рактеристик рабочей пластины выполнено в реальных условиях неравномерности упругого прижатия пластины к седлу клапана и наличия зазоров.

Впервые разработана методика применения ЦСИ для выявления неполноты прилегания рабочих кромок заслонки и седла клапана

Библиографический список

1. Журавлев, О.А. Разработка автоматизированного метода исследования вибрационных характеристик энергоустановок [Текст] /

О.А. Журавлев, С.Ю. Комаров, К.Н. Попов, А.Б. Прокофьев // Компьютерная оптика. - 2001. -№21. С. 7-11.

2. Макаева, Р. Х., Определение собственных частот и форм колебаний диска постоянной толщины, закрепленного в центре [Текст] / Макаева Р.Х., Царева А. М., Каримов А. Х// Изв. Вузов. Авиационная техника. -2008. -№1. С. 41-45.

УДК 621.375

РАЗРАБОТКА МЕТОДИКИ ПРИМЕНЕНИЯ МОБИЛЬНОГО ЦИФРОВОГО СПЕКЛ-ИНТЕРФЕРОМЕТРА ДЛЯ ДЕФЕКТОСКОПИИ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

Журавлев О.А., Сергеев Р.Н., Харчикова Ю.В.

Самарский государственный аэрокосмический университет

DEVELOPMENT OF METHODS OF MOBILE DIGITAL SPECKLE INTERFEROMETRY FOR CONSTRUCTION MATERIALS TESTING

Zhuravliov O.A., Sergeev R.N., Harchikova Ju.V. The results of the development of mobile speckle interferometer. Describes the optic-electronic circuit of mobile speckle interferometer with diffusely scattered beams. The results of experimental modeling.

В настоящее время в аэрокосмической отрасли существует потребность в панорамных средствах автоматизированного контроля качества соединений поверхностей листовых композиционных и слоистых материалов, включая многослойные панели звукопоглощающих покрытий. При этом ставиться задача по оперативному выявлению внутренних дефектов типа непроваров, непроклеев, пористости.

Для решения данной проблемы в [1] была показана возможность применения двухэкспозиционного метода сдвиговой спекл-интерферометрии. Однако специфичцифрового спекл-интерферометра ность (ЦСИ) сдвигового типа, связанная с применением критичной к юстировке оптической схемы интерферометра Майкельсона, необходимость регулирования угла наклона одного из зеркал до и после нагружения объекта, а также недостаточный уровень контрастности получаемых спекл-интерферограмм привели к необходимости поиска более простого в эксплуатации метода контроля с применением помехоустойчивого ЦСИ.

Проведенный анализ оптических схем внестендовых голографических и спекл-

интерферометров [2,3], а также полученные программные методы статистической обработки спекл-изображений в условиях механической нестабильности установки [4], впервые позволили разработать для неразрушающего контроля объектов оптическую схему мобильного ЦСИ с непрерывным лазером (рис.1) и совмещенными каналами спекл-модулированных предметного и опорного пучков, отличающуюся малым числом элементов и простотой юстировки. В данной схеме малогабаритный лазер с диодной накачкой 1 и формирователем пучка 2 размещаются непосредственно на обычном аудиторном столе 3, а регистратор 4 находится на дополнительной переносной опоре в виде геодезического штатива.

Принципиальная особенность схемы связана с применением в качестве светоделителя 5 пластины из органического стекла толщиной 8 мм, характеризующейся некоторым уровнем диффузности.

Пластина светоделителя 5 установлена на жесткой рамке 6, в которой закреплялась по контору металлическая пластина исследуемого объекта.

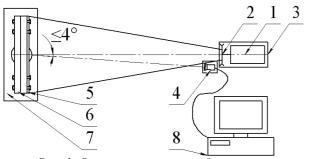


Рис. 1. Оптическая схема мобильного спеклинтерферометра: 1 — лазер; 2 — линза; 3 — аудиторный стол; 4 — регистратор (цифровая телекамера Watec-902H с фотообъективом Юпитер); 5 — светоделитель; 6 — рамка с исследуемым объектом; 7 — узел крепления рамки на массивном основании; 8 — ПЭВМ

В качестве нагрузочных приспособлений использовались механический толкатель с микрометрическим винтом, устройство для вакуумирования, а также тепловой источник. Если два первых нагрузочных приспособления применялись для создания только конечного напряженного состояния, то тепловой источник обеспечивал возможность получения режима с неустановившимся температурным деформированием объекта.

Исследуемые объекты отличались видом искусственно созданных дефектов (одиночное глухое отверстие \emptyset 5 мм, область с тремя одинаковыми неглубокими лунками \emptyset 5 мм), находящихся на обратной от лазера стороне пластины в области оси её оси симметрии.

Получаемые спекл-интерферограммы сравнивались с картиной интерференционных полос, регистрируемой для бездефектной пластины в одинаковых условиях нагружения.

Исследования показали, что для рассматриваемого вида «скрытых» дефектов наибольшие отличия наблюдались в картинах интерференционных полос, получаемых при температурном нагружении анализируемых пластин (рис. 2,3).

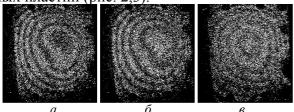


Рис. 2. Сравнительные спекл-интерферограммы для пластины с дефектом в виде одиночного глухого отверстия а),б) и бездефектной пластины в)

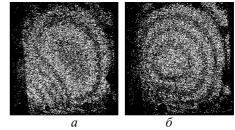


Рис. 3. Сравнительные спекл-интерферограммы для пластины с дефектом в виде 3-х лунок а) и бездефектной пластины б)

Результаты проведенных экспериментов показывают, что созданный мобильный ЦСИ с лазером непрерывного излучения обеспечивает возможность оперативного обнаружения трудно выявляемых скрытых дефектов. Обеспечению помехоустойчивости мобильного ЦСИ при исследовании медленно изменяющихся температурных деформаций способствует возможность регулирования, скорости, так И регистрируемых кадров спекл-изображений. Далее требуется проведение этапа работ, связанного с совершенствованием конструкции нагрузочного приспособления для перехода к дефектоскопии протяженных листовых материалов.

Библиографический список

- 1. Журавлев, О.А. Разработка сдвигового спекл-интерферометра для неразрушающего контроля конструкционных материалов / О.А. Журавлев, А.В. Ивченко, Р.Н. Сергеев // Материалы докл. Междунар. науч-техн. конф. «Проблемы и перспективы развития двигателестроения». Ч.1. Самара, 2009. С. 196-198.
- 2. Волков, И.В. Внестендовая спеклголография. Использование голографической спекл-интерферометрии при измерении деформаций натурных конструкций / И.В. Волков //Компьютерная оптика, 2010. Т.34, №1.- С.82-89.
- 3. Патент № 71429 G 01 H 9/00. Устройство для исследования форм колебаний /А.И. Жужукин. Опубликовано 10.03.2008. Бюл. №7.
- 4. Автоматизированная виброметрия конструкций на основе помехоустойчивого цифрового спекл-интерферометра /Под ред. В.П.Шорина. Самара: СГАУ, 2007.- 124с.