ТУРБИННЫЕ РЕШЕТКИ НА РЕЖИМАХ РАБОТЫ С УГЛАМИ АТАКИ

Б.И. Мамаев

ОКБ им. А. Люльки, ул. Касаткина, д. 13, Москва, 129301, Россия e-mail: boris.mamaev35@mail.ru

Ключевые слова: решетка, степень конфузорности, угол атаки, скорость выхода потока, обтекание, пик скорости, потери.

Режимные параметры решеток турбины, скорость выхода λ_2 и угол атаки $\Delta\beta_1 = \beta_{1\kappa} - \beta_1$, где $\beta_{1\kappa}$ – конструктивный угол входа, а β_1 – угол входа потока, меняются при изменении условий работы турбины. Углы $\Delta\beta_1 > 0$ связаны с высокими режимами ее работы, а $\Delta\beta_1 < 0$ – с пониженными. Отрицательным углам атаки уделяется меньше внимания, и в настоящее время нет обоснованных методов расчета турбин на глубоких частичных режимах.

На практике для оценки коэффициента потерь от угла атаки $\Delta \zeta = \zeta - \zeta_0$, где коэффициенты потерь ζ - при произвольном угле входа потока и ζ_0 - при расчётном натекании, используются эмпирические зависимости. Но они часто дают большие погрешности. Экспериментальных данных при $\Delta \beta_1 < 0$ мало, особенно, при больших углах атаки. Вместе с тем, результаты расчета турбины необходимы на режимах работы с изменением относительной мощности турбины от нуля до единицы.

В докладе на основе анализа результатов экспериментов представлена попытка уточнить влияния угла $\Delta\beta_1 < 0$ на обтекание и профильные потери в решетках, а также найти рациональный подход к разработке более точного метода оценки потерь от угла атаки.

В анализ были включены 150 решеток турбин из [1, 2]. Диапазоны изменения геометрических параметров решеток широкие и величины $\Delta\beta_1 = (-59)-54^\circ$, $\lambda_2 = 0.2-1.0$.

Коэффициент потерь $\Delta \zeta$ является сложной функцией многих геометрических и режимных параметров решетки. Из [1-3] в качестве определяющих можно выделить конфузорность решетки $k = sin\beta_{1\kappa}/sin\beta_{29\phi}$, толщину профиля \bar{c} , относительный шаг \bar{t} . Учитывая эти соображения, решетки были разделены на группы, различающихся, прежде всего, по конфузорности и толщине профиля.

Известно [1-3], что угол атаки изменяет обтекание главным образом входной части решетки. Положительный угол атаки ведет к ухудшению обтекания спинки, где скорости выше, чем на корыте. При отрицательном же угле атаки обтекание улучшается на спинке, а на корыте ухудшается и может даже появиться отрыв потока [3].

Расчет и опыт исследования турбин показывают, что при углах атаки изменения течения на спинке оказывают более сильное влияние на потери, чем изменения со стороны корыта. Поэтому характер влияния положительного угла атаки неизменный ($\Delta \zeta > 0$). Отрицательный угол атаки – явление более сложное: при умеренных его величинах улучшения структуры потока на спинке могут пересилить влияние изменений на корыте, и коэффициент $\Delta \zeta$ может стать отрицательным в некотором диапазоне изменения $\Delta \beta_1$.

ПРИМЕРЫ ГАЗОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК РЕШЁТОК

Сопловая решетка C-9012A с углом $\beta_{1k} = 90^\circ$, $\bar{c} = 0.23$, $\bar{t} = 0.75$ [1] имеет величину k = 4.8. Эта геометрическая конфузорность, по сути, определяет эпюру скоростей на профиле и коэффициент потерь ζ . В высококонфузорной решетке вблизи входной кромки уровень скоростей мал, а характер обтекания при $\Delta\beta_1 = 0$ благоприятный и меняется слабо при изменении угла $\Delta\beta_1$. Поэтому существует широкий диапазон углов $\Delta\beta_1 \neq 0$, в котором $\Delta\zeta \approx 0$.

Рабочая решетка № 136 с $\beta_{1\kappa} \approx 42^\circ$, $\beta_{2_{2}\phi} \approx 22^\circ$, $\bar{t} \approx 0.7$, $\bar{c} \approx 0.25$ и $k \approx 1.8$ при $\Delta\beta_1 = 0$ имеет удовлетворительное обтекание без пика скорости на спинке и небольшую скорость на корыте вблизи входной кромки ($\lambda < 0.3$ при $\lambda_2 \approx 0.8$) [2]. В ней, как в любой конфузорной решетке, вследствие сжимаемости потока скорости течения в канале и максимальная скорость

на спинке λ_{max} растут медленнее, чем скорость выхода λ_2 . В результате с ростом λ_2 снижается значение степени выходной диффузорности $D_e = (\lambda_{\text{max}} - \lambda_2)/\lambda_2$. Именно вследствие уменьшения фактора D_e и увеличения ускорения потока на конфузорных участках обтекания потери снижаются с ростом λ_2 [4].. В решетке \mathbb{N} 136 при $\Delta\beta_1 \approx 0$ потери достигают минимума $\zeta_0 = 0.04$ при $\lambda_2 \approx 0.9$ [2].

При заданном значении λ_2 , чем выше конфузорность решетки, тем ниже уровень скоростей в ее канале, более благоприятное их распределение на профиле и меньше величина D_e . Рост λ_2 усиливает эти преимущества. Поэтому в более конфузорной решетке с ростом λ_2 , профильные потери менее резко снижаются. При $\Delta\beta_1 < 0$ с ростом λ_2 потери $\Delta\zeta$ непрерывно увеличиваются. Когда при умеренных углах атаки и низких λ_2 величина $\Delta\zeta < 0$, то с ростом λ_2 отрицательные потери будут уменьшаться. Они могут достигнуть нуля при некотором значении λ_2 , выше которого станут положительными и начнут увеличиваться, как в решетке N° 136 при $\lambda_2 > 0.8$ и $\Delta\beta_1 = -7,5^{\circ}$. Если при низком значении λ_2 коэффициент $\Delta\zeta > 0$, то рост λ_2 приведет к увеличению потерь от угла атаки, как при $\Delta\beta_1 = -17,5^{\circ}$ [2].

При $\Delta\beta_1 > 0$ решетка ведет себя как менее конфузорная, поэтому в ней при изменении λ_2 потери изменяются более резко, чем при $\Delta\beta_1 = 0$, и потери $\Delta\zeta$ снижаются. Нередко при $\lambda_2 = 0.8-0.9$ они сравниваются с потерями при безударном натекании. В таком случае $\Delta\zeta = 0$.

В активных решетках даже небольшой отрицательный угол атаки приводит к существенному понижению пика скорости на спинке. Это вызывает уменьшение потерь. При увеличении угла атаки потери $\Delta \zeta$ растут, хотя их значения еще могут оставаться отрицательными [2]. В результате величина $\Delta \zeta$ по углу атаки меняется немонотонно.

Различия в характере обтекании решеток затрудняют получение надежной аналитической зависимости для расчета потерь от угла атаки. Для успешного решения этой задачи необходима методика, в которой для каждого вида зависимости Δζ(Δβ1) будут, прежде всего, выделены группы решеток. Затем расчет потерь в заданной решетке будет выполнен с учетом характеристик наиболее близких к ней решеток из подходящей группы.

В заключение можно утверждать, что отрицательный угол атаки – более сложное явление, чем положительный, и характер зависимостей потерь от угла атаки разнообразный. Большинство турбинных решеток имеют диапазон умеренных отрицательных углов атаки, в котором потери равны нулю или сначала снижаются, достигая отрицательного минимума, а затем начинают расти. Как правило, отрицательные величины $\Delta \zeta$ достигаются в решетках, в которых при $\Delta \beta_1 = 0$ имеется пик скорости на спинке вблизи входной кромки. Выявленные апостериорные сведения могут пригодиться и при проектировании, когда выбираются геометрические параметры решетки.

Список литературы

1. Дейч М.Е., Филиппов Г.А., Лазарев Л.Я. Атлас профилей решеток осевых турбин. М.: Машиностроение. 1965. 96 с.

2. Венедиктов В.Д., Грановский А.В., Карелин А.М. и др. Атлас экспериментальных характеристик плоских решеток охлаждаемых газовых турбин. М.: ЦИАМ. 1990. 395 с.

3. Емин О.Н., Лысенко Г.Н. Исследование течений и потерь в плоских турбинных решетках при больших отрицательных углах атаки / Теплоэнергетика. 1971. № 1. С. 73-75.

4. Абрамович Г.Н. Прикладная газовая динамика. М.: Наука. 1976. 888 с.

TURBINE GRIDS ON OPERATING MODES WITH ANGLES OF ATTACK

B.I. Mamaev

A. Lyulka OKB, 13 Kasatkina St., Moscow, 129301, Russia *e-mail: boris.mamaev35@mail.ru*

Keywords: grid, degree of confusion, angle of attack, flow exit velocity, streamline, velocity peak, losses.