

А.А. Коротышева, С.Н. Жуков

АЛГОРИТМЫ РЕАЛИЗАЦИИ ТЕХНОЛОГИИ ДОПОЛНЕННОЙ РЕАЛЬНОСТИ В НАВИГАЦИОННОМ ОСНАЩЕНИИ АВТОМОБИЛЬНОГО ТРАНСПОРТА

(Нижегородский государственный университет им. Н.И. Лобачевского)

Введение

В современном мире для построения маршрутов движения водители автомобильного транспорта вместо обычных «бумажных» карт используют навигаторы, предоставляющие географическую информацию о местоположении и основанные на геоинформационных системах (ГИС) [1].

Одним из перспективных направлений в этой сфере является применение технологии дополненной реальности (augmented reality, AR) в виде проекции информации на лобовое стекло автомобиля. Такой способ вывода информации называется технологией HUD (head-up display, проекционный дисплей) [2].

Разработка и применение подобных алгоритмов дополненной реальности совместно с реализацией технологии HUD является актуальной задачей для повышения безопасности дорожного движения. В данной работе предложен и программно реализован алгоритм визуализации объектов с динамическими параметрами, функционально зависящими от геоинформационных данных с использованием сервисов OSRM (Open Street Routing Machine) и Open Street Map [3, 4].

Алгоритм построения маршрута

Основная задача ГИС - построение оптимального маршрута по критерию минимального расстояния или времени. Дорожная сеть, необходимая для поиска, состоит из местных дорог, городских улиц и магистралей и представляется в виде графа, где ребра — это дороги, а вершины — перекрестки, промежуточные и конечные точки. Использующиеся в ГИС алгоритмы выполняют предварительную обработку графа для ускорения работы отдельных запросов и более эффективного использования памяти. Предварительная обработка графа представляет процесс «сжатия» узлов графа по одному за проход. Чтобы выполнить сжатие, вычисляется кратчайший путь между ближайшими соседями узла, на них размещаются ярлыки и узел помечается как обработанный.

В данной работе для построения маршрутов был выбран маршрутный сервис OSRM – открытый проект с http - сервисом, использующий для оптимизации маршрута эффективный алгоритм Contraction Hierarchies [5]. Обычно в литературе в качестве алгоритмов маршрутизации применяют алгоритмы Дейкстры или A* [6, 7].

Алгоритм Дейкстры определяется выражением $d[v] = \min_{p:\, u[p] = false} d[p], \tag{1}$

где d[v] - текущая длина кратчайшего пути из s в v для вершины v, u[p] - булевский массив, в котором сначала все узлы не помечены (значение элементов – false), а на очередной итерации выбирается вершина v с самой маленькой величиной d[v] среди тех, которые ещё не помечены. Выбранная вершина отмечается помеченной, после чего на текущей итерации из вершины v выполняются релаксации — просматриваются все ребра (v,to), которые исходят из вершины, причем для каждого узла алгоритм пробует улучшить значение d[to]:

$$d[to] = \min(d[to], d[v] + len)$$
(2)

где len - длина текущего ребра. В конечном итоге после n итераций, все узлы станут помеченными, а алгоритм завершит работу.

Алгоритм А* определяется выражением

$$f(n) = g(n) + h(n), \tag{3}$$

где f(n) - минимальная стоимость перехода в соседний узел, g(n) - стоимость пути от начальной вершины до любой другой, h(n) - эвристическое приближение стоимости пути от узла n до конечного узла.

Выбранный алгоритм Contraction Hierarchies работает быстрее алгоритмов Дейкстры или А*, не требует дополнительной памяти, имеет относительно быстрый препроцессинг и состоит из двух стадий. Стадия препроцесса: вершины сортируются в каком-либо жёстком порядке, далее каждая пара рёбер проверяется на предмет её упрощения (возможность заменить эту пару одним ребром). Стадия запроса: с начальной и конечной точки маршрута запускается двусторонний алгоритм Дейкстры с условием, что волны идут только вверх по иерархии (когда они встретятся — путь найден), далее последовательно восстанавливаются сокращённые рёбра.

Расчет расстояния между точками маршрута будем производить по формуле гаверсинусов, чтобы избежать проблем с небольшими расстояниями

$$\Delta \sigma = 2 \arcsin \sqrt{\sin^2 \left(\frac{\phi_2 - \phi_1}{2}\right) + \cos \phi_1 \cos \phi_2 \sin^2 \left(\frac{\Delta \lambda}{2}\right)},\tag{4}$$

где - ϕ_1 , λ_1 ; ϕ_2 , λ_2 - широта и долгота двух точек в радианах, $\Delta\lambda$ - разница координат по долготе, $\Delta\sigma=\arccos\{\sin\phi_1\sin\phi_2+\cos\phi_1\cos\phi_2\cos\Delta\lambda\}$ - угловая разница.

Начальный азимут от начальной точки к конечной точке вычислим по формуле

$$\theta = a tan 2 (\sin \Delta \lambda \cos \varphi_2, \cos \varphi_1 \sin \varphi_2 - \sin \varphi_1 \cos \varphi_2 \cos \Delta \lambda). \tag{5}$$

Алгоритм визуализации и результаты моделирования

В качестве источника геоинформационных данных при реализации алгоритма визуализации объектов дополненной реальности (рисунок 1) был выбран OpenStreetMap - проект с открытым исходным кодом, которой является аналогом плиточных картографических сервисов, используемых такими системами, как OpenLayers. OpenStreetMap имеет глобальные векторные данные на уровне улиц и других пространственных объектов [4].

При построении маршрута определяются начальная и конечная координаты маршрута, их значения обрабатываются и передаются в маршрутный сервис OSRM. Для определения координат используется приемник GPS спутниковой системы навигации. Скаченные с серверов Open Street Мар тайлы объединяются в карту, полученные координаты переводятся в систему координат карты и визуализируются посредством 2D-графики.

Видеопоток с камеры поступает в функцию отрисовки объекта, в которой производится обработка и анализ каждого кадра видеопотока. Вычисляется маска объекта, его растяжение и поворот, что позволяет однозначно задать положение объекта в пространстве. Затем объект выводится на экран при помощи графической библиотеки.

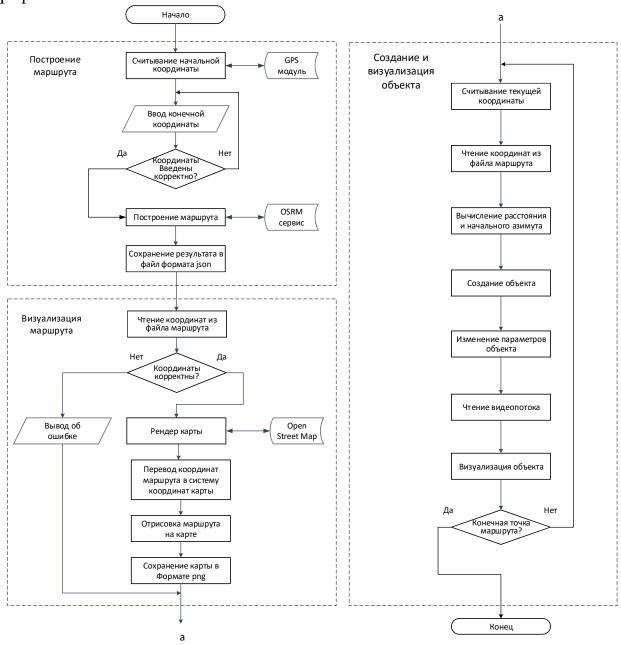


Рис. 1. Алгоритм визуализации объектов дополненной реальности

Разработанный алгоритм был реализован и опробован в программе на языке Python. При проведении моделирования с использованием сервиса OSRM сначала был построен оптимальный граф маршрута (рисунок 2). Затем в режиме реального времени программный код выводил на экран изображение дороги, полученное от видеокамеры, а также дополнительный слой с визуализацией направления движения по заданному маршруту в виде «подсказок» - стрелокуказателей. Маршрут сохранялся в отдельном файле формата json.

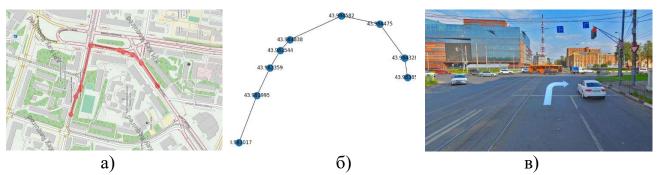


Рис. 2. Результаты моделирования: а) маршрут на карте, б) граф маршрута, в) визуализация объекта дополненной реальности.

Заключение

Создан и опробован алгоритм визуализации объектов с динамическими параметрами, функционально зависящими от геоинформационных данных с использованием сервисов OSRM и Open Street Map. Разработанный интерактивный интерфейс программы визуализации дополненной реальности с проекцией на лобовое стекло автомобиля обладает интегрированным эффектом от совмещения преимуществ навигационных систем и сервисов геоинформационных данных. Предложенный алгоритм может быть использован в программном обеспечении системы навигационного оснащения автомобиля.

Литература

- 1 Капралов, Е.Г. Геоинформатика / Капралов Е., Кошкарев А., Тикунов В., Лурье И., Семин В., Серапинас Б., Сидоренко В., Симонов А. М.: Academia, 2010.
- 2 Charissis V., Papanastasiou S. Human–machine collaboration through vehicle head up display interface / Cogn Tech Work, 2010. Vol. 12, pp. 41–50.
- 3 OSRM API Documentation [Электронный ресурс] // Project OSRM: [сайт]. URL: http://project-osrm.org/docs/v5.22.0/api/#general-options (дата обращения: 31.03.2021).
- 4 OpenStreetMap wiki-карта мира [Электронный ресурс] // OpenStreetMap: [сайт]. URL: https://www.openstreetmap.org/ (дата обращения: 31.03.2021).
- 5 Geisberger R., Sanders P., Schultes D., and Delling D. Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks / Proceedings of

the 7th Workshop on Experimental Algorithms (WEA'08). 5038 of Lecture Notes in Computer Science, 2008, pp. 319–333.

- 6 Dijkstra E. W. A Note on Two Problems in Connexion with Graphs // Numerische Mathematik, 1959. Vol. 1, pp. 269–271.
- 7 Hart P. E., Nilsson N. J., Raphael B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths // IEEE Transactions on Systems Science and Cybernetics SSC4, 1968. Vol. 2, pp. 100 107.

В.С. Кузьмин, Д.В. Еленев

АВТОМАТИЗИРОВАННАЯ СИСТЕМА МОНИТОРИНГА ТРАНСПОРТНОГО КОМПЛЕКСА ПРЕДПРИЯТИЯ

(Самарский университет)

Транспортный комплекс является важным технологическим объектом для предприятия. Он обеспечивает перевозку грузов в определенные технологические зоны. Данные технологические объекты применяются в различных отраслях: космических, атомных, авиационных и горнодобывающих.

Автоматизированная система управления транспортным комплексом состоит из следующих элементов: программируемые логические контроллеры, панельный компьютер в промышленном исполнении. На рисунке 1 представлена аппаратная структура автоматизированной и вычислительной системы управления [2].

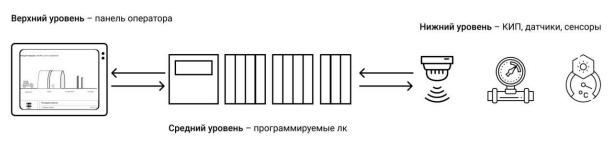


Рисунок 1

С датчиков полевого уровня на программируемый логический контроллер поступают дискретные и аналоговые сигналы с технологического объекта предприятия, после их обработки на программируемом логическом контроллере через интерфейс Ethernet по протоколу modbus TCP обработанные сигналы поступают программное решения панельного компьютера [3].

Основные алгоритмы работы и безопасности важных элементов транспортного комплекса заложены в программируемых логических контроллерах согласно правилам и требованиям основ автоматизированных систем управления технологическими процессами [4]. На рисунке 2 изображены примеры алгоритмов возникновения аварийных ситуаций элементов технологического объекта: выход из строя концевого выключателя, выход из строя реле давления.