

С.В. Болтанов

АНАЛИЗ ЭФФЕКТИВНОСТИ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ С ИСПОЛЬЗОВАНИЕМ ТИПОВОГО РЕШЕНИЯ «МЕТОД ПЕРЕМЕННЫХ НАПРАВЛЕНИЙ»

(ФГБОУ ВПО «Самарский государственный аэрокосмический университет им. академика С.П. Королева (национальный исследовательский университет)»)

В статье развивается подход, описанный в [1], позволяющий расширить и упростить применение высокопроизводительной вычислительной техники в численном моделировании. Ключевыми концепциями данного подхода являются применение типовых решений (паттернов) параллельного программирования, автоматическое распараллеливание и развертывание кода в различных программно-аппаратных архитектурах, разделение ролей системный программист — прикладной программист, использование интегрированных сред разработки (IDE) и методов визуализации кода на основе технологий XML.

Рассмотрим, каким образом может быть осуществлено распараллеливание численных моделей, основанных на методе переменных направлений. Пример также иллюстрирует технологию разработки произвольных последовательно-параллельных программ в нотации Templet [1].

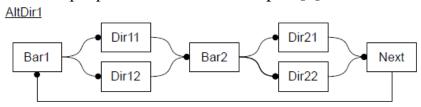


Рис. 1. Композиция процессов в методе переменных направлений с функциональной декомпозицией

Структура процессов для функциональной декомпозиции показана на рисунке 1. Процессы слева Dir11 и Dir12 выполняют вычисления горизонтальных независимых прогонок на ½ шага, процессы справа Dir21 и Dir22 выполняют вычисления вертикальных независимых прогонок при окончании шага (или наоборот: левые процессы — вертикальные, правые — горизонтальные прогонки). Реализация барьера по окончании ½ шага изображена на рисунке 2 (б). Метод bar отправляет сообщения, если закончились все входящие параллельные ветви. Контроль корректности последовательно-параллельной структуры реализуется при помощи ответных сообщений геt в каналах Link на рисунке 2 (а).

В программной реализации по модели данные сообщения не обязательны. Другие два барьерных процесса устроены аналогично процессу рисунка 2 (б) [2]. Автором рассматривалась параллельная реализация численного метода, описанного в работе [3].

Для решения задачи нелинейной динамики использовалась схема ADI [2], реализующая метод переменных направлений в общей памяти. В код обычной

схемы ADI были добавлены директивы компилятора OpenMP (Open Multi-Processing), которые предназначены для программирования многопоточных приложений на многопроцессорных системах с общей памятью.

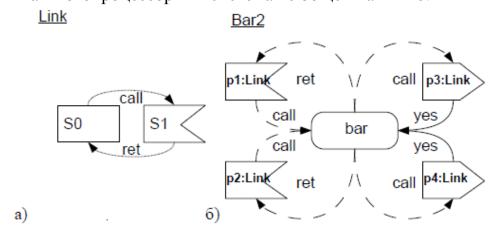


Рис. 2. Описание протокола канала (а) и барьера (б) в методе переменных направлений с функциональной декомпозицией

Использование директив компилятора OpenMP позволило выполнять процессы слева Dir11 и Dir12, вычисляющие горизонтальные независимые прогонки на ½ шага, и процессы справа Dir21 и Dir22, вычисляющие вертикальные независимые прогонки при окончании шага, параллельно. За счет этого время работы программы значительно сократилось.

Был разработан второй вариант схемы ADI. Во-первых, описание всех переменных, констант и методов были вынесены в один класс. Во-вторых, каждому методу добавлен модификатор inline, т.е. тело метода подставляется в каждую точку вызова, вместо того, чтобы генерировать код вызова. Причина использования inline-методов заключается в их эффективности. Всякий раз, когда вызывается метод, необходимо выполнить серию инструкций для формирования вызова метода, вставки аргументов в стек и возврата значения. В некоторых случаях для этого приходится использовать много тактов центрального процессора.

В экспериментах на многоядерной настольной системе решалась задача на области размером 500×500 по пространству и 100 отсчетов по времени. Использовался компьютер Samsung NP300E5A (Intel Core i5-2450M 2.50GHz) с установленной ОС Windows 7 Home Basic 64 bits.

Результаты эксперимента сведены в таблицу 1.

Таблица 1. Время вычислений измененной схемы ADI

Время вычислений	Время вычислений
(вариант 1), сек.	(вариант 2), сек.
13.060	12.673
12.675	12.286
12.272	12.716
12.441	12.551
12.352	12.629

Перспективные информационные технологии в научных исследованиях, проектировании и обучении

12.500	12.790
12.276	12.877
12.705	13.002
12.468	12.912
12.338	12.766

Из таблицы 1 видно, что среднее время вычисления в первом и втором вариантах схемы ADI примерно равно. Результаты этого эксперимента можно сравнить с результатом вычисления по обычной схеме ADI без добавлений директив компилятора OpenMP, модификаторов Inline и т.п.

Таблица 2. Время вычисления обычной схемы ADI

Время вычисления, сек.
29.694
29.344
29.299
29.134
29.499
30.306
29.716
29.923
29.507
28.856

Таким образом, применение директив компилятора OpenMP ускорило вычисления более чем в 2 раза: при применение типовой и измененной схемы ADI эффективность распараллеливания остается достаточно высокой. Однако использование типовой схемы обладает некоторыми преимуществами. Вопервых, вносится наглядность и удобство для разработчика численных методов. Во-вторых, появляется возможность скрыть от пользователя метод распараллеливания. Код системы Graphplus templet зарегистрирован Федеральным институтом промышленной собственности и открыт для некоммерческого применения (http://graphplus.ssau.ru).

Литература

- 1. Востокин С.В. Визуальное моделирование в разработке параллельных алгоритмов. Метод и программные средства. LAMBERT Academic Publishing, 2011. 304 с.
- 2. Востокин С.В., Хайрутдинов А.Р., Литвинов В.Г. Программный комплекс параллельного программирования Graphplus templet // Вестник СамГТУ: Сер. Физико-математические науки, 2011. № 4 (25). c. 146 153
- 3. Курушина С.Е. Аналитическое исследование и численное моделирование контрастных диссипативных структур в поле флуктуаций динамических переменных // Изв. вузов: Прикладная нелинейная динамика, 2009. − № 6. − с. 125 138