

International Scientific Conference Proceedings
“Advanced Information Technologies and Scientific Computing”

PIT 2018

250

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ

B. Abdukadirov

SECURITY SUPPORT IN THE LANGUAGE OF PERL SERVER SCRIPTS

(Fergana branch Tashkent University of Information Technologies

named after Muhammad al- Khwarizmi)

In 1995, the ubiquity of the Web was nothing more than a dream, and the pro-

gramming languages and Web technologies resembled children's games. As a result,

hackers were simply not interested in penetrating Web sites. However, at present the

picture has changed and individual successful implementations have been replaced

by a large variety of languages and technologies ready for use by hackers. And they

every day "pluck" the unsuspecting employees of the company, organizations or

government agencies. Drop any preconceived ideas about security. Without under-

standing the rules of the game, you just have to go with the flow.

The main purpose of the description of programming languages is to present to Web

programmers and security specialists the languages currently used, the functionality,

syntax and potential risks associated with the use of these languages.

In order for two computers to "communicate" with each other, they must be

properly programmed and "speak" in one language. There are many popular Web

languages, and each one has its own advantages and disadvantages. On the one hand,

easy and easy to learn HTML is probably the best choice. It has a simple style and is

based only on a few complex concepts. On the other hand, if you need to provide in-

teractivity, dynamic data updating, and a complex graphical display of information,

it's better to use the Java language. However, in any case, in order to understand the

way Web-server interacts with the client browser, and therefore, to find the vulnera-

bilities in the implementation of this process, one must have an idea of the main

technologies.

Perl is a high-level programming language often called the scripting language

in 1987 was created by Larry Wall. Currently, Perl is the most portable scripting lan-

guage that can be used on AS / 400, supercomputers Cray, Digital VMS, MPE / ix

from Hewlett Packard, Linux, Tandem, MacOS and all versions of Unix. Portability

of Perl, its low cost, it is distributed free of charge and robustness contributed to its

wide application on the Internet. The ego served as one of the most significant rea-

sons for the explosive growth of the worldwide network.

The Perl language is extremely stable and flexible. It can be used to perform

server operations, implement client scripts, or create standalone applications, for ex-

ample, the universal dispatcher of distribution lists. However, the main purpose of

Perl is to manage Web server scripts. At the same time, security was never a distin-

Труды Международной научно-технической конференции
«Перспективные информационные технологии»

ПИТ 2018

251

guishing feature of this language. As a result, for Web sites that use Perl, there are

various flaws in the security subsystem. True, there are several ways to reduce the

risk of a security breach.

The Perl code can be either very simple or extremely complex. Typically, the

Perl language is used to process data entered by the user in the form fields.

Perl can be used as the language of server-side scripts, or just plan to do it, take

into account a number of security breaches and corresponding countermeasures.

➢ Make sure that Web servers do not start with administrative privileges, i.e. with

the rights of the account root (Unix) or Administrator (Windows). Otherwise,

there is a danger of a cracker executing commands with high privileges.

➢ Always perform pre-processing of field values. Define a list of valid alphanu-

meric characters for the application, and then filter out any characters that do

not belong to this set. For example, if there is a field for entering an e-mail ad-

dress, you can use the regular expression pattern to identify incorrect infor-

mation. This will identify the error and inform the user about the need to cor-

rect the input data. In any electronic address the following characters are al-

lowed: a ... z, A..Z, 0-9, only one symbol ℮. hyphen (-), underscore (_), and pe-

riod (.). Below is a simple expression that allows you to identify a dangerous

idea, within which a field for entering an e-mail address

If ($email !~ /* [\w.-]+\! ℮[\w.-|*$/) {

print "

 # Warning: An error has been detected in your

email address. Re-enter the data.
"
} else {

Executing the rest of the Perl script

}

 This code fragment can be deciphered as follows:

/ # Start the regular expression

* # Sets the beginning of the line

[# Defines the beginning of the list of characters

\w # Defines an alphanumeric character including “_”
* # Specifies the point "."
_ # Defines a dash or hyphen “-”
] # End of the list of characters

+ # Sets 1 or more characters from the previous list

\℮ # Matches the “℮”

[# Defines the beginning of the list of characters

\w # Specifies an alphanumeric character including “_”

. # Specifies the point

- # Specifies a dash or hyphen “-”

] # End of the list of characters

If the condition !" Specified in the Perl expression is not fulfilled, the script re-

turns an error message and the user will have to correct the input information.

International Scientific Conference Proceedings
“Advanced Information Technologies and Scientific Computing”

PIT 2018

252

➢ Limit the use of local operating system commands. When passing the parame-

ters of the open () function. Systes (), fork (), or exec () allow the cracker to ex-

ecute the system hacking commands. If you still need to use these functions, be

sure to check the input variables.

➢ On Unix systems, you should not use the values of environment variables. In-

stead, set the $ PATH and $ IFS variables only in script files.

$ENV{"PATH'') = “/bin:/usr/bin:/usr/local/bin:/opt";

$ENV{"IFS"} = “ / ”;

 If you do not explicitly manage these variables, the attacker can change their

values and cause the program to execute another command, rather than the one

that was planned.

➢ Check the size of the input variables or data entered in the form fields. To do

this, you either need to check the length of the variables passed to the program,

or use the $ ENV {CONTENT_LENGTH} field to limit the size of the data sent

in the POST requests and sometimes the GET. If this is not done, the attacker

will be able to send a large amount of data to the variable and lead to the crash

of the Web-server, the system, or, worse, to overflow the buffer and execute ar-

bitrary commands remotely.

➢ Try not to accept the path from the form fields. At least make sure that the path

is relative, not absolute. Also, keep track of the dot (..) characters or the forward

/ backslash (/ or \). Otherwise, the attacker will be able to generate a request for

a UNIX password file

../../../../../../../etc/passwd

or a request to receive a backup copy of the Windows SAM file

../../../../../../../winnt/repaire/sam._

 If possible, use the validation check of the variable values used.

➢ By default, Perl scripts are stored as plain text. Therefore, after hacking into the

Web-server, you can read the Perl files and extract various information from

them, for example, user names and passwords for accessing the database. Sev-

eral programs, such as Perl2exe (http://www.perl2exe.com), allow you to hide

the Perl code. When they are used, an independent executable (.exe) is created,

which makes the Perl source code and the interpreter unnecessary.

In general, the protection of Perl scripts is critical, so find or develop yourself

a good function of analyzing input data and apply its day checking the value of each

field of the user form.

References

1. Stuart M., Saumil S., Shriray S. Hacking in Web Attacks and Protection -

Addison-Wesley Boston 2003 - 384 p.

