетостатики используют принцип Даламбера.

Реактивные силы и моменты в кинематических парах относятся к категории внутренних по отношению к исполнительному устройству в целом; по отношению к каждому звену в отдельности они являются внешними. Знание усилий в кинематических парах необходимо для расчетов звеньев исполнительного устройства прочность, на жесткость, виброустойчивость, износостойкость, для расчетов подшипников на долговечность, а также для выбора двигателя.

Рисунок 8 - Кинетостатическая схема манипулятора

Выражения главного вектора F внешних сил и главного момента M действующих на это звено:

$$\begin{cases} \overline{F}_{i} = \overline{R}_{i-1,i} + \sum_{j=1}^{n} \overline{F}_{ij} + \sum_{j=1}^{n} \overline{\phi}_{ij} = 0\\ \\ \overline{M}_{i} = \overline{M}_{i-1,i} + \overline{M}_{i-1,j}^{R} + \sum_{j=1}^{n} \overline{M}_{i,j}^{F} + \sum_{j=1}^{n} \overline{M}_{i,j}^{\phi} + \sum_{j=1}^{n} \overline{M}_{i,j}^{H} = 0 \end{cases}$$

где n — число соответствующих силовых факторов, действующих на iе звено; R_{i-1,i}— главный вектор реактивных сил в k-ой кинематической паре, соединяющей (i—1)-е и i-е звенья.

Таким образом в к-й поступательной кинематической паре главный вектор реактивных сил и главный вектор реактивных моментов будут равны:

$$R_{i-1,i}^{k} = \begin{bmatrix} R_{i-1,i}^{kx} \\ R_{i-1,i}^{ky} \\ R_{i-1,i}^{kz} + F_{i-1,i}^{kz} \end{bmatrix} = L_{oi}^{T} \begin{bmatrix} R_{i-1,i}^{x} \\ R_{i-1,i}^{y} \\ R_{i-1,i}^{z} \end{bmatrix}$$
$$M_{i-1,i}^{k} = \begin{bmatrix} M_{i-1,i}^{kx} \\ M_{i-1,i}^{ky} \\ M_{i-1,i}^{kz} \end{bmatrix} = L_{oi}^{T} \begin{bmatrix} M_{i-1,i}^{x} \\ M_{i-1,i}^{y} \\ M_{i-1,i}^{z} \end{bmatrix}$$

В к-й вращательной кинематической паре:

$$R_{i-1,i}^{k} = \begin{bmatrix} R_{i-1,i}^{kx} \\ R_{i-1,i}^{ky} \\ R_{i-1,i}^{kz} \end{bmatrix} = L_{oi}^{T} \begin{bmatrix} R_{i-1,i}^{x} \\ R_{i-1,i}^{y} \\ R_{i-1,i}^{z} \end{bmatrix}$$
$$M_{i-1,i}^{k} = \begin{bmatrix} M_{i-1,i}^{kx} \\ M_{i-1,i}^{ky} \\ M_{i-1,i}^{kz} + T_{i-1,i}^{kz} \end{bmatrix} = L_{oi}^{T} \begin{bmatrix} M_{i-1,i}^{x} \\ M_{i-1,i}^{y} \\ M_{i-1,i}^{z} \end{bmatrix}$$

Для нахождения реактивных сил и моментов во всех кинематических парах исполнительного устройства робота необходимо рассмотреть равновесие каждого его подвижного звена, начиная с последнего n-го.

3.3 Определение линейных скоростей и ускорений точек звеньев

В БСК положение точки М і-го звена:

$$\overline{r}_{M} = B_{i} \cdot \overline{r}_{i,M}$$

После дифференцирования найдем линейную скорость точки М i-го звена в БСК:

$$\overline{v}_{M} = \frac{d\overline{r}_{M}}{dt} = \frac{dB_{i}}{dt} \overline{r}_{i,M} = \sum_{j=1}^{i} B_{i}^{j} \cdot \overline{r}_{i,M} \cdot \dot{q}_{j}$$

Линейное уравнение точки М i-го звена определим, дифференцируя выражение:

$$\overline{a}_{i-1,M} = \frac{dv_{i-1,M}}{dt} = D_i A_{i-1,i} \overline{r}_{i,M} \dot{q}_i + D_i^2 A_{i-1,i} \overline{r}_{i,M} \dot{q}_i^2$$

В БСК линейное уравнение точки М i-го звена определим, дифференцируя выражение для линейной скорости:

$$\overline{a}_{M} = \frac{d\overline{v}_{M}}{dt} = \sum_{j=1}^{i} \frac{dB_{i}^{j}}{dt} \overline{r}_{i,M} \cdot \dot{q}_{j} + \sum_{j=1}^{i} B_{i}^{j} \cdot \overline{r}_{i,M} \frac{d\dot{q}_{j}}{dt} = \sum_{j=1}^{i} \sum_{k=1}^{i} B_{i}^{jk} \cdot \overline{r}_{i,M} \cdot \dot{q}_{j} \cdot \dot{q}_{k} + \sum_{j=1}^{i} B_{i}^{j} \cdot \overline{r}_{i,M} \cdot \ddot{q}_{j}$$

Если точка M совпадает с центром i-й кинематической пары или с характеристической рабочей точкой P, то:

$$\overline{r}_{iM} = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}^T$$

3.4 Уравнения Лагранжа 2-го рода

Для описания динамики исполнительного устройства робота наиболее часто используют уравнения Лагранжа 2-го рода

Кинетическая энергия всего исполнительного устройства равна:

$$T = \sum_{i=1}^{N} T_{i} = \frac{1}{2} \sum_{i=1}^{N} tr(\dot{B}_{i}H_{i}\dot{B}_{i}^{T})$$

Где H_i-матрица инерции i-го звена.

В правой части уравнения – матрица В_N, ее элементы заданы составляющими векторов r₀, n_N, m_N

Потенциальная энергия исполнительного устройства:

$$\Pi = \sum_{i=1}^{N} m_i \cdot \overline{G}^T \overline{\rho}_i = \sum_{i=1}^{N} m_i \cdot \overline{G}^T B_i \overline{\rho}_i^{i}$$

Где m_i-масса i-го звена; $\bar{\rho}_i = \begin{bmatrix} x_i & y_i & z_i & 1 \end{bmatrix}^T$ –вектор центра масс i-го звена в системе координат i-го звена; $\bar{\rho}_i$ - вектор центра масс i-го звена в БСК; $\bar{G} = \begin{bmatrix} g_x & g_y & g_z & 0 \end{bmatrix}^T$ -вектор ускорения свободного падения.

3.5 Уравнения движения исполнительного устройства

Как было указано выше, для описания динамики исполнительного устройства робота наиболее часто используют уравнения Лагранжа 2-го рода.

Таким образом, окончательно уравнения движения исполнительного устройства робота записывают в виде:

$$tr\sum_{l=i}^{N}\sum_{j=1}^{l}B_{l}^{j}H_{l}B_{l}^{iT}\ddot{q}_{j} - tr\sum_{l=1}^{N}\sum_{j=1}^{l}\sum_{k=1}^{l}B_{l}^{jK}H_{l}B_{l}^{iT}\dot{q}_{j} \cdot \dot{q}_{k} + tr\sum_{l=i}^{N}\Phi_{l}B_{l}^{iT} = Q_{iII},$$

$$i = 1, ..., N$$

Уравнения представляют собой идеализированную модель динамики исполнительного устройства. При выводе этих уравнений не учитывались силы сухого и вязкого трения в кинематических парах, моменты инерции роторов двигателей, гироскопические возникающие моменты, при перемещении вращающихся наличие люфтов роторов, И других нелинейностей. Все эти составляющие могут оказать существенное влияние на динамику, особенно силы трения и люфты.

4 Моделирование системы манипулятора в программных комплексах MATLAB Simulink и AMESim

4.1 Математический анализ объекта

а) Мы смоделировали САР.

С её помощью мы поддерживаем постоянным значение усилия, развиваемого поршнем. Возмущающим воздействием в данной системе является внешняя переменная сила F_{вн}, имитирующая влияние веса рабочего органа сварочных клещей. Чувствительным элементом служит датчик давления. В качестве управляющего воздействия служит давление в полости нагнетания цилиндра P_{эф}.

Все требуемые уравнентя представленны в виде системы:

$$\begin{cases} F_{p} = \frac{\pi \cdot D^{2}}{4} \cdot P_{j\phi} \cdot \eta + \frac{m \cdot g}{\sin(\alpha)} \\ P_{j\phi} = 8750000 \cdot I_{pez} \\ P = \frac{I_{ex} - I_{MUH}}{I_{Mak}} \cdot P_{Mak} \\ F_{p} = P \cdot \frac{\pi \cdot D^{2}}{4} \\ I_{pez} = (I_{mp} - I) \cdot K_{p} + K_{i} \cdot \int_{0}^{t} (I_{mp} - I) dT + K_{d} \cdot \frac{d(I_{mp} - I)}{dt} \end{cases}$$

,где D – диаметр поршня цилиндра уравновешивания,

F_p – усилие, требуемое в точке сварки,

F_{вн} – внешнее воздействие.

При этом внешнее воздействие зависит от положения рабочего органа сварочных клещей через угол α, измеряемый от исходного положения:

,где т - масса рабочего органа сварочных клещей.

$$F_{_{GH}} = \pm \frac{m \cdot g}{\sin(\alpha)}$$
 22

б) Составили «матрицу манипулятора» для нашего устройства и его

$$T = \sum_{i=1}^{N} T_i =$$
 параметров:

(a	-b	0	0	(f	-(1 0	0		h	-i	0	-365	(1	0	0	218	1	r	-s	0	187	(1	0	0	80)
ь	а	0	0	0	0	1	0	Π	i	h	0	0	0	m	-n	0		s	r	0	0		0	х	-y	0
0	0	1	0	-	1 –f	0	132		0	0	1	0	0	n	m	0		0	0	1	0		0	y	-x	0
0	0	0	1)	10	0	0	1)	0	0	0	1)	0	0	0	1)	N	0	0	0	1)	I	0	0	0	1)

Рисунок 9 – Рабочий орган устройства

в) Посчитали «матрицу манипулятора» в трёх контрольных точках.

Откалибровали систему.

• Исходное положение: α , β , θ , ξ , ψ , $\omega = 0$

 $\begin{pmatrix} \mathbf{a} & -\mathbf{b} & 0 & 0 \\ \mathbf{b} & \mathbf{a} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{f} & -\mathbf{d} & 0 & 0 \\ 0 & \mathbf{0} & 1 & 0 \\ -\mathbf{d} & -\mathbf{f} & 0 & 132 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{h} & -\mathbf{i} & 0 & -365 \\ \mathbf{i} & \mathbf{h} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 218 \\ \mathbf{o} & \mathbf{m} & -\mathbf{n} & 0 \\ 0 & \mathbf{n} & \mathbf{m} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{r} & -\mathbf{s} & 0 & 187 \\ \mathbf{s} & \mathbf{r} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 80 \\ 0 & \mathbf{x} & -\mathbf{y} & 0 \\ 0 & \mathbf{y} & -\mathbf{x} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 1 & 40 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 52 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

•
$$\alpha, \beta=90; \theta, \xi, \psi, \omega=0$$

 $\begin{pmatrix} \mathbf{a} & -\mathbf{b} & 0 & 0 \\ \mathbf{b} & \mathbf{a} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{f} & -\mathbf{d} & 0 & 0 \\ 0 & \mathbf{h} & 1 & 0 \\ -\mathbf{d} & -\mathbf{f} & 0 & 132 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{h} & -\mathbf{i} & 0 & -365 \\ \mathbf{i} & \mathbf{h} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 218 \\ 0 & \mathbf{m} & -\mathbf{n} & 0 \\ 0 & \mathbf{n} & \mathbf{m} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{r} & -\mathbf{s} & 0 & 187 \\ \mathbf{s} & \mathbf{r} & 0 & 0 \\ 0 & \mathbf{s} & -\mathbf{s} & 0 \\ 0$

• $\alpha, \beta = 90; \ \theta, \xi = 45; \ \psi, \omega = 0$

ſ	a	-b	0	0)	f	-d	0	0)	h	-i	0	-365)(1	0	0	218	r	-s	0	187	(1	0	0	80)	
1	b	a	0	0		0	0	1	0	i	h	0	0	0	m	-n	0	s	r	0	0		0	х	-у	0	
	0	0	1	0)	-d	-f	0	132	0	0	1	0	0	n	m	0	0	0	1	0		0	у	-x	0	7
l	0	0	0	1	J	0	0	0	1)	0	0	0	1	儿	0	0	1)	10	0	0	1)		0	0	0	1)	

 $\rightarrow \begin{pmatrix} -0.7 & -0.7 & 0 & -56.0 \\ -0.49 & 0.49 & -0.7 & -322.7 \\ 0.49 & -0.49 & -0.7 & 252.7 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Схема системы приведена на рисунке 9.

Рисунок 10 - Схема системы

4.2 Моделирование объекта в программе Simulink Version 5.0 (R13)

Структурная схема системы, без учета внешнего воздействия,

построенная в программном пакете Simulink приведена на рисунке 10.

Рисунок 11 – Структурная схема системы

Структурная схема системы, с учетом внешнего воздействия,

построенная в программном пакете Simulink приведена на рисунке 11.

Рисунок 12 – Структурная схема системы, с учетом внешнего воздействия

Переходные характеристики данной системы для П, ПИ и ПИД регулятора приведены соответственно на рисунках 12, 13,14. Программно выполнены задержки сигналов 15 секунд.

Рисунок 14 – Переходная характеристика для ПИ-регулятора

Рисунок 15 – Переходная характеристика для ПИД-регулятора

4.3 Математический анализ объекта в программе AMESim

Расчетная модель представлена на рисунке 15.

Рисунок 16 – Структурная схема системы

В данном программном пакете для моделирования системы необходимо было задать: параметры рабочего тела, параметры пневматических элементов (давление открытия клапанов, подачу насоса), константы регулятора.

В качестве требуемого цилиндра мы использовали три стандартных библиотечных элемента.

В звене контроллера используется ПИД-регулятор.

4.4 Сравнение результатов, полученных с использованием различного ПО

Из анализа моделей видно что результаты, полученные с помощью программы AMESim, точнее аналогичным данным MATLAB Simulink, в данной постановки задачи. Это может объясняться тем, что при задании параметров системы в программе AMESim мы описываем каждый компонент, а также используемые подмодели. Программа MATLAB Simulink работает в основном с числовой информацией и математическими алгоритмами, заданными вручную.

5 Программирование манипулятора

Рисунок 17 - Установка

Рабочая программа манипулятора DENSO представлена на рисунке 19.

Программа управления состоит из двух частей. Одна из которых обеспечивает подвод рабочего органа оборудования к требуемой зоне, а вторая определяет непосредственно саму работу, выполняемую рабочим органом.

Эти части взаимодействуют между собой, т.к. из первой мы можем взять координаты текущего положения инструмента и отрегулировать требуемые значения для данного положения уже во второй части.

Так в случае с промышленными сварочными клещами эта связь может быть выражена формулой: $F_{_{GH}} = \pm \frac{m \cdot g}{\sin(\alpha)}$

Где т – масса рабочего органа (сварочных клещей),

 α – угол между вектором подачи и вектором ускорения свободного падения.

Рисунок 18 - Координаты текущего положения рабочего органа в LabView

Рисунок 19 - Координаты экспериментальных точек в LabView

Определение положения выходного звена робота в зависимости от углов поворота его звеньев:

N⁰	Углы	Координаты	Координаты рабочего органа
	поворота двигателей, °	рабочего органа (программа), мм	(расчёт), мм
1	-7,56921 -28,6245 115,657 -0,237854 28,2041 94,5041	369,0300292969 -49,19565200806 732,1741943359 115,291229248 -3,83620095253 80,49582672119 5	$\begin{pmatrix} -0.157 & -0.971 & 0.18 & -641.809 \\ -0.373 & -0.11 & -0.921 & -28.014 \\ 0.914 & -0.212 & -0.345 & -59.851 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
2	-17,2983 -38,2269 106,144 -15,232 15,2457 64,361	255,9359130859 -85,49518585205 867,5123901367 80,49965667725 39,45848846436 62,63714981079 5	$ \begin{pmatrix} -0.129 & -0.315 & -0.94 & -805.247 \\ 0.372 & -0.894 & 0.249 & 27.939 \\ -0.919 & -0.318 & 0.233 & -193.507 \\ 0 & 0 & 0 & 1 \end{pmatrix} $

3	2,16211 -19,2023 124,473 11,3961 39,297 113,705	415,3199768066 25,69546699524 595,6055297852 151,2335662842 -23,68005180359 68,08515930176 5	$\begin{pmatrix} 0.43 & -0.417 & 0.8 & 20.181 \\ 0.9 & 0.126 & -0.418 & 67.474 \\ 0.073 & 0.9 & 0.43 & -75.695 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
4	8,88171 -9,98035 132,97 31,6566 57,8903 152,872	394,3719177246 97,6296005249 477,9569702148 -154,3635253906 -7,361639976501 16,98505973816 5	$ \begin{pmatrix} -0.082 & 0.917 & 0.39 & -311.32 \\ 0.803 & 0.293 & -0.52 & 60.199 \\ -0.591 & 0.27 & -0.76 & -702.753 \\ 0 & 0 & 0 & 1 \end{pmatrix} $
5	30,9701 8,91211 148,486 70,2757 61,2933 186,273	277,4039611816 243,5039215088 311,6514892578 -153,5102844238 51,48044967651 -20,4021396637 13	$ \begin{pmatrix} 0.401 & -0.126 & 0.907 & -152.005 \\ -0.853 & 0.309 & 0.42 & -63.968 \\ -0.334 & -0.942 & 0.017 & -296.474 \\ 0 & 0 & 0 & 1 \end{pmatrix} $

Рисунок 20 – Расчетная тректория премещения выходного звена робота

Рисунок 21 – Реальная тректория премещения выходного звена робота

Выводы

В результате проделанной работы мы знакомились с основными принципами моделирования сложного технического оборудования на примере робота DENSO.

Ознакомились с программными пакетами AMESim и MATLAB Simulink и возможностями их применения для моделирования сложных систем.

Ознакомились с основами программирования и управления промышленными манипуляторами в среде LabView.

СПИСОК ЛИТЕРАТУРЫ

1. Дж. Трэвис, Дж. Кринг. LabVIEW для всех. ДМК Пресс: 2008. -880 с.

2. Загидуллин Р.Ш. LabVIEW в исследованиях и разработках. – М.: Горячая линия - Телеком, 2005. - 352 с.

3. Егоров О.Д. Механика электромеханических роботов. – М.: ГОУ ВПО МГТУ «Станкин», 2009. - 339 с.

Приложение А

Блок-схема работы модуля «Робот-Манипулятор»