

Рис. 3. Зависимость давления газа в криогенной емкости от времени хранения криопродукта

ные результаты выполненных исследований. Их анализ и сравнение с теорией позволяют сделать основной вывод о достаточно высоком соответствии экспериментальных данных расчетной модели, описывающих теплофизику процесса в баллоне.

Последнее позволяет считать, что система охлаждения на базе данного баллона будет иметь ожидаемые улучшенные характеристики по времени функционирования, или по массе.

Библиографический список

1. Довгялло, А.И. Анализ работы баллоного микроохладителя при использовании азота с околокритическими параметрами / А.И. Довгялло, А.П. Логашкин, Д.В. Сармин, Д.А. Угланов. - Вестник СГАУ, 2009, №3 (Ч.2), - С. 143-146.

УДК 621.822.5-9.001.24

РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ДИНАМИКИ РОТОРА НА ГАЗОВЫХ ОПОРАХ

Темис Ю.М., Темис М.Ю., Егоров А.М., Гаврилов В.В., Огородов В.Н.

ЦИАМ им. П.И. Баранова, г. Москва

Проведено расчетно-экспериментальное исследование динамических характеристик малоразмерной газотурбинной установки с ротором в лепестковых подшипниках скольжения. В рамках исследования разработана математическая модель ротора[1], с использованием которой определены орбиты вращения ротора в подшипниках в широком диапазоне частот вращения. Экспериментальная проверка моделей роторов и лепестковых подшипников, а также верификация их численных моделей, проведена на основе стенда испытательного с роторомимитатором.

Конечно-элементная модель ротора на газодинамических подшипниках состоит из стержневой модели вала, верифицируемой при помощи объемной модели вала, а также включает в себя модель газодинамической лепестковой опоры[2] и модель стяжки ротора. Исследование динамики ротора проведено при помощи прямого интегрирования уравнений движения системы по схеме Ньюмарка.

При помощи конечно-элементной модели стяжки ротора, учитывающей контактное взаимодействие между деталями ротора, производится проверка напряженнодеформированного состояния конструкции и оценивается величина силы стяжки элементов ротора в зависимости от частоты вращения ротора.

Модель лепестковой опоры учитывается в конечно-элементной модели ротора при помощи специализированного конечного элемента, характеристики которого определяются при решении многодисциплинарной задачи упругогазодинамического

контакта четырех тел шейка вала - газовая смазка – лепестки - обойма подшипника корпус опоры. Параметры течения смазки в зазоре газодинамического подшипника определяются при решении двумерного уравнения Рейнольдса сжимаемой для смазки, решение которого ведется методом с конечных элементов применением алгоритма самокоррекции. Зазор для смазки при смещенной шейке вала определяется с деформаций лепестков учетом В подшипнике, определенных при решении залачи деформирования контактной лепестков под действием давления смазки в зазоре. Контакт лепестками между подшипника моделируется при помощи специализированных контактных конечных учетом взаимодействия элементов с лепестков друг с другом и с обоймой полшипника. Итоговое распределение давлений в подшипнике и напряженнодеформированное состояние лепестков определяется для каждого положения шейки вала методом последовательных нагружений с итерационным уточнением на каждом шаге. Характеристики жесткости корпуса опоры рассчитаны при помощи объемной оболочечной конечно-элементной или Совокупность характеристик модели. лепесткового подшипника и корпуса опоры составляют конечный элемент опоры. включенный в динамическую модель ротора.

Исследование динамических характеристик ротора на лепестковых подшипниках проведено лля различных значений дисбаланса конструкционного ротора, демпфирования системы и вязкости смазки, характеризующей температурное состояние опоры. Определены орбиты вращения ротора в опорах и проведен их спектральный анализ.

Для экспериментального определения статических и динамических характеристик газодинамических подшипников скольжения и верификации математических моделей, описывающих рабочий пропесс в газодинамическом подшипнике и динамику ротора на газовых опорах разработан и испытан узел ротора-имитатора ВГТД ТА-20 Выполнены эксперименты (рис. 1). по разгону, выходу на стационарный режим и останову ротора имитатора для трех схем опирания: в два подшипника качения, один подшипник качения и один газодинамический подшипник и два газодинамических подшипника.

Рис.1. Испытательный стенд

Представлено описание объекта испытаний, методика проведения эксперимента и результаты экспериментального исследования для трех вариантов опирания Определены ротора-имитатора. динамихарактеристики ческие системы при опирании ротора-имитатора лва R подшипника качения, в подшипник качения лепестковый подшипник И В два лепестковых полшипника. Лля обеспечения изгибной жесткости И минимизации дисбалансов системы ротор-имитатор представляет собой сварную конструкцию. Для анализа динамического поведения ротора применены датчики положения, позволяющие записывать траектории движения характерных вала В двух плоскостях, расположенных вблизи опор. Ha процессе основе записанных В эксперимента траекторий построены орбиты ротора подшипниках, выполнен В спектральный анализ динамического поведения ротора. Полученные экспериментальные диаграммы сопоставлены c теоретическими результатами. Определена характеристика всплытия ротора R подшипниках и произведено сравнение с аналогичным результатом, полученным теоретически. Результаты верификации теоретические модели показывают, что удовлетворительно описывают характер движения ротора в нелинейных опорах.

Библиографический список

1. Temis JM, Temis MJ, Contribution of Bearing Structure in Gas Turbine Power Unit Rotor Dynamics. (2005) Proc. 3rd Int. Symp. on Stability Control of Rotating Machinery: 570-581

2. Temis JM, Temis MJ, Mescheryakov

AB, Elastohydrodynamic Contact Theory in Foil Gas Bearing (2007) Proc. 4rd Int. Symp. on Stability Control of Rotating Machinery: 228-238

ЭКСПЕРИМЕНТАЛЬНАЯ ОЦЕНКА ТЕРМОЦИКЛИЧЕСКОЙ ДОЛГОВЕЧНОСТИ РАБОЧИХ ЛОПАТОК ТУРБИНЫ С РАЗЛИЧНЫМИ ТЕПЛОЗАЩИТНЫМИ ПОКРЫТИМИ

Ножницкий Ю.А.¹, Бычков Н.Г.¹, Першин А.В.¹, Хамидуллин А.Ш.¹, Опокин В.Г.²

¹ФГУП «ЦИАМ им. П.И. Баранова», г.Москва ²НПО «Сатурн, г. Москва

Применяемые В турбинах ГТД жаропрочные материалы на никелевой основе обычно работают при предельно допустимых температурах. В настояшее время на «горячих» деталях двигателей применяются широко керамических теплозащитные покрытия (ТЗП на основе циркония, стабилизированного двуокиси оксидом иттрия ($ZrO_2 + 5-9\%Y_2O_3$), которые обладают высокой рабочей температурой и низким коэффициентом относительно Применяемыми теплопроводности [1]. методами нанесения керамических ТЗП на лопатки ТВД являются плазменная и электронно-лучевая технологии (ЭЛТ). ТЗП, полученные электронно-лучевой по методике, имеют столбчатую структуру с диаметрами столбиков от 0,5 до 2 мкм. Использование в технологии нанесения керамических покрытий жаростойких подслоев различных составов (в том числе с элементами платиновой группы) позволяет добиться хорошей адгезии керамических покрытий на лопатках турбины. «Узким» местом, однако, остается низкая прочность керамического слоя ТЗП при растяжении [2].

В данной работе экспериментально определялась термоциклическая долговечность лопаток турбин с ТЗП толщиной 100...120 мкм, нанесенными по электронно-лучевой плазменной И Эффективность снижения технологии. температуры металла на рабочих лопатках с плазменным покрытием составила 70°С, а на лопатках с ЭЛТ покрытием – 100...120°С.

Испытания на термическую усталость проводились по режиму Tmax↔Tmin=400↔1000°С при индукционном высокочастотном поверхностном разогреве на машине [3], разработанной и изготовленной в ЦИАМ, с соблюдением основных положений, изложенных в стандартах [4] и [5].

Термоциклическая долговечность технологической лопатки без теплозащитного покрытия составила 11 000 циклов. На лопатках с плазменным ТЗП вспучивание и отслоение покрытия наблюдалось через 21565 циклов (рис.1а), а со столбчатым ТЗП - через 23000 циклов (рис. 1б).

Рис. 1. Отслаивание покрытия и трещина от термической усталости на корыте лопаток с плазменным (а) и электронно-лучевым (б) ТЗП