

Учитывая выведенные закономерности, установим следующие значения параметров для построения ансамбля решающих деревьев для обучающей выборки типов стекла, содержащей 150 векторов.

На рисунках 5 и 6 приведены параметры построения ансамбля и результаты, полученные на тестовой выборке.

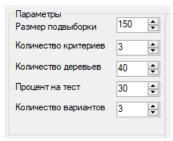


Рисунок 5 – Параметры построения ансамбля

Полученный результат в 75% правильных значений из случайно выбранной заранее тестовой выборки является хорошим для малого количества коррелированных искажённых исходных данных.

Результаты	
Максимальная глубина	77
Минимальная глубина	40
Средняя глубина	57,425
Правильно пройденных тестов	0,75

Рисунок 6 – Результаты, полученные на тестовой выборке

Литература

- 1. Breiman, L. «Random Forests» [Tekct] / L.Breiman, Machine Learning // 2001. №45 (1), 5-32.
 - 2. Kaggle [Электронный ресурс] // URL: https://www.kaggle.com/.

И.М. Янников, М.В. Телегина

ОРГАНИЗАЦИЯ БИОМОНИТОРИНГА ЛЕСНЫХ ЭКОСИСТЕМ С ПОМОЩЬЮ ЭКСПЕРТНОЙ СИСТЕМЫ

(ФБГОУ ВО «ИжГТУ имени М.Т. Калашникова», г. Ижевск, Россия)

Важнейшими задачами комплексного исследования загрязнения окружающей природной среды являются: установление источников и выявление пространственной структуры распределения очагов загрязнения, степени их интенсивности и оценка влияния на население [1].

Использование для контроля (мониторинга) за состоянием окружающей природной среды растений - биоиндикаторов является наиболее предпочтительным с точки зрения, как финансовых, так и временных затрат.

По результатам морфологических и физиологических изменений биоиндикаторов, вызванных различными заболеваниями, выявляют причинноследственную связь этих изменений с тем или иным видом негативного воздействия [2-4].

Идентификация повреждений растений обычно производится с помощью специальной литературы — определителей повреждений, что само по себе достаточно неудобно. Информационные технологии позволяют автоматизировать процесс обработки результатов биомониторинга. Вопросам исследования состояния окружающей природной среды по реакции биоиндикаторов и автоматизации обработки результатов биомониторинга посвящено достаточно много публикаций, в том числе и авторов данной работы [3, 5-10].

Имеющиеся в настоящее время автоматизированные определители болезней растений [11, 12], в основном касаются комнатных или садовых растений, при этом систем определения повреждений деревьев просто не существует. Следовательно, говорить о сколь-нибудь серьёзных работах в области автоматизации повреждений лесных экосистем в целях выявления источников и пространственной структуры очагов загрязнения на больших территориях явно не приходится.

Для учета многообразных факторов, связанных с метеорологическими, гидрогеологическими и гидродинамическими процессами, в настоящее время разрабатываются прогностические физико-математические модели, описывающие результаты, как модельных опытов, так и натурных измерений. Понятно, что практически невозможно по данным отдельных измерений установить истинное значение параметров, поскольку лесная экосистема непрерывно меняется и нельзя сформировать статистически однородную выборку данных. Одним из центральных блоков мониторинговой системы должен быть блок сбора, сортировки и накопления результатов измерения. Только имея значительный банк данных можно с помощью математической модели получить достоверную картину состояния лесных экосистем [13].

На наш взгляд система по определению повреждений деревьев и кустарников с последующим установлением причинно-следственной связи с источниками негативного воздействия должна включать в себя: список симптомов и признаков, однозначно определяющих заболевание, изображения, иллюстрирующие повреждения, а также вызвавшую их причину. В данной работе предлагается определение повреждений растений-биоиндикаторов, выполнять с применением разработанной авторами экспертной системы [8-10]. Указанная система реализована в виде сайта. Для её реализации нами выбрана система МОDX. МОDX — это профессиональная система управления содержимым (СМS) и фреймворк для веб-приложений, предназначенная для обеспечения и организации совместного процесса создания, редактирования и управления контентом (то есть содержимым) сайтов [14].

Для создания экспертной системы по определению повреждений деревьев и кустарников составлен перечень заболеваний объектов-биоиндикаторов, вызываемых тем или иным видом негативного воздействия на окружающую сре-

ду, а также свойственных этим заболеваниям признаков, позволяющих однозначно идентифицировать конкретное заболевание. Система работает в режиме пользователя (классификация повреждений) и в режиме эксперта. Эксперт может добавлять новые виды деревьев, описывать признаки их повреждений, добавлять изображение признаков (симптомов), заболевания, и причины их вызвавшие.

Для идентификации заболевания, пользователю необходимо осуществить выбор дерева и вида повреждения из списка и отвечать на предлагаемые вопросы, выбирая ответы «да» или «нет», пока система не выведет заболевание, подходящее под выбранные признаки. Все остальные действия выполняются системой и экспертом. Структура системы представлена на рисунке 1.

Рис. 1. Структурная схема экспертной системы определения повреждений

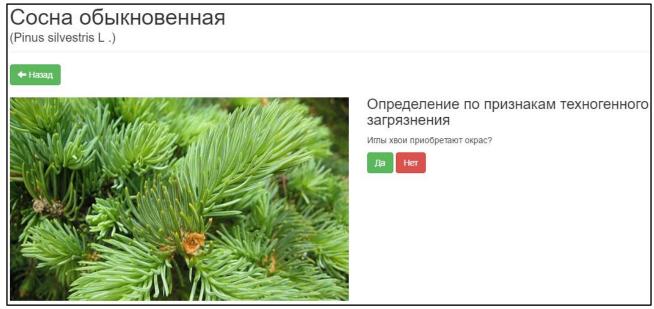
Система работает с применением бинарного дерева решений в двух режимах:

- определение болезней деревьев и кустарников по признакам повреждений, в этом случае правила формировались с использованием знаний из специальной литературы;

- определение техногенных повреждений деревьев, для этих целей использованы данные из база данных биомониторинга, заполненной на основании проведенных экспериментов и наблюдений [3,5,10].

Для определения вида заболевания (повреждения) применен алгоритм прямого вывода и использованы два списка: заболеваний, вызванных техногенным загрязнением, и заболеваний, вызванных вредителями.

Для определения повреждений деревьев, вызванных указанными причинами использованы признаки, применяемые в специальной литературе: определителях повреждений и др. источниках. Например, для определения техногенного загрязнения использованы такие признаки как [5]: изменения окраски листьев (хлороз, покраснение, др.); некрозы (серебристые пятна, «рыбий скелет» и др.); дефолиация; изменения размеров, формы, количества и положения органов; изменение жизненности и плодовитости.


Для добавления или редактирования правил определения заболеваний или повреждений деревьев эксперту необходимо, используя модуль для редактирования вида дерева, выбрать соответствующую категорию и заполнить надлежащие признаки. На рисунке 2 показан результат добавления правил для определения техногенных загрязнений по биоиндикатору - сосна обыкновенная (Pinus silvestris L.), на рисунке 3 — страница определения техногенных загрязнений по вышеуказанному биоиндикатору.

По результатам тестирования можно сделать вывод, что разработанная система работает корректно и успешно выполняет свою основную функцию – автоматическое определение повреждения в зависимости от выбранных признаков заболевания дерева пользователем.

Документ Вопросы	Галерея			^	
Категории	Вопросы по техногенному загрязению				
По вредителям	Добавить вопрос				
Техногенные загрязения	ld	Текст вопроса	ld иначе	Заболевание	
	1	Иглы хвои приобретают окрас?	5		
	2	Приобретают белый окрас?	3	418	
3 4 5	3	Пожелтение или побурение игл хвои?	4	420	
	4	Увеличение клеток смоляных ходов?	1	416	
	5	Иглы сосны удлинились в размерах?	6	419	
	6	Изменение числа клеток древесины?	1	417	

Рис. 2. Результат добавления правил определения техногенных загрязнений

Puc. 3. Страница определения техногенных загрязнений по биоиндикатору - Сосна обыкновенная (Pinus silvestris L.)

Данная экспертная система может быть полезна для работников производственных организаций, студентов лесохозяйственных ВУЗов, работников леса, так как она позволяет идентифицировать повреждения, наносимые вредителями и токсикантами различным деревьям, как в естественных лесных массивах, так и в искусственно созданных парках и скверах.

Очевидно, что данные определения носят предварительный характер и, в любом случае, при подготовке заключений подлежат сопоставлению с результатами, полученными при помощи других методов анализа. При этом уровень достоверности результатов экспертной системы напрямую зависит от полноты и достоверности информации, входящих в неё баз данных и правил. Необходимо отметить, что при соответствующей перестройке базы правил система может быть использована для решения иных неформализованных задач в различных областях.

Литература

- 1. Геохимия окружающей среды /Ю.Й. Сает [и др.]. М.: Недра, 1983. 335 с.
- 2. Надсон Г. А. Болезни растений //Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.). СПб., 1890—1907.
- 3. Янников И.М., Телегина М.В., Козловская Н.В., Алексеев В.А. Биомониторинг объектов по уничтожению химического оружия с использованием идентификационных экологических полигонов: монография Ижевск: Изд-во ИжГТУ им. М.Т. Калашникова, 2013. 160 с.: ил.
- 4. Янников И.М., Емшанов А.Д. Применение корреляционного анализа для обработки результатов биомониторинга мест размещения // Научно-исследовательские публикации. Серия: Информатика и техника. Воронеж, 2014. №7(11). С.38 43. ISSN 2308-1732

- 5. Алексеев В.А., Телегина М.В., Янников И.М. Создание базы данных биомониторинга потенциально опасных объектов // ИжГТУ. 2008. №4, С. 138-143.
- 6. Соломенникова Е.В., И.М. Янников, Т.А. Сергеева. Оценка экологического состояния территории зон влияния полигонов ТБО по интегральным характеристикам асимметрии листьев // Материалы XIII Международной научнопрактической конференции «Теория и практика современной науки». Т.1 Москва: Изд-во «Спецкнига», 2014, с.95-98.
- 7. Телегина М.В., Янников И.М. Автоматизированная система определения вида и степени повреждения биообъекта //Интеллектуальные системы в производстве. Ижевск: Изд-во ИжГТУ. 2016. № 3(30). С. 81-84.
- 8. Телегина М.В., Янников И.М., Е.Р. Чуракова, Э.Р. Арасланова, Д. Лаппо Определение повреждений деревьев и кустарников с помощью экспертной системы //Эколого-географические проблемы регионов России: материалы VII Всероссийской научно-практической конференции с международным участием Самара: СГСПУ; Глагол, 2016. 153-156.
- 9. Телегина М.В., Янников И.М., Чуракова Е.Р., Арасланова Э.Р., А.М. Зайцев. Определение техносферного загрязнения по внешним изменениям деревьев-биоиндикаторов с применением экспертной системы //Создание единой системы безопасности объектов и территорий государства. Сборник докладов и статей ІХ-ой Международной научно-технической конференции «Электронный город электронная губерния электронное государство. Самара: Самар. гуманит. акад., 2016 С.198 203
- 10. Янников И.М., Телегина М.В. Применение экспертной системы для организации флористического мониторинга загрязнений //The scientific heritage. Budapest /TSH 2018. № 20. С. 3 7.
- 11. Как определить болезнь растения. Симптомы болезней в иллюстрациях [Сайт]. [2013]. URL: http://agroflora.ru/kak-opredelit-bolezn-rasteniya-cimptomy-boleznej-rastenij-v-illyu-straciyax/ (Дата обращения: 15.09.2015).
- 12. Определитель болезней комнатных цветов [Сайт]. [2009]. URL: http://iplants.ru/bolezn2.htm / (Дата обращения: 16.09.2015).
- 13. Янников И.М., Телегина М.В. Учет данных в системе принятия решений при анализе экологической ситуации // Доклады всероссийской научнотехнической конференции «Приоритетные направления развития науки и технологий», под общ. ред. чл.-корр. Российской акад. наук В.П. Мешалкина. Тула: Изд-во ТулГУ, 2009. С. 75.
- 14. MODX creative freedom [Сайт]. [2006]. URL: http://modx.ru/o-sisteme-modx/ (Дата обращения: 5.10.2015).