



Рис 2. Результаты регрессионного анализа

Литература

- 1. Приходько, А.И. Практикум по эконометрике: регрессионный анализ средствами Excel [Текст]/А.И. Приходько.— Ростов н/Д.: Феникс, 2007.-266 с.
- 2. Андрейчиков, А.В. Интеллектуальные информационные системы [Текст]/ А.В. Андрейчиков, О.Н. Андрейчикова М.: Финансы и статистика, 2006.-424 с.
- 3. HIFU новый метод лечения рака простаты [Электронный ресурс] http://www.consmed.ru/news/view/526/.

М.М. Запольская

РАЗРАБОТКА WEB-ПРИЛОЖЕНИЯ «АРМ ВРАЧА-ФЛЕБОЛОГА» ДЛЯ ОБСЛЕДОВАНИЯ ВЕНОЗНОЙ СИСТЕМЫ ЧЕЛОВЕКА

(Самарский государственный аэрокосмический университет им. академика С.П. Королёва (национальный исследовательский университет))

В настоящее время информационные технологии всё активнее внедряются во все сферы жизни, преимущества их использования в медицине очевидно: врач может проводить точную диагностику заболеваний, накапливать и эффективно использовать объективную информацию в процессе лечения и научно-исследовательской работы, а также вести весь документооборот. Благодаря доступу к ресурсам сети Интернет появилась возможность связать в единую сеть отдалённые сельские пункты амбулаторной помощи и крупнейшие научные центры, столичные и районные больницы, научные центры разных стран. Это позволяет сделать медицинские услуги доступными для населения, что является основой качественного здравоохранения.

International Scientific Conference "Advanced Information Technologies and Scientific Computing"

По заказу врачей сосудистого отделения клиники госпитальной хирургии СамГМУ автором разрабатывается web-приложение «Автоматизированное рабочее место врача-флеболога» для обследования пациентов, страдающих заболеваниями венозной системы человека. Данная система позволит автоматизировать весь лечебно-диагностический процесс: от сбора начальных сведений о характере заболеваний, ведения электронной карты пациента до сохранения результатов обследований в базе данных и выдаче рекомендаций по дальнейшему ходу лечения. Кроме того, она обеспечит быстрый доступ к текущей, наиболее полной и достоверной информации (данные о пациенте, его амбулаторная карта, результаты обследований).

Обследование венозной системы пациента – процесс долгий и дорогостоящий, правильная постановка диагноза предполагает проведение исследований по нескольким десяткам различных параметров. Их группируют по трем уровням:

- 1) данные макрогемодинамических показателей (ультразвуковое исследование показателей венозного оттока и артериального притока);
- 2) данные о работе мышечно-венозной помпы (параметры цикла шага, миография мышц, формирующих мышечно-венозную помпу);
- 3) показатели функционального состояния глубоких вен (данные функциональной флеботонодебитометрии).

Каждый параметр характеризуется набором числовых показателей (среднее значение или норма, допустимое отклонение от нормы), по которым можно сделать вывод о стадиях заболевания.

Показатели параметров, по которым проходит обследование, заносятся в систему, и в зависимости от значений нормы и допустимых отклонений система определяет, к какой стадии заболевания относится каждый параметр. Для всех стадий заболевания и для всех уровней проводятся общие расчеты, которые представляются в процентном отношении, а также в графическом формате в виде круговой диаграммы. Система выдает текстовые рекомендации по лечению, которые при необходимости можно экспортировать в файл формата pdf.

Система обладает широкими возможностями по настройке. Она позволяет добавлять, изменять и удалять параметры в любом из трех уровней, редактировать именования уровней, хотя их число фиксировано, редактировать текст рекомендаций.

Кроме обработки объективных данных, в системе предусмотрена возможность работы с субъективными данными, которые формируются на основе анализа опросных листов по оценке качества жизни пациента. Формат опросных листов фиксирован — в качестве него используется международный стандарт CIVIQ, содержащий 20 вопросов. Вопросы разбиты на четыре группы: психологические, болевые, физические и социальные проявления. Ответ на каждый из вопросов выражается в виде числа от 1 до 5. Результат каждого опроса вычисляется системой, он включает общую сумму баллов, количество учтенных вопросов, а также промежуточные суммы по группам. Любой опросный лист можно выгрузить в формате pdf.

Web-приложение должно предоставлять пользователю следующие функции:

- авторизация пользователя в системе и разграничение прав в соответствии с ролью (в системе предусмотрено три роли пользователей: администратор, врач и лаборант);
- ввод и хранение данных о пациентах;
- экспорт данных о пациентах и результатов обследования в формате pdf;
- расчет рекомендаций по лечению пациентов.

На рис. 1 представлена главная экранная форма Web-приложения.

Рис. 1. Главная экранная форма системы

Приложение реализуется на языке программирования С# с использованием технологий ASP.NET и MVC Framework, в качестве СУБД выбрана Microsoft SQL Server 2008. Концепция MVC (model-view-contoller) наилучшим образом подходит для трехзвенной архитектуры системы.

А.В. Колсанов, А.В. Иващенко, С.С. Чаплыгин, Б.И. Яремин А.К. Назарян, М.Ю. Мурушиди, В.О. Буканов

ПРИМЕНЕНИЕ ПЕРСПЕКТИВНЫХ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В МЕДИЦИНСКОМ ОБРАЗОВАНИИ НА ПРИМЕРЕ АПК «ВИРТУАЛЬНЫЙ ХИРУРГ»

(Самарский государственный медицинский университет, Научно-производственная компания «Маджента Девелопмент», г. Самара)

Современные требования к подготовке хирургов в части владения основными видами хирургических вмешательств делают необходимым внедрение передовых методик организации учебного процесса. В связи с этим, востребованным становится подход на основе дополненной виртуальной реальности, который аккумулирует в себе результаты развития информационных техноло-