

Литература

1. Канторович Л.В., Заллгаллер В.А. Рациональный раскрой промышленных материалов. СПб.: Невский диалект. 2012. -304 с.

2. Мухачева Э.А., Валиахметова Ю.И., Хасанова Э.И., Телицкий С.В. Проектирование размещения ортогональных объектов на полигонах с препятствиями. <u>Информационные технологии</u>. 2010. <u>№ 10</u>. С. 16-22.

3. Филиппова А.С., Кузнецов В.Ю. Задачи о минимальном покрытии ортогональных многоугольников с запретными участками. Информационные технологии. 2008. № 9 (145). 2008. С. 60-65.

4. Фроловский В. Д., Забелин С.Л. Разработка и анализ приближенных методов решения оптимизационных задач геометрического покрытия. Информационные технологии в проектировании и производстве. № 3. 2011. С. 54-58.

Ю.М. Заболотнов, А.А. Лобанков

ОПТИМАЛЬНОЕ ДЕМПФИРОВАНИЕ КОЛЕБАНИЙ ТВЕРДОГО ТЕЛА ПРИ ЕГО ДВИЖЕНИИ ВОКРУГ НЕПОДВИЖНОЙ ТОЧКИ

(Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет))

В работе рассматривается метод расчета приближенно оптимального регулятора для стабилизации движения твердого тела относительно неподвижной точки. Предполагается, что движение твердого тела близко к движению в классическом случае Лагранжа. Метод основывается на совместном применении принципа динамического программирования Беллмана [1] и метода усреднения. Метод усреднения применяется для приближенного решения уравнения Гамильтона – Якоби – Беллмана, что позволяет осуществить синтез регулятора. Предлагаемый метод расчета регулятора может быть использован во многих задачах, близких к задаче о движении волчка Лагранжа (движение твердого тела в атмосфере, движение твердого тела на тросе при развертывании орбитальной тросовой системы и др.).

Синтез регулятора в данной работе проводится для малых углов нутации, то есть невозмущенная система представляет собой линейную систему с гироскопическими членами. После преобразования системы к нормальным координатам синтез управления осуществляется по квадратичному критерию оптимальности на асимптотически большом интервале времени. Обратное преобразование координат позволяет записать уравнение регулятора в исходных переменных и, тем самым, решить поставленную задачу.

Движение твердого тела вокруг неподвижной точки описывается классическими динамическими и кинематическими уравнениями Эйлера относительно некоторой неподвижной системы координат. При рассмотрении движения твердого тела в окрестности статически устойчивого положения равновесия (то

есть при малых углах нутации) эти уравнения удобно записать в комплексной форме. Тогда, используя результаты работы [2], получим

$$\frac{d^2\xi}{dt^2} - i\overline{J}_z\omega_z\frac{d\xi}{dt} + \omega^2(r)\xi = \varepsilon F\left(r,\xi,\frac{d\xi}{dt},\omega_z,\Phi\right),\tag{1}$$

$$\frac{d\omega_z}{dt} = \varepsilon f(r, \xi, \omega_z, \Phi), \tag{2}$$

$$\frac{d\Phi}{dt} = \omega_z + \varepsilon R\left(\xi, \frac{d\xi}{dt}\right),\tag{3}$$

где $\xi = \theta e^{i\psi}$, θ и ψ - углы нутации и прецессии твердого тела, $i^2 = -1$, r - вектор медленно изменяющихся переменных, $\omega^2(r) = \Delta z G(r)/J$, $J = (J_x + J_y)/2$; $\Delta z > 0$ - координата, определяющая положение центра масс тела относительно неподвижной точки; J_x, J_y, J_z - осевые моменты инерции

тела;
$$\overline{J}_z = J_z / J$$
; $\Phi = \varphi + \psi$; $\varepsilon F\left(r, \xi, \frac{d\xi}{dt}, \omega_z, \Phi\right)$, $\varepsilon f\left(r, \xi, \omega_z, \Phi\right)$,

 $\varepsilon R\left(\xi, \frac{d\xi}{dt}\right)$ - известные функции, характеризующие действие малых возмуще-

ний [2]. Для упрощения асимптотического анализа все возмущающие функции масштабируются одним малым параметром ε .

Невозмущенное движение тела описывается следующими уравнениями

$$\frac{d^2\xi}{dt^2} - i\overline{J}_z \omega_z \frac{d\xi}{dt} + \omega^2(r)\xi = 0, \qquad (4)$$

$$\frac{d\Phi}{dt} = \omega_z, \qquad \omega_z = const, \quad r = const.$$
(5)

Решение невозмущенного уравнения (4) можно записать в виде

$$\xi = a_1 e^{i\psi_1} + a_2 e^{i\psi_2} \,, \tag{6}$$

где a_1 и a_2 - амплитуды колебаний (вещественные величины), $\psi_1 = \omega_1 t + \psi_1(0)$ и $\psi_2 = \omega_2 t + \psi_2(0)$ - фазы; $\psi_1(0), \psi_2(0)$ - начальные значения фаз; $\omega_{1,2} = \overline{J}_z \omega_z / 2 \pm \omega_\theta$ - частоты колебаний; $\omega_\theta = \sqrt{\overline{J}_z^2 \omega_z^2 / 4 + \omega^2}$.

Резонансные случаи движения твердого тела, когда угловая скорость $\omega_z \approx \omega_{1,2}$ в данной работе не рассматриваются, так как требуют особого анализа.

С учетом вышесказанного ставится задача определения управления *є и*, обеспечивающего динамическую устойчивость движения твердого тела вокруг неподвижной точки исходя из минимума квадратичного критерия оптимальности

International Scientific Conference Proceedings, Volume 2 "Advanced Information Technologies and Scientific Computing"

$$I = \varepsilon \int_{0}^{T} W(a_1, a_2, u_{\alpha}, u_{\beta}) dt, \qquad (7)$$

где $W(a_1, a_2, u_\alpha, u_\beta) = b_1 a_1^2 + b_2 a_2^2 + c(u_\alpha^2 + u_\beta^2), b_1, b_2, c > 0$ - весовые коэф-

фициенты. Причем амплитуды колебаний определяются в силу возмущенной системы и должны удовлетворять условиям динамической устойчивости $\frac{da_1}{dt}, \frac{da_2}{dt} < 0$ в каждый момент времени.

Движение твердого тела рассматривается на асимптотически большом промежутке времени $T = L/\varepsilon$, где $L < \infty$ - некоторая константа, поэтому функционал (7) изменяется на величину порядка O(1).

После перехода к переменным «амплитуды-фазы» и определения оптимального управления приходим к уравнению в частных производных Гамильтона – Якоби – Беллмана

$$\varepsilon \frac{\partial V}{\partial a} \cdot X(a,\phi,r) + \varepsilon \frac{\partial V}{\partial \phi} \cdot Y(a,\phi,r) + \frac{\partial V}{\partial \phi} \cdot \omega(r) + \frac{\partial V}{\partial r} \cdot \frac{dr}{dt} + \varepsilon \sum_{k=1}^{2} b_{k} a_{k}^{2} + U = 0,(8)$$

3десь $\frac{dr}{dt} = O(\varepsilon), \quad U = -\varepsilon c \left[\left(u_{\alpha}^{o} \right)^{2} + \left(u_{\beta}^{o} \right)^{2} \right],$ где
 $u_{\alpha}^{o} = \frac{1}{4c\omega_{\theta}} \sum_{k=1}^{2} (-1)^{k} \left(\frac{\partial V}{\partial a_{k}} \cos \psi_{k} - \frac{1}{a_{k}} \frac{\partial V}{\partial \psi_{k}} \sin \psi_{k} \right),$ (9)

$$u_{\beta}^{o} = \frac{1}{4c\omega_{\theta}} \sum_{k=1}^{2} \left(-1\right)^{k+1} \left(\frac{\partial V}{\partial a_{k}} \sin\psi_{k} + \frac{1}{a_{k}} \frac{\partial V}{\partial\psi_{k}} \cos\psi_{k}\right).$$
(10)

Для определения приближенного решения уравнения Гамильтона – Якоби – Беллмана используется метод усреднения. В итоге получаем

$$\varepsilon \frac{\partial V_0}{\partial a} \cdot \left\langle X\left(a,\phi,r\right) \right\rangle + \varepsilon \sum_{k=1}^2 b_k a_k^2 + \left\langle U \right\rangle + O\left(\varepsilon^2\right) + \dots = 0, \tag{11}$$

где $\langle \cdot \rangle$ - стандартный оператор усреднения по фазам,

$$\langle U \rangle = -\frac{\varepsilon}{16c\omega_{\theta}^2} \left[\left(\frac{\partial V_0}{\partial a_1} \right)^2 + \left(\frac{\partial V_0}{\partial a_2} \right)^2 \right].$$

Усреднение функций $X(a, \phi, r)$, входящих в уравнение первого приближения (11), когда $\varepsilon F = 0$ при наличии линейных возмущающих функций, дает

$$\left\langle X\left(a,\phi,r\right)\right\rangle = \frac{1}{2\omega_{\theta}} \begin{pmatrix} v_{1}a_{1}\\ v_{2}a_{2} \end{pmatrix},$$
(12)

где $v_1 = \mu_z \omega_z + \mu \omega_1$, $v_2 = -\mu_z \omega_z - \mu \omega_2$, μ_z и μ - параметры, характеризующие действующие возмущения.

Решение уравнения (11) в этом случае нетрудно найти, используя метод неопределенных коэффициентов. Тогда, определяя решение в виде $V_0 = \sum_{k=1}^{2} B_k a_k^2$, подставляя его в (11) и приравнивая к нулю коэффициенты при a_1^2 и a_2^2 , получим

$$B_k = 2\omega_\theta \left[cv_k + \sqrt{c^2 v_k^2 + cb_k} \right], \qquad k = 1, 2.$$
(13)

Тогда функции оптимального управления (9-10) примут вид

$$u_{\alpha}^{o} = \frac{1}{4c\omega_{\theta}} \sum_{k=1}^{2} \left(-1\right)^{k} \left(\frac{\partial V_{0}}{\partial a_{k}} \cos\psi_{k} - \frac{\varepsilon}{a_{k}} \frac{\partial V_{1}}{\partial\psi_{k}} \sin\psi_{k}\right), \tag{14}$$

$$u_{\beta}^{o} = \frac{1}{4c\omega_{\theta}} \sum_{k=1}^{2} (-1)^{k+1} \left(\frac{\partial V_{0}}{\partial a_{k}} \sin\psi_{k} + \frac{\varepsilon}{a_{k}} \frac{\partial V_{1}}{\partial\psi_{k}} \cos\psi_{k} \right).$$
(15)

После подстановки оптимального управления (15) в уравнения для амплитуд и усреднения по фазам, получим в первом приближении метода усреднения

$$\frac{da_{1,2}}{dt} = -\frac{\varepsilon a_{1,2}}{2\omega_{\theta}} \sqrt{v_{1,2}^2 + b_{1,2}/c} \,. \tag{16}$$

Условие $da_{1,2} / dt < 0$, которое следует из выражения (16), обеспечивает динамическую устойчивость движения твердого тела вокруг неподвижной точки.

Для определения регулятора в других переменных осуществляется обратное по отношению к замене переменных (6) преобразование координат.

В качестве примера расчета оптимального регулятора рассматривается случай демпфирования колебаний твердого тела при следующих исходных данных:

 $\omega = 0.8c^{-1}, \quad \omega_z(0) = 1c^{-1}, \quad \overline{J}_z = 0.8, \quad \theta(0) = \pi/2, \quad \mu = 0.05, \quad \mu_z = 0.01, \\ b_1 = b_2 = 1, \ c = 100.$

На рис.1 показан процесс демпфирования нутационных колебаний с помощью определенного приближенно оптимального регулятора, рассчитанный по исходной нелинейной модели движения твердого тела.

International Scientific Conference Proceedings, Volume 2 "Advanced Information Technologies and Scientific Computing"

Литература

1. Беллман Р. Динамическое программирование. Москва. ИЛ. 1960.

2. Заболотнов Ю. М., Любимов В.В. Вторичные резонансные эффекты при вращении твердого тела вокруг неподвижной точки // Механика твердого тела. 2002. № 1. С. 49-59.

А.И. Заико, Э.А. Кильметов

ПРИМЕНЕНИЯ АНИЗОТРОПНЫХ МАГНИТОРЕЗИСТИВНЫХ ДАТЧИКОВ ДЛЯ РЕГИСТРАЦИИ ГМВ

(Уфимский государственный авиационный технический университет)

В настоящие время широкое распространение получают датчики, основанные на анизотропном магниторезистивном (AMP) эффекте. Информационно-измерительные системы (ИИС), построенные на базе AMP датчиков получаются менее габаритными, тем самым получают возможность встраивания в различные готовые решения.

Создание специализированных геоинформационных систем, обеспечивающих регистрацию параметров геомагнитных возмущений (ГМВ) естественной природы происхождения, является актуальным.

В случае приложения внешнего (исследуемого) магнитного поля Н, к отдельно взятому АМР-элементу, поле поворачивает вектор намагниченности тонкой магнитной пленки на угол β. Значение β зависит от направления И величины Н, при этом сопротивление пермаллоевой пленки имеет не линейную зависимость ОТ приложенного поля. В значительной мере лианеризовать выходную характеристику АМР-элемента возможно, путем задания так называемой «зазубренной» (в оригинале от англ. barber-pole) [4] структуры, схематически представленной на рис. 1. В этом случае, когда H<<H0 сопротивление AMR-сенсора будет определяться соотношением