УДК 621.787:539.319

Семёнова О.Ю., Денискина Е.А., Михалкина С.А., Коныхова А.С., Задорожнюк А.О.

АНАЛИЗ ПОГРЕШНОСТИ РАСЧЁТНЫХ МЕТОДОВ ВЫЧИСЛЕНИЯ КРИТИЧЕСКОЙ ГЛУБИНЫ НЕРАСПРОСТРАНЯЮЩЕЙСЯ ТРЕЩИНЫ УСТАЛОСТИ ПОВЕРХНОСТНО УПРОЧНЁННОЙ ДЕТАЛИ

В настоящем исследовании продолжено изучение зависимости критической глубины нераспространяющейся трещины усталости $t_{\kappa p}$, возникающей в процессе работы поверхностно упрочнённых цилиндрических деталей при напряжениях, равных пределу выносливости, от размеров поперечного сечения (рис.1).

Рис. 1. Цилиндрическая деталь с концентратором и нераспространяющаяся трещина усталости

В работах [1-3] экспериментальным путём установлено, что значение $t_{\kappa p}$ определяется только размерами опасного поперечного сечения детали и не зависит от способа поверхностного упрочнения, материала детали, последовательности изготовления и упрочнения концентратора, степени наклёпа, типа и размера концентратора, величины сжимающих остаточных напряжений, вида деформации и асимметрии цикла напряжений. На основании большого числа экспериментов для сплошной цилиндрической детали была получена следующая формула для нахождения значения $t_{\kappa p}$:

$$t_{\kappa p} = 0.0216 \, D \,, \tag{1}$$

где *D* – диаметр наименьшего (опасного) поперечного сечения детали.

Для полой цилиндрической детали с внутренним диаметром d зависимость для $t_{\kappa p}$ имеет вид:

$$t_{\kappa p} = 0,0216 \, D \cdot \left[1 - 0,04 \cdot \left(\frac{d}{D}\right)^2 - 0,54 \cdot \left(\frac{d}{D}\right)^3 \right].$$
(2)

Формулы (1) и (2) позволяют определять значение $t_{\kappa n}$ без проведения длительных и Поэтому глубина дорогостоящих испытаний на усталость. критическая нераспространяющейся трещины усталости $t_{\kappa p}$ является удобной характеристикой для толщины поверхностного слоя со сжимающими остаточными напряжениями, ответственными за повышение предела выносливости. За последние годы было проведено большое количество испытаний на усталость образцов и деталей из разных материалов, имеющих различные размеры и типы концентраторов, поэтому возник вопрос о точности аппроксимирующих зависимостей, заданных формулами (1) и (2).

Впервые задача о погрешности формул (1) и (2) была решена в работах [4, 5], где были проанализированы результаты испытаний на усталость при изгибе и растяжениисжатии сплошных цилиндрических образцов диаметром D_l , изготовленных из сталей 20, 45, 30ХГСА, ЭИ961, 40Х и 12Х18Н10Т и сплавов ЭИ437Б, В93, В95, Д16Т, и полых цилиндрических образцов диаметром D_l/d , изготовленных из сталей 45, 30ХГСА, 40Х, 20 и 12Х18Н10Т, и сплавов В95 и Д16Т, упрочнённых пневмо- и гидродробеструйной обработкой, обкаткой роликом на различных режимах и алмазным выглаживанием, с последующим нанесением круговых надрезов полукруглого профиля радиусов R = 0,3 мм, R = 0,5 мм и R = 1,0 мм.

На основании анализа результатов, представленных в работах [1–3], были вычислены относительные погрешности ε формул (1) и (2) и предложены зависимости для величины $t_{\kappa D}$ с учётом рассеивания:

– для сплошных цилиндрических деталей

$$t_{\kappa p} = 0.0216D \pm C_1 \cdot D$$
,

- для полых цилиндрических деталей

$$t_{\kappa p} = 0,0216D \cdot \left[1 - 0,04 \cdot \left(\frac{d}{D}\right)^2 - 0,54 \cdot \left(\frac{d}{D}\right)^3\right] \pm C_2 \cdot \left(\frac{d}{D}\right),$$

где C₁ и C₂ – уточняющие коэффициенты, значения которых приведены в табл. 1 и 2.

D_1 , мм	<i>R</i> , мм	<i>D</i> , мм	${\cal E},\%$	C_1
7,5	0,3	6,9	7,38	$1,59 \cdot 10^{-4}$
10	0,3	9,4	3,91	$8,45 \cdot 10^{-4}$
10	0,5	9,0	4,12	$9 \cdot 10^{-4}$
15	0,3	14,4	1,93	$4,17 \cdot 10^{-4}$
15	0,5	14,0	0,66	$2,3 \cdot 10^{-4}$
25	0,3	24,4	3,60	$7,77 \cdot 10^{-4}$
25	0,5	24,0	2,24	$4,84 \cdot 10^{-4}$
25	1,0	23,0	2,60	$5,62 \cdot 10^{-4}$
40	0,3	39,4	1,06	$2,3 \cdot 10^{-4}$
50	0,3	49,4	0,28	$0,6 \cdot 10^{-4}$

Таблица 1 – Анализ погрешности формулы (1) при вычислении $t_{\kappa p}$ для сплошных цилиндрических деталей

Таблица 2 — Анализ погрешности формулы (2) при вычислении $t_{\kappa p}$ для полых цилиндрических деталей

<i>D</i> 1, мм	<i>d</i> , мм	<i>D</i> , мм	<i>R,</i> мм	${\mathcal E},\%$	С2 , мм
15	5	14,4	0,3	5,96	$5,18 \cdot 10^{-2}$
15	5	14,0	0,5	9,07	$7,45 \cdot 10^{-2}$
15	10	14,4	0,3	2,89	$1,04 \cdot 10^{-2}$
15	8	14,4	0,3	0,72	$3,6 \cdot 10^{-3}$
15	12,4	14,4	0,3	5,4	$1,22 \cdot 10^{-2}$
25	15	24,4	0,3	5,32	$3,92 \cdot 10^{-2}$
25	15	24,0	0,5	0,9	$6,4 \cdot 10^{-3}$
25	15	23,0	1,0	1,45	$9,2 \cdot 10^{-3}$
25	10	24,4	0,3	3,17	$3,9 \cdot 10^{-2}$
25	10	23,0	1,0	8,28	$8,98 \cdot 10^{-2}$
25	19	24,4	0,3	5,24	$2,56 \cdot 10^{-2}$
25	19	23,0	1,0	2,4	$9,7 \cdot 10^{-3}$
50	40	49,4	0,3	4,09	$3,71 \cdot 10^{-2}$
50	40	49,0	0,5	1,31	$1,15 \cdot 10^{-2}$
50	40	48,0	1,0	0,88	$7,2 \cdot 10^{-3}$

За последние три года диапазон значений $t_{\kappa p}$ был расширен за счёт проведения испытаний на усталость сплошных цилиндрических образцов, изготовленных из сталей 20 и 40ХН и полых цилиндрических образцов из алюминиевого сплава 1953Т1, упрочнённых обкаткой роликом с усилиями P = 0,5 кН (OP1), P = 1,0 кН (OP2) и P = 1,5 кН (OP3). Размеры образцов и анализ погрешностей формул (1) и (2) представлены в табл. 3 и 4.

Материал	Упрочняющая обработка	<i>D</i> ₁ , мм	<i>R</i> , мм	<i>D</i> , мм	ε,%	Cı
crans 20	OP1	50	0,3	49,4	2,5	$5 \cdot 10^{-4}$
	OP2	50	0,3	49,4	4.0	$8,7 \cdot 10^{-4}$
	OP1	50	0,5	49,0	1,8	3,8.10-4
	OP2	50	0,5	49,0	3,2	$7 \cdot 10^{-4}$
	OP1	50	1,0	48,0	3,5	7,5.10-4
	OP2	50	1,0	48,0	0,2	$0,98 \cdot 10^{-4}$
сталь 40ХН	OP2	45	3,0	39,0	2,09	4,5.10-4

Таблица 3 – Анализ погрешности формулы (1) при вычислении $t_{\kappa p}$ для сплошных цилиндрических деталей из сталей 20 и 40ХН

Таблица 4 – Анализ погрешности формулы (2) при вычислении $t_{\kappa p}$ для полых цилиндрических деталей из сплава 1953Т1

<i>D</i> ₁ , мм	<i>d,</i> мм	<i>D</i> , мм	Упрочняющая обработка	arepsilon,%	С2 , мм
			(OP1)	2,5	$3,75 \cdot 10^{-2}$
70,1	50	67,7	(OP2)	6,0	9,17·10 ⁻²
			(OP3)	5,2	7,8.10-2

Данные табл. 3 и 4 показывают, что погрешности формул для вычисления $t_{\kappa p}$ остаются незначительными и для случаев, рассмотренных в этих таблицах, что подтверждает точность формул (1) и (2).

Из данных, представленных в таблицах, видно, что значения $t_{\kappa p}$ для сплошных деталей (образцов) вычисляются по формуле (1) с меньшей погрешностью, чем по формуле (2) для полых цилиндрических деталей (образцов). Этот факт следует учитывать при прогнозировании предела выносливости поверхностно упрочнённых деталей с концентраторами напряжений.

Библиографический список

 Павлов, В.Ф. Влияние на предел выносливости величины и распределения остаточных напряжений в поверхностном слое детали с концентратором. Сообщение I. Сплошные детали [Текст]/ В.Ф. Павлов // Известия вузов. Машиностроение. – 1988. – №8. – С. 22-26.

2. Павлов, В.Ф. Влияние на предел выносливости величины и распределения остаточных напряжений в поверхностном слое детали с концентратором. Сообщение II. Полые детали[Текст]/ В.Ф. Павлов // Известия вузов. Машиностроение. – 1988. – №12. – С. 37-40.

3. Павлов, В.Ф. Прогнозирование сопротивления усталости поверхностно упрочнённых деталей по остаточным напряжениям [Текст] / В.Ф. Павлов, В.А. Кирпичёв, В.С. Вакулюк. – Самара: Издательство СНЦ РАН, 2012. – 125с.

4. Кирпичёв, В.А. Оценка критической глубины нераспространяющейся трещины усталости поверхностно упрочнённой детали [Текст] / В.А. Кирпичёв, О.Ю. Семёнова, С.А. Михалкина // Известия СНЦ РАН, Т.15, №6(3). – Самара: Издательство СНЦ РАН, 2012. – С. 695-699.

5. Кирпичёв, В.А. Анализ погрешности расчёта критической глубины нераспространяющейся трещиы усталости поверхностно упрочнённой детали [Текст] / В.А. Кирпичёв, О.Ю. Семёнова, С.А. Михалкина, Н.А. Сургутанов, А.А. Солоднев // Труды МНТК «Усталость и термоусталость материалов и элементов конструкций». – Киев: ИПП им. Г.С. Писаренко НАН Украины, 2013. – С. 141-142.