Хабибуллин Р.М.

ФОРМИРОВАНИЕ БАЛЛИСТИЧЕСКИХ СХЕМ НЕКОМПЛАНАРНЫХ ГЕЛИОЦЕНТРИЧЕСКИХ ПЕРЕЛЁТОВ КОСМИЧЕСКОГО АППАРАТА С НЕИДЕАЛЬНО ОТРАЖАЮЩИМ СОЛНЕЧНЫМ ПАРУСОМ

Солнечный парус (СП) – это приспособление, которое использует давление солнечного света на отражающую поверхность для приведения в движение космического аппарата (КА) [1]. За последнее десятилетие космическими агентствами США, Японии и Европы [1-5] было запущено несколько технологических КА, целью которых являлось исследование возможности использования СП в качестве двигательной установки.

Целью работы является формирование алгоритма управления КА для совершения пространственного перелёта Земля-Марс. Алгоритм управления включает в себя набор законов локально-оптимального управления (ЗЛОУ), которые предназначены для наискорейшего изменения одного из оскулирующих элементов: большая полуось A; фокальный параметр p; эксцентриситет e; радиус афелия r_a ; радиус перигелия r_{π} ; аргумент перигелия w; истинная аномалия ϑ ; наклонение i; долгота восходящего узла Ω . В качестве двигательной установки используется неидеально отражающий СП. Ключевое отличие неидеально отражающего СП от идеально отражающего в том, что величина и направление ускорения рассчитывается с учётом не только падающих и зеркально отражённых фотонов, но и диффузного отражения, поглощения и пропускания фотонов поверхностью СП. При моделировании межпланетных перелётов данное различие оказывает существенное влияние на конечный результат.

Для выполнения программных манёвров с помощью ЗЛОУ необходимо обеспечить КА органом управления ориентацией. Подобным органом являются тонкоплёночные элементы управления (ТЭУ), способные изменять свои отражательные характеристики. ТЭУ располагаются по периметру СП, как на КА IKAROS [3]. Если одной половине ТЭУ обеспечить зеркальное отражение фотонов, а другой – поглощение фотонов, возникнет разница сил, в результате которой появится управляющий момент для изменения ориентации КА.

Рассматривается межпланетный некомпланарный перелёт КА с неидеально отражающим СП. КА выведен из сферы действия Земли с помощью разгонного блока. Цель перелёта – попадание в сферу Хилла планеты – области пространства, в которой могут двигаться тела, оставаясь спутником планеты, при этом интеграл энергии КА *h*<0.

81

Введём вектор фазовых координат **X**, описывающий движение ЦМ и движение вокруг ЦМ в комбинированной системе координат:

$$\mathbf{X} = \left(r, u, V_r, V_u, \Omega, i, \theta_p, \theta_n, \theta_s, \omega_p, \omega_n, \omega_s\right)^T,$$

где *r* – гелиоцентрическое расстояние КА с СП; *u* – аргумент широты; *V_r*, *V_u* – радиальная и трансверсальная скорости; Ω – долгота восходящего узла орбиты; *i* – наклонение орбиты; θ_p , θ_n , θ_s – углы поворота СП, описывающие ориентацию КА с СП; ω_p , ω_n , ω_s – угловые скорости.

Для описания управления ориентацией СП вводится вектор номинального управления U:

$$\mathbf{U} = \left\{ \delta_p(t), \delta_s(t) \right\}^T,$$

где $\delta_p(t)$, $\delta_s(t)$ – функции номинального управления, определяющие вращение СП относительно ЦМ, которые могут принимать следующие значения:

$$\delta_{p}(t) = \{+1, 0, -1\}; \\ \delta_{s}(t) = \{+1, 0, -1\}.$$

Фиксированный вектор проектных параметров **prm** КА с СП описывается следующим образом:

$$\mathbf{prm} = \left\{ m, S, \rho, \rho_r, \rho_d, \alpha, \tau, h_{T \ni Y} \right\}^T,$$

где *m* – масса КА с СП; *S* – площадь СП; ρ – коэффициент отражения поверхности СП; ρ_r – коэффициент зеркального отражения поверхности СП; ρ_d – коэффициент диффузного отражения поверхности СП; α – коэффициент поглощения фотонов поверхностью СП; τ – коэффициент пропускания; *h*_{TЭУ} – ширина ТЭУ.

В качестве основного критерия оптимальности выбрано минимальное время перелёта $t_{\kappa} \rightarrow \min$ при условии

$$Dist (r, u, \Omega, i) \le R_{Xuvua};$$

$$h (Dist, V_r, V_u) < 0,$$

$$(1)$$

где *Dist* – текущее расстояние между КА с СП и целью; *R*_{Xилла} – радиус сферы Хилла планеты. Интеграл энергии *h* определяется следующим образом:

$$h = \Delta V^2 - \frac{2\mu_{uenb}}{Dist}$$

Здесь ΔV – разность полных скоростей КА и планеты, к которой совершается перелёт; μ_{uerb} – гравитационный параметр планеты.

Задача сложная, поэтому предлагается следующая процедура её решения:

- получение номинальной программы управления движением ЦМ КА;

 – определение максимальных необходимых угловых скоростей для обеспечения полученной программы номинального управления, расчёт параметров органов управления ТЭУ;

 моделирование совместного движения ЦМ и вокруг ЦМ для демонстрации реализуемости полученной программы управления.

Разработана и описана процедура формирования программ номинального управления КА с неидеально отражающим СП, которая состоит из четырёх этапов. На первом этапе задаётся цель перелёта, вектор проектных параметров и граничные условия. На втором этапе формируется база данных (БД) перелётов и с помощью метода прямой оптимизации определяется набор оптимальных перелётов для различного положения КА на орбите.

Критериями оптимальности является минимальное время перелёта $t_{\kappa} \rightarrow \min$ и минимизация значения евклидовой нормы, которая определяется как $\|\Delta X\| = \|X_{\kappa A}(t_{\kappa}) - X_{uen}(t_{\kappa})\| \rightarrow \min$. На третьем этапе проводится моделирование движения ЦМ и его анализ. По окончании этапа определяются вектор фазовых координат КА $X_{\kappa A}(t_{\kappa})$ на дату завершения перелёта, длительность перелёта, вектор номинального управления U и проверяются условия (1). Если условия не выполняются – необходимо вернуться на второй этап и выбрать из набора оптимальных перелётов другой вариант. На четвертом этапе определяется необходимая ширина ТЭУ $h_{TЭУ}$, выносится вердикт о реализуемости перелёта.

В качестве примера рассмотрим гелиоцентрический некомпланарный перелёт КА с неидеально отражающим СП к Венере.

В таблице 1 приведены данные о перелёте КА с неидеально отражающим СП с орбиты Земли к Венере. В таблице 2 описан алгоритм использования ЗЛОУ для совершения перелёта. На рисунках 1-6 продемонстрированы основные результаты моделирования гелиоцентрического движения.

N⁰	Наименование	Размерность	Значение				
1	Дата старта, <i>D</i> 0	ДД.ММ.ГГГГ	16.11.2027				
2	Дата завершения перелёта, <i>D</i> _к	ДД.ММ.ГГГГ	19.06.2030				
3	Длительность перелёта	сут	946				
4	Радиус сферы Хилл Венерыа, <i>R</i> _{Хилла}	КМ	1 008 000				
5	Расстояние до Венеры на дату завершения, Dist	КМ	849 396				

Таблица 1 – Данные о перелёте КА с орбиты Земли к Венере

I аблица 2 – Алгоритм использования ЗЛОУ

N⁰	Закон управления	Дата начала этапа	Дата завершения этапа	Начальное значение	Конечное значение	Длительнос ть
1	Уменьшение А	16.11.2027	18.12.2028	1,000 a.e.	0,724 a.e.	399 сут.
2	Увеличение і	18.12.2028	28.05.2029	0,004 град	3,385 град	161 сут.
3	Уменьшение Ω	28.05.2029	09.05.2030	224,017 град	76,651 град	345 сут.
4	Уменьшение е	09.05.2030	18.06.2030	0,052	0,007	41 сут.

Рис. 1. Зависимость λ_{l} по времени

Рис. 3. Зависимость λ_2 по времени

Рис. 5. Гелиоцентрическая траектория перелёта КА с СП к Венере

Рис. 2. Зависимость δ_p по времени

Рис. 4. Зависимость δ_s по времени

Рис. 6. Зависимость угловой скорости от управляющего угла и ширины ТЭУ

Для реализации гелиоцентрического перелёта КА с неидеально отражающим СП с орбиты Земли к Венере на расстояние 849 396 км потребовалось 946 суток. Определена безразмерная величина интеграла энергии $h = -8, 7 \cdot 10^{-4}$. Найденные расстояние между КА с СП и Венерой *Dist* и интеграл энергии *h* удовлетворяют условию (1), следовательно, по окончании гелиоцентрического участка КА остаётся в окрестности Венеры. Было выявлено, что для обеспечения найденного управления необходимо получить достаточную угловую скорость $\omega_{docm}=0,020$ град/с. Для этого на СП нужно установить ТЭУ *hт*э*y*=0,894 м, *Sт*э*y*=81,127 м².

Библиографический список

1. Поляхова Е.Н. Космический полет с солнечным парусом. Москва, ЛИБРОКОМ, 2011. 320 с.

2. Johnson L., Whorton M., Heaton A., Pinson R., Laue G., Adams C. NanoSail-D: A solar sail demonstration mission. *Acta Astronautica*, 2011, vol. 68, pp. 571–575, doi: 10.1016/j.actaastro.2010.02.008

3. Mori O., Sawada H., Funase R., Morimoto M., Endo T., Yamamoto T., Tsyda Y., Kawakatsu Y., Kawaguchi J. First Solar Power Sail Demonstration by IKAROS. *Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology*, 2010, vol. 8, no. 27, 6 p.

4. Biddy C., Svitek T. LightSail-1 Solar Sail Design and Qualification. *Materials of the 41th* Aerospace Mechanisms Symposium, 16–18 May, 2012, pp. 451–463.

5. Khabibullin R.M., Starinova O.L. Nonlinear Modeling and Study for Control of the Research Spacecraft with Solar Sail. *AIP Conference Proceedings*, 2017, vol. 1798, 9 p., doi: 10.1063/1.4972666