5. Осипов М.Н., Автоматизированный комплекс определения форм и частотных характеристик собственных колебаний. / М.Н. Осипов, Н.А. Шарафутдинов, Ю.Д. Щеглов, И.Н. Фалилеев, М.Е. Федина // Известия Самарского центра РАН. 2015. т.17, № 2(5). С. 1072-1075.

Шарафутдинов H.A., Оценка помехозащищенности 6. спеклинтерферометрии на основе анализа изменения интенсивности одиночного Шарафутдинов, M.H. спекла. / H.A. Осипов, Ю.Д. Шеглов, Н.С. Знаменьщикова, М.Д. Лимов // Труды III Международной конференции «Динамика и виброакустика машин», 2016. 29 июня - 01 июля 2016, Самара, Самарский Университет, С. 179-180.

С.П.Орлов, Е.А. Ахполова, О.Ю. Уютова

МЕТРОЛОГИЧЕСКАЯ МОДЕЛЬ ИЗМЕРИТЕЛЬНЫХ КАНАЛОВ ИИС КОНРОЛЯ ОПТИКО-ЭЛЕКТРОННОГО ПРЕОБРАЗОВАТЕЛЯ

(АО «РКЦ «Прогресс», Самарский государственный технический университет)

Система дистанционного зондирования Земли с искусственных спутников содержит основной прибор – оптико-электронный преобразователь (ОЭП), характеристики которого в наибольшей степени влияют на точность и качество получаемого изображения. В свою очередь, главный элемент ОЭП – это фоточувствительная матрица на приборах с зарядовой связью (ФМПЗС). Исследование и контроль ФМПЗС при наземных испытаниях проводятся с помощью информационно-измерительной системы, структура и принципы функционирования изложены в работах [1,2,3]. Они основаны на получении с помощью тепловизора термограмм поверхности микросхемы и контроля значений двумерного распределения температур.

Для оценки достоверности измерения температурного поля в настоящем докладе представлена метрологическая модель измерительных каналов ИИС. Задача температурного контроля ФМПЗС состоит в том, чтобы сформировать цифровой массив температурных значений на поверхности ФМПЗС для дальнейшей обработки с целью выявления дефектов микросхемы. Подсистема измерения содержит два основных измерительных канала. Первый канал измеряет двумерную тепловую картину нагрева микросхемы под действием питающих напряжений и входных сигналов. Второй канал измеряет температуры окружающей среды ОЭП для определения температур перегрева поверхности микросхемы.

Для исследования и расчета погрешностей разработана метрологическая модель системы (рис. 1).

В метрологической модели используются следующие обозначения: S_W – функция преобразования электрической мощности *P*, поступающей на входы ФМПЗС в двумерное температурное поле $\Theta(x, y)$ на поверхности микросхемы; δ_W – мультипликативная погрешность, вызванная изменением тепло-

физических параметров микросхемы; $S_{\rm MT}$ – чувствительность канала передачи температурного поля поверхности микросхемы на оптическую воспринимающую плоскость тепловизора; $\delta_{\rm MT}$ – мультипликативная погрешность чувствительности канала; $\Delta_{\rm CX}$, $\Delta_{\rm CY}$ – аддитивные погрешности установки тепловизора, которая определяется горизонтальными смещениями относительно центральной оптической оси микросхемы ФМПЗС; $\Delta_{\rm OT}$ – аддитивная погрешность, вызванная отклонением оптической оси тепловизора от оси микросхемы при его установке в конструкцию ОЭП.

Рис. 1. Метрологическая модель системы температурного контроля поверхности микросхемы ФМПЗС

Кроме того, учитываются: $S_{\rm T}$ – чувствительность тепловизора; $\delta_{\rm T}$ – мультипликативная погрешность тепловизора; $\Delta_{\rm T}$ – аддитивная погрешность тепловизора; $S_{\rm DT}$ – чувствительность первичного преобразователя датчика температуры окружающей среды в испытательной камере; $\delta_{\rm ДT}$ – мультипликативная погрешность первичного преобразователя датчика температуры; $\Delta_{\rm ДT}$ – аддитивная погрешность первичного преобразователя датчика температуры; $\delta_{\rm dl\Pi}$ – чувствительность первичного преобразователя, встроенного в датчик температуры окружающей среды; $\delta_{\rm All\Pi}$ – мультипликативная погрешность аналого-цифрового преобразователя, встроенного в датчик температуры окружающей среды; $\delta_{\rm All\Pi}$ – мультипликативная погрешность первичного в датчик температуры окружающей среды; $\delta_{\rm All\Pi}$ – мультипликативная погрешность преобразования в АЦП; $\Delta_{\rm KB}$ – погрешность квантования, определяемая разрядностью АЦП.

Номинальная функция преобразования:

$$\Theta_{\mu_{3M}}^{HOM}(x, y) = S_W S_{MT} S_T P + \delta_{\mu_T} S_{A\mu_T} t_{OC}.$$

Реальная функция преобразования для модели на рис. 1 имеет вид:

$$\begin{split} \Theta_{IJ3M}^{P}(x,y) &= S_{T}(1+\delta_{T})(\Delta_{CX} + \Delta_{CY} + \Delta_{OT} + S_{MT}(1+\delta_{MT})S_{W}(1+\delta_{W})P) + \\ &+ \Delta_{T} + S_{AUT}(1+\delta_{AUT})(S_{TT}(1+\delta_{TT})t_{OC} + \Delta_{TT}) + \Delta_{KB} \,. \end{split}$$

Таким образом, мультипликативная составляющая погрешности равна

International Scientific Conference Proceedings "Advanced Information Technologies and Scientific Computing"

PIT 2017

$$\partial \Theta^{M}_{H3M} = (\delta_{W} + \delta_{MT} + \delta_{T}) S_{W} S_{MT} S_{T} P + (\delta_{\mathcal{A}T} + \delta_{A\mathcal{U}\Pi}) S_{\mathcal{A}T} S_{A\mathcal{U}\Pi} t_{OC},$$
(1)

при этом аддитивная составляющая погрешности равна

$$\Delta \Theta_{\mu_{\rm BM}}^{\rm A} = S_{\rm T} (\Delta_{CX} + \Delta_{CY} + \Delta_{\rm OT}) + S_{\rm AUII} \Delta_{\rm AT} + \Delta_{\rm T} + \Delta_{\rm KB} \quad . \tag{2}$$

В исследуемом объекте для обработки двумерной информации наибольшее влияние на погрешности оказывают оптическая система, воспринимающая изображение объекта, преобразователи свет – сигнал, аналоговые цепи обработки сигнала, аналого-цифровое преобразование, точность позиционирования устройства с первичными измерительными датчиками.

При испытаниях ОЭП при вибрации и климатических воздействиях в камере тепловизор устанавливается на посадочные места, предназначенные для объектива оптической системы дистанционного зондирования. Установочная поверхность объектива изготовлена с высокими требованиями по шероховатости и по плоскостности относительно микросхемы ФМПЗС. Погрешность установки тепловизора относительно фокальной поверхности определяется горизонтальным смещением на установочной плоскости и углом α отклонения оптической оси тепловизора от оси микросхемы.

Следует учесть ряд динамических погрешностей в измерительном канале. Во-первых, при испытании ОЭП на вибропрочность возможно смещение оптической оси тепловизора относительно вертикальной оси ФМПЗС. Это происходит из-за наличия гибких механических элементов в конструкции. В результате появляется «смаз» тепловой картины, характеризующийся погрешностью $\Delta_{\rm CB}$. Таким образом, общая погрешность установки тепловизора в конструкцию ОЭП состоит из двух компонент: а) систематических погрешностей Δ_{CX}^c и Δ_{CY}^c горизонтального смещения и отклонения от оси Δ_{OT}^c при креплении, б) случайной динамической погрешности при вибрации конструкции.

В разрабатываемой ИИС используется тепловизор NEC R500. В нем предусмотрена функция удаления эффекта дрожания при съемке за счет использования внутренних алгоритмов обработки термоизображения. Для этого в тепловизоре используется оптический стабилизатор изображения, на основе миниатюрных гироскопических датчиков. Это позволяет свести влияние динамических погрешностей Δ_x^B, Δ_y^B практически к нулю.

Для расчета общей погрешности измерительной подсистемы используем данные из таблицы 1. Подставляем значения погрешностей в выражения (1) и (2) и получаем аддитивную погрешность $\Delta \Theta_{u_{3M}}^{A} = \pm 0,5^{\circ}C$ и мультипликативную погрешность при мощности 0,15 Вт, равную $\partial \Theta_{u_{3M}} = \pm 0,033^{\circ}C$.

Таким образом, общая погрешность измерения двумерного температурного поля перегрева поверхности микросхемы равна $\pm 0,53^{\circ}C$. Относительная погрешность в рабочем диапазоне температур (+ $20^{\circ}C - +75^{\circ}C$), равна 1,4%. Эти значения точности термограмм позволяют определить места перегрева или охлаждения локальных участков микросхемы ФМПЗС. На основе сравнения с

эталонными термограммами делаются выводы о работоспособности оптикоэлектронного преобразователя.

Таблица 1

Погрешности измерительных каналов			
NºNº	Погрешность	Характер	Примечание
ПП		погрешности	
1	$\Delta_T = \pm 0,35^0 C$	аддитивная	По паспорту тепловизора
2	$\Delta_{KB} = \pm 0,01^{0}C$	аддитивная	Определяется по харак- теристикам термодатчика
3	$\Delta_{\mathcal{A}T} = \pm 0.05^{\circ}C$	аддитивная	Определяется по харак- теристикам термодатчика
4	$\Delta_{CX} = \pm 0,03^0 C$	аддитивная систематическая	Определяется конструк- цией блока ОЭП и равна 0,01x10 ⁻³ м
5	$\Delta_{CY} = \pm 0,03^{\circ}C$	аддитивная систематическая	Определяется конструк- цией блока ОЭП и равна 0,01x10 ⁻³ м
6	$\Delta_x^{\text{B}} = 0,0001$ $\Delta_y^{\text{B}} = 0,0001$	случайная динамиче- ская	Определяется конструк- цией блока ОЭП и режи- мами испытаний на вибро- прочность
7	$\Delta_{OT} = \pm 0.03^{\circ}C$	аддитивная случайная	Определяется конструк- цией блока ОЭП
8	$\delta_{ m ALUII} = \pm 0,0001$	мультипликативная	Определяется по харак- теристикам термодатчика
9	$\delta_{\rm JT}$ = ±0,001	мультипликативная	Определяется по харак- теристикам термодатчика
10	$\delta_{\mathrm{T}} = \pm 0,002$	мультипликативная	По паспорту тепловизора
11	$\delta_{\mathrm{MT}} = \pm 0,003$	мультипликативная	Определяется конструк- цией блока ОЭП
12	$\delta_{\rm W} = 0,001$ $\delta_{\rm W} = \pm 0,0668$	мультипликативная	Определяется допусками на теплофизические и гео- метрические параметры микросхемы, P=0,15 BT
13	$\Delta \Theta^{A}_{u_{3M}} = \pm 0.5^{0} C$	аддитивная	Общая погрешность измерения
14	$\partial \Theta_{u_{3M}} = \pm 0,033^0 C$	мультипликативная	Общая погрешность измерения
15	$\Delta \Theta_t = \pm 0,533^0 C$		Общая погрешность измерения

Литература

1. Орлов С.П. Техническая диагностика электронных блоков по тепловым полям элементов/С.П.Орлов, Е.А.Ахполова// Перспективные информационные технологии (ПИТ 2016): труды Международной научно-технической конференции/под ред.С.А.Прохорова - Самара: Изд. Самарского научного центра РАН, 2015. - С.139-142.

2. Orlov S.P. Intelligent measuring system for testing and failure analysis of electronic devices/S.P. Orlov, A.N. Vasilchenko//2016 XIX IEEE International Conference on Soft Computing and Measurements (SCM), IEEE Conference Publications. V.1. P.401-403. Publisher: IEEE Xplore, 2016.

3. Орлов С.П. Метод термографии при контроле электронной аппаратуры авиационной техники/С.П.Орлов, О.Ю Уютова// Наука и образование транспорту: труды IX Международной научно-практической конференции. Том 2. – Самара: СамГУПС, 2016. - С. 70-71.

M.H. Осипов¹, P.H. Сергеев²

«СЭНДВИЧ» СПЕКЛ-ИНТЕРФЕРОМЕТРИЯ ДЛЯ ОПРЕДЕЛЕНИЯ ПОЛЕЙ ПЕРЕМЕЩЕНИЯ

(Самарский национальный исследовательский университет им. С.П. Королёва¹) (АО «РКЦ «ПРОГРЕСС»²)

При решении различных задач механики основным критерием истинности существующих математических моделей остаются экспериментальные методы. При этом высокий потенциал современных численных методов анализа напряженно-деформированного состояния позволил вывести эксперимент на новый качественный уровень. Например, так, стало возможным ставить более корректно задачу экспериментального исследования, а также интерпретировать его результаты [1].

Одним из широко используемых методов когерентной оптики для определения полей перемещений при деформировании элементов конструкций является метод спекл-интерферометрии, поскольку он менее зависим от нестабильности оптической системы по сравнению с голографической интерферометрией. Нестабильность оптической системы приводит к потере информации.

Чувствительность спекл-интерферометрии к определению величины перемещения зависит от размеров спекл-структуры, которая определяется параметрами используемой оптической системы при записи субъективной спеклструктуры, т.е. числовой апертурой оптической системы. Увеличение числовой апертуры оптической системы приводит к уменьшению размеров регистрируемой спекл-структуры и, следовательно, к увеличению чувствительности спеклинтерферометрии. Однако, с другой стороны, увеличение числовой апертуры оптической системы приводит к требованию использования высококачественной оптики, так как при таких параметрах начинают существенным образом