

Л.В. Яблокова¹, Д.Л. Головашкин²

НАЛОЖЕНИЕ ПОГЛОЩАЮЩЕГО СЛОЯ ПРИ СОГЛАСОВАННОМ РАЗНОСТНОМ РЕШЕНИИ УРАВНЕНИЙ ДАЛАМБЕРА И МАКСВЕЛЛА

(¹ ФГБОУ ВПО «Самарский государственный аэрокосмический университет им. академика С.П. Королева (национальный исследовательский университет)», ² ФГБУН «Институт систем обработки изображений РАН»)

Введение

Рассмотрение задачи дифракции на оптическом элементе уместно связывать с решением волнового уравнения в области непосредственного нахождения этого элемента, а организацию поглощения у границ вычислительной области (вне элемента) с решением уравнений Максвелла, моделирующим РМL– слой. При этом сокращаются требования к системным ресурсам ЭВМ по сравнению с FDTD-методом (в двумерном случае) и используется современная методика наложения РМL–слоя [1] вместо устаревшего подхода Мура [2], традиционно сопровождающего решение волнового уравнения.

Наложение поглощающего слоя при совместном решении В поглощающем слое уравнения Максвелла имеют вид:

$$\mu_{0} \frac{\partial H_{y}}{\partial t} + \sigma^{*} H_{y} = -\frac{\partial E_{x}}{\partial z}, \epsilon_{0} \frac{\partial E_{x}}{\partial t} + \sigma E_{x} = -\frac{\partial H_{y}}{\partial z}, \qquad (1)$$

где второе слагаемое в левой части определяет поверхностную плотность электрического и магнитного (воображаемого) токов. Следующее соотношение электрической и магнитной проводимостей $\sigma / \varepsilon_0 = \sigma^* / \mu_0$ и плавное возрастание значения σ от начала слоя к концу (при правильно подобранных параметрах) обеспечивает поглощение излучения без отражения.

Простейшая разностная аппроксимация уравнений Максвелла в поглощающем слое записывается как:

$$\mu_{0} \frac{H_{y_{k+0,5}}^{m+0,5} - H_{y_{k+0,5}}^{m-0,5}}{h_{t}} + \sigma_{k+0,5}^{*} H_{y_{k+0,5}}^{m-0,5} = -\frac{E_{x_{k+1}}^{m} - E_{x_{k}}^{m}}{h_{z}}$$
$$\varepsilon_{0} \frac{E_{x_{k}}^{m+1} - E_{x_{k}}^{m}}{h_{t}} + \sigma_{k} E_{x_{k}}^{m} = -\frac{H_{y_{k+0,5}}^{m+0,5} - H_{y_{k-0,5}}^{m+0,5}}{h_{z}},$$

где сеточная проекция электрического поля на ось $x - E_{x_k}^n$ определена в узлах $\{(t_n, z_k): t_n = nh_t, n = 0, 1, ..., N = \frac{T}{h_t}, z_k = L^W + kh_z, k = 0, 1, ..., K = \frac{L^M}{h_z}\},$ а сеточная про-

екция магнитного поля на ось $y - H_{y_{k+0,5}}^{n+0,5}$ в узлах $\{(t_{n+0,5}, z_{k+0,5}): t_{n+0,5} = (n+0,5)h_t, n = 0, 1, ..., N-1, z_{k+0,5} = L^W + (k+0,5)h_z, k = 0,1, ..., K-1\}$ сеточной области D_h^M , наложенной (Рисунок1) на область вычислительного эксперимента D^M ($0 < t \le T$, $L^W \le z \le L^W + L^M$), для простоты заданной в свободном пространстве.

Аналогично для одномерного волнового уравнения

$$\frac{\partial^2 E_x}{\partial t^2} - c^2 \frac{\partial^2 E_x}{\partial x^2} = 0$$
(2)

запишем разностную схему [3]

$$\frac{E_{x_m}^{n+1}-2E_{x_m}^n+E_{x_m}^{n-1}}{h_t^2}=c^2\frac{E_{x_{m+1}}^n-2E_{x_m}^n+E_{x_{m-1}}^n}{h_z^2},$$

где функция $E_{x_m}^n$ определена в узлах $\{(t_n, z_m): t_n = nh_t, n = 0, 1, ..., N = \frac{T}{h_t}, n = 0, ...$

 $z_{k} = mh_{z}, m = 0, 1, ..., M = \frac{L^{w}}{h_{z}}$ }, сеточной области D_{h}^{w} , наложенной (Рисунок1) на $D^{w}(0 < t \le T, 0 \le z \le L^{w}).$

Рис. 1. Объединение сеточных областей. Квадратами изображены узлы для проекции электрического поля, окружностями - для магнитного.

Задавшись целью совместного отыскания разностного решения уравнений (1) и (2) согласуем вычисления на D^w и D^m , полагая значения $E^n_{x_M}$, определенные на D^w_h при m = M (крайний правый узел) и $E^n_{x_0}$, определенные на D^M_h при k = 0 (крайний левый узел) равными (Рисунок1).

$$\frac{E_{x_{M}}^{n+1} - 2E_{x_{M}}^{n} + E_{x_{M}}^{n-1}}{h_{t}^{2}} = c^{2} \frac{E_{x_{1}}^{n} - 2E_{x_{M}}^{n} + E_{x_{M-1}}^{n}}{h_{z}^{2}}$$

На границах объединенной области $D = D^{W} \cup D^{M}$ установим электрическую стенку. За начальное условие примем отсутствие поля в момент времени t = 0.

При постановке вычислительных экспериментов расположим поглощающий слой длины λ у правого края *D*. Тогда σ задается на отрезке $\mathbf{L}^{W} + \mathbf{L}^{M} - \lambda, \mathbf{L}^{W} + \mathbf{L}^{M}$ по формуле: $\sigma = \sigma_{\max} \left(\frac{z + \lambda - \mathbf{L}^{W} - \mathbf{L}^{M}}{\lambda} \right)^{q}$,где σ_{\max} и *q* зависят

от дискретизации сеточной области согласно таблице 4 из [4].

Эксперименты проводились при различных значениях дискретизации сеточной области Q, Qt и QT, где первый параметр характеризовал число узлов сеточной области по пространству (приходящееся на одну длину волны); второй – количество узлов по времени (приходящееся на временной интервал, за который плоский волновой фронт в вакууме пройдет расстояние в одну длину волны); третий – «длительность» запускаемого цуга в длинах волн. При этом

они менялись от (10,20,5) – минимальных значений, удовлетворительно описывающих распространение плоской однородной волны в свободном пространстве, до (100,200,15) – соответствующих весьма низким величинам погрешности. Протяженность области *D* составляла 12λ , что позволяло не учитывать влияние отраженной от левой границы волны на области регистрации.

Верифицируя предположение о возможности совместного решения волнового уравнения и системы уравнений Максвелла с поглощающим слоем, сначала (для получения эталонного решения) рассмотрим случай $D = D^{M}$ (первая серия экспериментов, Рисунок2*a*); $L^{W} = 0$, $L^{M} = 12\lambda$. Для исследования отраженной волны зададим "прозрачный" источник [5] (в точке $z = 9,5\lambda$) и будем регистрировать в подобласти $[0\lambda,11\lambda]$ величину $\delta = \max_{k} A_{k}^{\text{refl}}$, (A^{refl} – комплексная амплитуда отраженной волны) являющуюся абсолютной погрешностью вычислительного эксперимента (отраженной от PML слоя волны в идеальном случае быть не должно).

Рис. 2. Вычислительные области первой (а) и второй (б) серий экспериментов. Символом «@» обозначен «прозрачный» источник, в обведенной пунктиром области регистрируется погрешность, в закрашенной расположен поглощающий слой

Таблица 1. Погрешности б*100 первой серии вычислительных экспериментов

	QT		
Q, Qt	5	10	15
10,20	0,3546	0,1032	0,1463
20,40	0,1713	0,1238	0,1261
50,100	0,1127	0,1068	0,1068
100,200	0,0129	0,0115	0,0115

Отметим удовлетворительное функционирование поглощающего слоя; даже на самой грубой сеточной области (Q = 10, Qt = 20) при работе с не вполне монохроматической волной (QT = 5) модуль комплексной амплитуды отраженного поля составил треть процента от модуля амплитуды (теоретического) падающей волны (таблица 1). На более густых областях увеличение длины цуга не приводит к повышению точности в силу преобладания величины погрешности δ , связанной с наложением PML слоя, над ε , определяющейся заменой производных разностными отношениями.

При отыскании совместного разностного решения (1) и (2) (вторая серия экспериментов) примем $L^w = 10\lambda$, $L^M = 2\lambda$, расположенный в том же месте вы-

числительной области "прозрачный" источник теперь находится в D^w (Рисунок 26).

Сравнивая результаты вычислительных экспериментов (таблица 2) с данными первой серии (таблица 1) отметим их совпадение в диапазоне Q = 50, Qt = 100, QT = 10 - Q = 100, Qt = 200, QT = 15 и незначительность отличий при остальных параметрах, что свидетельствует о возможности совместного разностного решения уравнений Даламбера и Максвелла в случае, когда последние используются для моделирования поглощающего слоя.

	QT		
Q,Qt	5	10	15
10,20	0,1287	0,1312	0,1483
20,40	0,1645	0,1232	0,1322
50,100	0,1136	0,1068	0,1068
100,200	0,0127	0,0115	0,0115

Таблица 2. Погрешности δ*100 второй серии вычислительных экспериментов

Благодарности

Исследования выполнены при поддержке гранта Президента РФ МД-6809.2012.9.

Заключение

В настоящей работе представлена технология наложения поглощающих слоев при совместном разностном решении уравнений Даламбера и Максвелла и продемонстрирована состоятельность предложенного подхода.

Литература

1. Berenger Jean-Pierre A perfectly matched layer for the absorption of electromagnetic waves // Journal of computational physics, 1994.- № 114.- pp.185 – 200

2. Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations // IEEE Trans. Electromagnetic Compability, 1981. - vol. 23. - pp. 377 - 382

3. Taflove A., Hagness S. Computational Electrodynamics: The Finite-Difference Time-Domain Method: 2nd. ed. // Boston: Arthech House Publishers, 2000. - 852 p.

4. Головашкин Д.Л., Казанский Н.Л. Методика формирования падающей волны при разностном решении уравнений Максвелла (двумерный случай) // Автометрия, 2007. – Том 43, № 6. – с. 78 – 88

5. Головашкин Д.Л., Казанский Н.Л. Декомпозиция сеточной области при разностном решении уравнений Максвелла // Математическое моделирование, 2007. – Том 19, № 2. – с. 48 – 58

6. Prather D.W., Shi S. Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements // J. Opt. Soc. Am. A., 1999. – vol. 16, N_{2} 5. – pp. 1131 – 1142

7. Головашкин Д.Л., Казанский Н.Л. Методика формирования падающей волны при разностном решении уравнений Максвелла // Автометрия, 2006. – Том 42, № 6. – с. 78 – 85