

Рис. 2. Последовательность обработки, направленной на комплексирование и интеллектуальный анализ данных

Литература

- 1 Журавель Ю.Н., Федосеев А.А. Особенности обработки гиперспектральных данных дистанционного зондирования при решении задач мониторинга окружающей среды // Компьютерная оптика. Т.37. № 4. 2013. С. 471–476.
- 2 Михеев С.В., Федосеев А.А., Головнин О.К. Технология Data Mining в задачах прогнозирования развития транспортной инфраструктуры [Электронный ресурс] // Современные проблемы науки и образования. 2013. № 1. URL: http://www.science-education.ru/107-8153/.
- 3 Михеева Т.И. Data Mining в геоинформационных технологиях // Вестник Самарского гос. техн. ун-та. Серия «Технические науки» №41. Самара: СамГТУ, 2006. С.96-99.
- 4 Schowengerdt, R. Remote Sensing: models and methods for image processing, Vol 3. Technosphera. Moscow, 2010. 560 p.
- 5 Waxman, A. et al. Information fusion for image analysis: Geospatial foundations for higher-level fusion, in 5-th International Conference on Information Fusion, Annapolis, 2002. Pp. 60 67.

Н.С. Шорохов, В.Б. Гуменников, В.Г. Волик

ОПРЕДЕЛЕНИЕ РАССТОЯНИЯ ДО ОТЦЕПА НА СОРТИРОВОЧНЫХ СТАНЦИЯХ МЕТОДОМ ЭКСПОНЕНЦИАЛЬНОГО АНАЛИЗА

(Самарский государственный университет путей сообщения)

Рельсовые линии подгорочного парка сортировочных станций можно рассматривать как однородную двухпроводную линию с равномерно распределенными параметрами (рисунок 1) [1]:

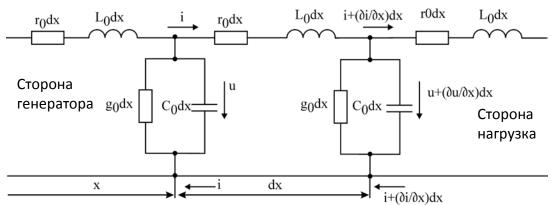


Рис. 1. Рельсовая линия в виде однородной двухпроводной линии Эту однородную линию можно описать с помощью уравнений с гиперболическими функциями:

$$U = U_1 \cdot ch\gamma x - I_1 \cdot Z_C \cdot sh\gamma x$$

$$U = I_1 \cdot ch\gamma x - \frac{U_1}{Z_C} \cdot sh\gamma x$$
(1)

, где x — расстояние, отсчитываемое от начала линии, γ — коэффициент распространения волны.

Если выходное сопротивление источника питания равно волновому сопротивлению рельсовой линии $Z_{cor} = Z_C$, то линия работает в режиме согласованной нагрузки, при этом, если мнимые части сопротивлений равны по модулю, но противоположны по знаку расход мощности в линию будет минимальным. В режиме согласованной нагрузки уравнение линии упростится:

$$\dot{U} = \dot{U}_2 \cdot e^{\alpha y}
\dot{I} = \dot{I}_2 \cdot e^{\alpha y}$$
(2)

Из уравнений 2 видно, что при согласованной нагрузке отраженной волны не будет. Действующие значения напряжения и тока из-за потерь в линии не остаются постоянными. U(x), I(x) постепенно уменьшаются к концу линии (рисунок 2):

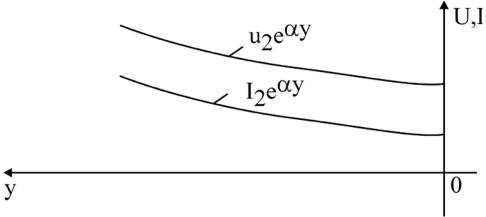


Рис. 2. Изменение потерь тока и напряжения вдоль рельсовой линии

Мощность в любом сечении рельсов определится:

$$P = U \cdot I \cdot \cos \theta = \frac{U_2^2}{Z_C} \cdot e^{2\alpha y} \cdot \cos \theta \tag{3}$$

,где θ - угол сдвига фаз между напряжением и током. Эта мощность уменьшается по мере удаления от начала линии, так как на каждом элементе длины линии

$$dP = 2 \cdot \alpha = \frac{U_2^2}{Z_C} \cdot e^{2\alpha y} \cdot \cos \theta \cdot dy = (r_0 I^2 + g_0 U^2) dy$$
 (4)

Мощность потерь равна сумме потерь в сопротивлении рельсов и в проводимости изоляции на элементе линии dx. При согласованной нагрузке вся мощность волны, достигшей конца линии, поглощается в нагрузке. Поэтому согласование нагрузки одна из главных задач, которую необходимо решать при применении метода экспоненциального анализа, для исключения появления отраженных и стоячих волн.

Суть метода экспоненциального анализа в следующем - каждую рельсовую линию подгорочного парка сортировочной станции закорачивают нагрузкой, после чего со стороны генератора посылается ряд тестовых импульсов $I=f(e^x)$, которые пройдя по рельсовой петле, снимаются в аналоговой форме с бесконтактного датчика [2,3]. При этом информативным параметром является длительность "затяжки" заднего фронта импульсного сигнала τ , которая зависит от величины индуктивности рельсовой петли. Затяжка заднего фронта импульсов масштабируется и оцифровывается (рисунок 3).

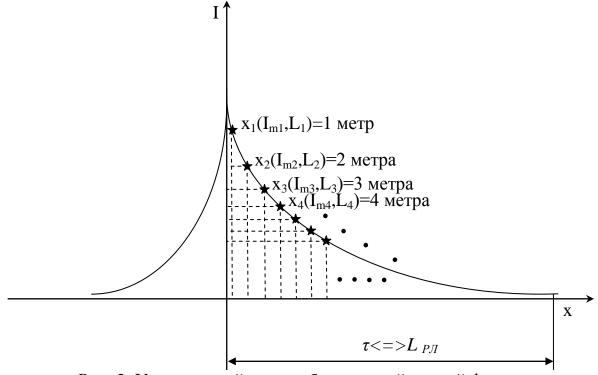


Рис. 3. Усредненный масштабированный задний фронт экспоненциального импульса

Так как между генератором импульсов и концом контролируемого пути, при начальной настройке отсутствуют отцепы, то длина "затяжки" заднего фронта τ будет однозначно соответствовать полной индуктивности всей рельсовой петли $L_{PЛ}$. Оцифрованные значения "затяжки" импульса в каждом узле усредняются и сохраняются.

Если длинна контролируемой рельсовой линии 1000м, то разделив L_{PJ} на 1000 получим индуктивность в одном метре рельсовой линии $x_1(I_{ml},L_1)=1$ метр. Если на контролируемом пути окажется отцеп то "затяжка" заднего фронта τ_1 у него будет меньше чем τ (рисунок 4), и можно однозначно сделать вывод о индуктивности между местом включения генератора экспоненциальных импульсов и последним шунтом отцепа L_1 , а следовательно и о расстоянии до него $x_i(I_{mi},L_i)$.

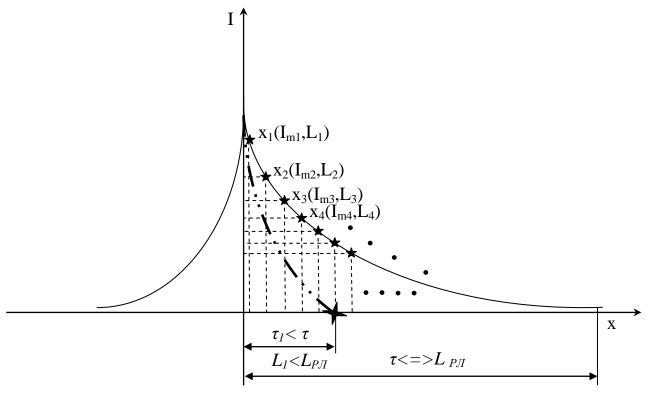


Рис. 4. Определение расстояния до отцепа по затяжке заднего фронта Таким образом, теоретическая погрешность составит 1 метр. Изменяя частоту импульсов генератора, можно контролировать координату скатывающегося отцепа, а так же его скорость с помощью современной вычислительной техники.

Литература

- 1. Колотов, О.С. Переходные процессы в длинных линиях / О.С. Колотов, А.В. Матюнин. –М.: МГУ, 2007.-19с.
- 2. Федоров Н.Е., Шорохов Н.С., Есина Е.В. Устройство определения параметров движения // Патент на изобретение № 2457970 от 10.08.2012.
- 3. Федоров Н.Е., Шорохов Н.С., Есина Е.В., Ширинов И.Р. Способ определения параметров движения поезда // Патент на изобретение № 2463188 от 10.10.2012.