ОПТИМИЗАЦИЯ ТЕХНОЛОГИИ НАНЕСЕНИЯ ИОННО-ПЛАЗМЕННОГО ПОКРЫ-ТИЯ НИТРИДА ТИТАНА НА МАЛОГАБАРИТНЫЕ ТОНКОСТЕННЫЕ ДЕТАЛИ

Тарасенко Ю.П., Кривина Л., Царева И.Н.

Нижегородский филиал Учреждения РАНаук Института машиноведения им. А.А.Благонравова, г. Нижний Новгород

OPTIMIZATION OF THE TECHNOLOGY OF ION-PLASMA COATING OF TITANIUM NITRIDE IN THE SMALL-SIZED THIN-WALLED DETAILS

Tarasenko Y.P., Krivina L.A., Tsareva I.N. The influence of technological factors (arc current, the partial pressure of nitrogen) the structure and physico-mechanical properties of ion-plasma coating of titanium nitride. The regularities of formation of nanostructured columnar TiN coatings.

Ионно-плазменные технологии нанесения износостойких покрытий используются в целях повышения надежности и долговечности различного рода деталей и инструментов. На современном этапе широкое применение находят нитридные покрытия, обладающие антифрикционными и антикоррозионными свойствами. Повышение их качества и надежности является одной из главных задач при разработке и внедрении упрочняющих ионно-плазменных технологий.

Результаты исследований

Износостойкое покрытие TiN наносили методом ионно-плазменного напыления (на установке ВУ-2МБС) на детали типа втулки (размером Ø4,9xØ3,5x22,5 мм) из инструментальной стали ХВГ по следуюрежимам: напряжение смещения ШИМ U_{см}=140В, ток дуги І_л: 120 А, 140 А, 180 А; парциальное давление азота P_{N2} в вакуумной камере: 0,04 и 0,06 Па. Напыление покрытия проводили при фиксированных временах обработки: очистка и активация поверхности деталей методом ионной бомбардировки Ti⁺ в циклическом режиме – 5 сек (обработка) +5 сек (пауза) и т.д. до полного окончания процесса; нанесение подслоя α-Ті – 10 мин; нанесение покрытия TiN – 50 мин.

Микроструктуру покрытия TiN исследовали методами оптической металлографии (микроскоп «Неофот 32») и электронной микроскопии (растровый микроскоп VEGA//TESKAN).

Микротвердость измеряли на микротвердомере ПМТ-3 при нагрузке 50 г. Испытания износостойкости и коэффициента трения выполняли на лабораторных установках. При исследовании фрикционных свойств материала использовали сферические инденторы из стали ШХ-15 и сапфира. Износостойкость (при сухом поперечном контакте вращающегося сапфирового стержня диаметром ~8 мм с нагрузкой N=2,45 H в течение 15 минут) исходного материала и покрытия TiN оценивали по геометрическому параметру – диаметру пятна износа.

Покрытие нитрида титана, напыленное в режиме: P_{N2} = 0,04 Па, ток дуги I_{α} =120 А, напряжение смещения U_{cM} =140 В - плотное, имеет низкий уровень пористости и капельной фазы α -Ti.

Методом электронной микроскопии установлено, что при всех режимах напыления получено покрытие TiN со столбчатой микроструктурой. Установлена тенденция формирования наноструктурированных зерен TiN с уменьшением давления реакционного газа и тока дуги (рис.1).

Puc.1. Покрытие TiN со столбчатой микроструктурой

Полученные зависимости изменения микротвердости покрытия TiN от тока дуги при разных парциальных давлениях азота в камере показали, что максимальное значение H_{μ}^{50} покрытия получено при токе дуги I_{d} =120 A и составляет ~1820 кгс/мм². С увеличением тока дуги до 160 A наблюдается снижение микротвердости покрытия (рис.2).

Рис.2. Зависимости изменения микротвердости покрытия TiN от тока дуги

Коэффициенты трения контактных пар «ШХ-15-TiN» и «Al₂O₃-TiN» практически не зависят от типа индентора и имеют тенденцию к повышению в пределах 0,05...0,07 с увеличением нагрузки на индентор (от 30 до 100 г).

На основании результатов проведенных исследований разработан оптимальный режим напыления покрытия TiN (P_{N2} =0,04 Па, Iд=120 A, Uсм=140 B), при котором происходит формирование наноструктурированного столбчатого покрытия TiN, обладающего оптимальным сочетанием микротвердости и коэффициента трения.

Нанесение оптимизированного нитридного покрытия способствует повышению износостойкости (в 1,5 раза) рабочей поверхности малогабаритных тонкостенных втулок, используемых в составе высокоскоростных пар трения.

УДК 621.45.0.002.2

МЕТОДИКА РАСЧЕТА МОДУЛЯ ВЕКТОРА ПРОИЗВОДСТВЕННОЙ ПОГРЕШНОСТИ

Галузина Т.В., Демин Ф.И.

Самарский государственный аэрокосмический университет

THE DESIGN PROCEDURE OF MAGNITUDE OF VECTOR MAGNITUDE WITH MANUFACTURING ERROR

Galuzina T.V., Dyomin F.I. The research of distribution laws of manufacturing errors is a very important works problem. In this paper we study the distribution laws of vector manufacturing error, which take shape the deflection (runout accuracy) surfaces relative to the nominal position.

В процессе изготовления деталей и сборочных единиц ГТД важной характеристикой производства является точность геометрических и физико-химических параметров. Взаимосвязь показателей точности определяют работоспособность, долговечность и другие характеристики качественных показателей изделий.

Расположение рабочих поверхностей относительно установочных - конструкторских, проявляются в процессе эксплуатации изделия или сборочной единицы и часто определяют его срок службы, расход топлива, виброустойчивость и другие показатели. Возможные перекосы, смещения элементов поверхностей ухудшают качественные характеристики соединений элементов конструкции, приводят к кромочному касанию рабочих поверхностей и т.п. На показатели работы изделия влияют также погрешность формы деталей, которые определяют проходные сечения компрессора и турбины ГТД.

В данной работе исследуются законы распределения векторной производственной погрешности, которая определяет смещение (биение) поверхностей относительно номинального положения.