

- 4. Gomes A. M., Oliveira J. F. Solving irregular strip packing problems by hybridizing simulated annealing and linear programming. European Journal of Operational Research 2006; 171:811–829.
- 5. Hopper, E. Two-dimensional packing utilising evolutionary algorithms and other meta-heuristic methods. Ph.D. Thesis 2000; Cardiff University.
 - 6. http://www.fe.up.pt/esicup
- 7. Leung S. C., Lin Y., Zhang D. Extended local search algorithm based on nonlinear programming for two-dimensional irregular strip packing problem. Computers & Operations Research 2012; 39(3):678–686.

Р.Д. Галиев, М.В. Иванов

ПЕРСПЕКТИВЫ РАЗВИТИЯ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ С КОРОТКОЗАМКНУТЫМ РОТОРОМ

(Уфимский государственный авиационный технический университет)

Одним из наиболее распространенных типов электрических машин в мире является асинхронный электродвигатель. Особого внимания заслуживает асинхронный двигатель с короткозамкнутым ротором, который в силу нескольких причин занял прочные позиции в применении. За счет высокой надежности и неприхотливости в работе такие агрегаты получили широкое распространение в самых различных отраслях промышленности и сельского хозяйства, они помогают решать бытовые и общепроизводственные задачи любой сложности. Поэтому в данной статье мы детально рассмотрим особенности асинхронных двигателей.

Конструктивно простейшая асинхронная машина представляет собой рамку, вращающуюся в переменном магнитном поле.

В пазы сердечника статора укладывается обмотки, предназначенная для пропуска электрического тока и формирования ЭДС. Число обмоток будет зависеть от количества пар полюсов на каждую фазу. [1]

По типу ротора асинхронные двигатели делятся на два вида:

1. С короткозамкнутым ротором. Он является сердечником, в который заливается раскаленный металл. После этого в нем появляются железные стержни, замыкающиеся маленькими торцевыми колечками. Подобная схема конструкции именуется "беличьей клеткой". В устройствах с высокой мощностью алюминий заменяется на медь.

Рисунок 1 – Асинхронный электродвигатель с короткозамкнутым ротором

2. С фазным ротором. Мотор имеет толстую трехфазную обмотку, которая почти не отличается от обмотки статора. В основном концы проводов скрепляются в форме звезды, а затем дополнительно закрепляются колечками. Используя щетку, которая подсоединена к обручам, к цепи можно подключить дополнительный резистор. Последний необходим для того, чтобы человек мог контролировать переменное сопротивление в фазе ротора.

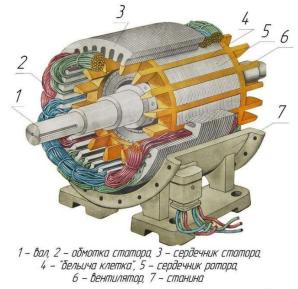


Рисунок 2 – Асинхронный электродвигатель с фазным ротором

Сегодня асинхронные электродвигатели имеют широкий спектр применений. Например, однофазные двигатели обеспечивают работу и вращение вентиляторов, стиральных машин, небольших станков, водяных насосов и электроинструмента. КонецНаибольшее распространение получили трехфазные асинхронные электродвигатели — они используются во всех сферах народного хозяйства (станки и оборудование, автоматика, телемеханика и т. д.). Асинхронные электродвигатели с короткозамкнутым ротором используется в электроприводах разных станков (металлообрабатывающих, грузоподъемных, ткацких, деревообрабатывающих), в вентиляторах, землеройных машинах, в лифтах, насосах, бытовых приборах и т.д.

Необходимо отметить, что асинхронные двигатели с ротором типа беличья клетка являются бесконтактными, что обуславливает ряд их преиму-

ществ перед асинхронными электродвигателями с фазным ротором. Целью данной работы является выявление перспектив развития асинхронных электродвигателей с короткозамкнутым ротором. [Ошибка! Источник ссылки не найден.]

Поэтому далее рассмотрены асинхронные двигатели с короткозамкнутым ротором [3], [5], [6].

Таблица 1 - Существующие образцы асинхронных двигателей

Наименова- ние двига- тель	Мощность, кВт	Частота враще- ния, об/мин	Номи- нальный ток, А	КПД, %	Масса,	Кратность пускового момента к номинальному, у. е.
Фирма ABB M2AA100L6	1,5	1000	3,9	79,6	23	2
Фирма ABB M3BP71MB6	0,25	1000	0,77	67,2	12	2,2
Фирма ABB M2AA80A2	0,75	3000	1,76	76,8	8,5	3
Фирма Eldin RA71A4	0,25	1500	0,8	63	6	1,9
Фирма Eldin RA80A2	0,75	3000	1,8	77,5	10	2,8
Фирма Eldin RA80B2	1,1	3000	2,4	79,6	11	2,8
Фирма SIEMINS 1LA6107- 8AB	1,1	750	2,9	72	32	1,8
Фирма SIEMINS 1LE1002- 0CB2	0,25	1500	0,8	61,5	5	1,8
Фирма SIEMINS 1LA6106- 8AB	0,75	750	2,15	66	29	1,6
Фирма WEG W22 63 2P 0,25кВт IE1	0,25	3000	0,79	60	5,1	2,5
Фирма WEG W22 100L 8P 0,75кВт IE1	0,75	750	2,58	67,8	23,8	1,8
Фирма WEG W22 100L 6P 1,5кВт IE1	1,5	1000	3,9	76	27	1,9

Асинхронные двигатели мощностей 0,25 до 1,5 кВт обладают КПД от 60% до 79,6%, что является не очень высоким показателем.

На основе проведенного анализа асинхронных электродвигателей можно выявить их преимущества и недостатки. Для наиболее наглядного представления материала преимущества и недостатки асинхронных двигателей приведены в

Таблица 2. Преимущества и недостатки асинхронных двигателей выявляются с целью определения перспектив развития асинхронных электродвигателей.

Таблица 2 - Преимущества и Недостатки асинхронных двигателей

разного типа [Ошибка! Источник ссылки не найден.] Короткозамкнутый ротор Фазный ротор Имеет достаточно боль-Простое устройство и низшой вращающий момент. кие затраты на производство. Что позволяет его запускать под нагрузкой. Может работать с не-Цена намного меньше по большим перегрузом, и при сравнению с другими двигаэтом частота вращения вала телями. практически не меняется Хорошо переносит кратко-Достоинства Небольшой пусковой ток. временные перегрузы. Возможность подключения Можно применять автотрёхфазных двигателей в одматические пусковые нофазную сеть. устройства Надёжность и возможность эксплуатировать практически в любых условиях. Имеет очень высокий показатель КПД и соѕ ф. Не возможности контролировать частоту вращения ро-Большие габариты. тора без потери мощности Показатели КПД и соѕ ф Если увеличить нагрузку, при недогрузе имеют минито уменьшается момент Недостатки мальное значение Пусковой момент очень мал по сравнению с другими машинами. При недогрузе увеличивается показатель $\cos \varphi$

Высокие показатели пус-	
ковых токов.	

Подавляющее большинство электродвигателей, используемых в промышленности — асинхронные двигатели с короткозамкнутым ротором. В новом оборудовании их доля составляет более 95%. Объяснение этому — большое количество преимуществ асинхронных двигателей, которые были выявлены в результате анализа. [7]

Итак, перспективами развития асинхронных электродвигателей являются: простота в изготовлении и при эксплуатации; имеют очень низкие затраты в производстве. Короткозамкнутый ротор по сравнению с фазным ротором имеет меньше габариты, очень надежны и имеют высокий КПД.

Для усовершенствования электродвигателей, можно принять некоторые меры, например: для увеличения напряжения питания использовать гидравлические или пневматические приводы; можно поставить мощнее вентилятор, для охлаждения или предотвращения перегревания; при использовании частотного преобразователя момент при пуске и на низких частотах может быть увеличен за счет повышения напряжения. Наиболее перспективными асинхронными двигателями являются фирма Eldin и ABB.

Литература

- 1. Красовский А. Б. и др. Исследование асинхронного двигателя с короткозамкнутым ротором. -2014.
 - 2. Епифанов А. П., Епифанов Г. А. Электрические машины. 2017.
 - 3. Abb URL: https://new.abb.com (дата обращения: 9.02.2021).
 - 4. Eldin URL: http://www.eldin.ru (дата обращения: 11.02.2021).
 - 5. Siemens URL: https://ru-siemens.com (дата обращения: 13.02.2021).
 - 6. Weg URL: https://www.weg.net (дата обращения: 18.02.2021).
- 7. Устройство и принцип действия асинхронных электродвигателей URL: https://fazanet.ru/ustrojstvo-i-princip-dejstviya-asinxronnyx-elektrodvigatelej.html (дата обращения: 18.03.2021).
- 8. Пантелеева Л. А. Повышение эффективности работы асинхронного генератора с короткозамкнутым ротором : дис. Ижевская государственная сельскохозяйственная академия, 2012.

А.Р. Гизамова

МОДЕЛИРОВАНИЕ ПЛАТЫ ПРЕДВАРИТЕЛЬНОГО УСИЛИТЕЛЯ ИОННО-МЕТОЧНОГО ИЗМЕРИТЕЛЯ ВОЗДУШНОЙ СКОРОСТИ

(Казанский национальный исследовательский технический университет им А.Н. Туполева)