

метров этой модели на основе полной диаграммы упругопластического деформирования, построенной по результатам эксперимента.

Литература

1. Радченко В.П., Еремин Ю.А. Реологическое деформирование и разрушения материалов и элементов конструкций. –М.: Машиностроение – 1, 2004. – 264 с.

2. Зотеев В.Е., Небогина Е.В., Бербасов Я.В. Оценивание параметров реологической модели энергетического типа на основе обобщенной регрессионной модели // В сб.: Труды Десятой Всероссийской научной конференции с международным участием. 25-27 мая 2016 г. Часть 2. СамГТУ, Самара, 2016. С.117–124.

3. Зотеев В.Е. Параметрическая идентификация диссипативных механических систем на основе разностных уравнений / Под ред. Радченко В.П. – М.: Машиностроение, 2009. – 344 с.

Э.А. Кильметов, А.И. Заико

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ СЕНСОРНОЙ ЧУВСТВИТЕЛЬНОСТИ МОСТОВЫХ МОДУЛЕЙ НА БАЗЕ *АМR*-ЭФФЕКТА

(Уфимский государственный авиационный технический университет)

Аннотация.

Получены динамические характеристики анизотропных магниторезистивных сенсоров. Предложена математическая модель динамических параметров анизотропного магниторезистивного сенсорного модуля.

Введение

Магниторезистивные модули на основе AMP эффекта используются для решения различных задач магнитометрии: определения курса объекта по магнитному полю Земли, измерения бесконтактным способом угла поворота и линейного перемещения объекта, скорости объекта, распознавания образа ферромагнитных объектов и работы в составе датчиков тока с гальванической развязкой. Для решения приведенных задач необходимо учитывать не только статические параметры, но и динамические характеристики модуля [2,4].

Динамические характеристики модулей на основе *AMR*-эффекта не достаточно изучены и является предметом данной статьи.

Анализ экспериментальных данных и синтез динамических характеристик

Все экспериментальные методы базируются на предположениях о сосредоточенности параметров объекта, стационарности во времени его динамических свойств и линейности их при малых изменениях. Практикой исследования динамики установлено, что большинстве случаев экспериментальные функции

удовлетворительно аппроксимируются решениями обыкновенных дифференциальных уравнений невысокого порядка и звеном чистого запаздывания [1].

Таким образом, зная входное воздействие и выходную зависимость, возможно, получить переходную характеристику системы. На вход датчика подается ступенчатая функция x(t), выходная зависимость h(t), будет представлять из себя решение дифференциального уравнения с простыми вещественными корнями [2]:

$$h(t)\approx c_0-\sum_{i=1}^n c_i\,e^{-a_it},$$

где $c_0 = h_{\infty} \approx h(T_y)$, c_i и a_i – вещественные числа, причем корни характеристического уравнения a_i должны удовлетворять эмпирическому неравенству [1]:

$$\frac{a_i}{a_{i+1}} \leq 0,5 \div 0,7; i = 1,2, \dots, n-1,$$

Для получения передаточной характеристики датчика магнитного поля используем ступенчатое воздействие. К датчику прикладывается внешнее постоянное магнитное поле заданной величины. Подается импульс подмагничивания который выстраивает все домены в одном направлении, что эквивалентно перевода датчика в нулевое состояние. После импульса подмагничивания снимаем осциллограммы выходного сигнала Рис. 1, домены постепенно начинают ориентироваться по направлению внешнего магнитного поля до преимущественной направленности в направлении внешнего поля.

Рис. 1. Осциллограмма выходного сигнала датчика после подачи импульса подмагничивания с разбросом возможных значений

Длительность импульса подмагничивания составляет 2 мкс и пренебрежимо мала по сравнению с длительностью переходного процесса 20мс. Поэтому её влияние в расчетах переходной функции можно не учитывать. Для определения передаточной функции используется метод последовательного приближения. Необходимо решить уравнение второго порядка

$$h(t) = c_0 - c_1 e^{-\alpha_1 t} + c_2 e^{-\alpha_2 t}.$$

Исследования показали, что звено второго порядка адекватно описывает характеристику датчика, повышение порядка не приводит к выявлению новых свойств.

На рисунке 1 представлена осциллограмма выходного сигнала датчика после подачи импульса подмагничивания, с учетом погрешности ее измерения 2% обозначенной пунктиром.

После аппроксимации экспериментальной зависимости получаем дифференциальное уравнение:

 $h(t) = 139 + 93,76e^{-55t} - 232,76e^{-18t}$ мВ/мкТл, Представим полученное выражение на графике Рис. 2.

Рис. 2. Передаточная характеристика опытная и аналитическая

Относительная погрешность аналитического уравнения составила 3%.

Амплитудно-частотный анализ, полученной модели

Из дифференциального уравнения получаем передаточную функцию в операторной форме:

$$W(p) = \frac{139}{(1+0.055p)(1+0.018p)}$$
 мВ/мкТл

Для оценки динамической характеристики на вход системы подается синусоидальный сигнал, и оцениваются параметры [1]. Произведя расчеты, установили, что выходная зависимость будет иметь вид:

$$Y(t) = \frac{139}{\sqrt{(1 - 0,00099\omega^2)^2 + (0,073\omega)^2}} \cdot 300 \cdot \sin\left[\omega t - \arctan\frac{0,073\omega}{(1 - 0,00099\omega^2)}\right] \text{мB},$$

Зная выходную зависимость, построим АЧХ (рис.3) и годограф (рис.4).

International Scientific Conference Proceedings "Advanced Information Technologies and Scientific Computing"

Рис. 4. Годограф АМР-датчик

Проанализировав выходную зависимость получаем максимальную частоту входного сигнала равную 20Гц.

Вывод

Таким образом, разработанный датчик с примененным в нем способом повышения чувствительности [5] имеет характеристики, рассмотренные в статье. Это позволяет использовать его для измерения изменяющихся во времени магнитных молей в таких системах, как измерение угла поворота, распознавание образа ферромагнитных объектов. Полученные зависимости позволяют прогнозировать отклик датчика на основе AMR-эффекта при изменяющихся входных воздействий.

Полученные экспериментальные данные по сравнению с аналитическими имеют 3% расхождения, что подтверждает их достоверность.

Литература

1. Балакирев В.С. Экспериментальное определение динамических характеристик промышленных объектов управления. -М.: «Энергия», 1967. -230 с.

2. Теория систем. Стохастические модели: Учеб. пособие А. И. Заико. - М.: Изд-во МАИ, 2005.-196 с.

3. Котенко Г. И. Магниторезисторы. М.: Энергия, 1972. - 80 с.

4. Воробьев А.В. Иванова Г.А. Кильметов Э.А. Исследование, моделирование и расчет мостовых сенсорных модулей, построенных на базе АМР-эффекта. Вестник УГАТУ. - № 4(57), Т. 17, - Уфа: УГАТУ, 2013. С. 144-151.

5. Патент на способ РФ №2553740. Способ повышения показателя чувствительности магниторезистивных датчиков Воробьев А. В. (RU), Заико А. И. (RU), Кильметов Э. А. (RU). - 2014111530/28; заявлено 25.03.2014; опубл. 20.06.2015, Бюл. 17.