5. На основе составленной методики возможна разработка методики расчета стыков на герметичность, для чего необходимо иметь характеристику герметичности применяемого типа уплотнения.

ЛИТЕРАТУРА

1. Тимошенко С. П. Сопротивление материалов. Т. 2. М., «Наука», 1965. 2. Волошин А. А., Григорьев Г. Т. Расчет и конструирование фланцевых соединений. М., «Машиностроение», 1972.

3. Бугов А. У. Еще раз о расчете напряженного состояния симметричных кольцевых фланцевых соединений валов гидротурбин. «Энергомашиностроение», 1966, № 7.

4. Детали машин. Под ред. Ачеркана Н. С. Т. 1. М., «Машиностроение», 1968.

Б. А. Апухтин Н. С. Кондрашов

О МЕХАНИЗМЕ ВОЗБУЖДЕНИЯ ПОПЕРЕЧНЫХ КОЛЕБАНИЙ ТОРЦЕВЫХ КОНТАКТНЫХ УПЛОТНЕНИЙ

В современных турбомашинах для разделения полостей с разными давлениями, через которые проходит вращающийся ротор, используются торцевые контактные уплотнения, состоящие из сильфона и шайбы, прижатой к ротору (рис. I).

В таких уплотнениях при отсутствии ограничения поперечных смещений шайбы силы трения на контактной поверхности шайбы могут вызвать устойчивое круговое движение ее в направлении, противоположном вращению ротора.

Существо явления состоит в следующем. Пусть закрепленная на сильфоне шайба 1 (рис. 2) по какой-либо причине оказалась смещенной относительно ротора 2, например, в направлении

Рис. 1. Схема торцевого контактного уплотнения

оси *у*, но осталась прижатой к вращающемуся ротору по всей плоскости контакта. Тогда из-за поперечной жесткости сильфона нормальное давление в коптакте оказывается неравномерным по окружности: оно возрастает в зоне *A* и уменьшается в зоне *C* в сравлении с давлением в зонах *B* и *D*. Вследствие этого неравномерной по окружности становится и сила трения (на рис. 2 это

Рис. 2. Схема действия сил трения на смещенную шайбу

условно изображено различной длиной векторов в соответствующих зонах).

В этом положении силы трения, действующие на шайбу, после приведения к ее центру O дают крутящий момент M и силу F. Под действием силы F шайба приобретает скорость, перпендикулярную ее смещению в данный момент, что приводит к круговому поступательному движению шайбы вокруг оси ротора в направлении, противоположном вращению ротора. Центробежные силы шайбы при таком движении увеличивают радиус вращения. При достаточно большом радиусе вращения может произойти потеря герметичности уплотнения или усталостная поломка сильфона.

В настоящей статье выявлены условия, при которых может наступить описанное явление, а также определены амплитуда и скорость движения точки шайбы, например, центра тяжести, и исследована устойчивость стационарного движения.

Для исследования движения центра тяжести шайбы используем плоскую упруго-массовую модель с двумя степенями свободы и полярную систему координат r, α (рис. 3). В дальнейшем сильфон предполагается безмассовым, вращение ротора — с постоянной скоростью, рассеяние энергии в материале сильфона — не зависящим от частоты, изменение r или α —моногармоническим.

Используя условия равновесия сил, действующих на шайбу в радиальном и тангенциальном направлениях.

а также условную упруго-вязкую схему для описания рассеяния энергии в материале сильфона (как это сделано в работе Панкова Я. Г. «Внутреннее трение при колебаниях упругих систем». М., Физматгиз, 1960), получим уравнения движения:

$$mr - mr \alpha^{2} + 2n_{r} r + cr + F_{r} = 0, \qquad (1)$$
$$mr \alpha + 2n_{\alpha} r \alpha + F_{\alpha} = 0,$$

Рис. 3. Расчетная схема

Рис. 4. К определению силы трения на контактной поверхности

где точкой обозначено дифференцирование по времени;

т — масса шайбы;

с — поперечная жесткость сильфо на при поступательном смещений шай бы;

$$n_r = \frac{\eta c}{2\omega_r}; \quad n_{\alpha} = \frac{\eta c}{2\omega_{\alpha}}; \quad \eta = \frac{\psi}{2\pi};$$

 Ψ — коэффициент иоглощения энергии в сильфоне;

ω_r — частота изменения радиуса;

частота изменения угла;

- *F*_r сила трения на контактной поверхности в радиальном направлении;
- Fv сила трения на контактной поверхности в окружном направлении.

Определим величины F_r и F_v . Для этого рассмотрим контактную поверх-

ность в виде тонкого кольца радиуса R (рис. 4). Компоненты относительной скорости шайбы и ротора в точке с координатой ф равны

$$v_r = \omega R \sin \varphi + r,$$

$$v_\alpha = \omega R \cos \varphi + \alpha r,$$
(2)

где сталовая скорость вращения ротора.

Направление вектора скорости v определяется углом v (рис. 4):

$$\sin v \approx \sin \varphi + \frac{r}{\omega R} \cos^2 \varphi - \frac{\alpha r}{\omega R} \sin \varphi \cos \varphi,$$

$$\cos v \approx \cos \varphi + \frac{\alpha r}{\omega R} \sin^2 \varphi - \frac{r}{\omega R} \sin \varphi \cos \varphi.$$
(3)

Модуль вектора скорости

$$v = V \overline{v_r^2 + v_a^2} = \omega R \Phi, \qquad (4)$$

$$\Phi = 1 + \frac{r}{\omega R} \sin \varphi + \frac{\alpha r}{\omega R} \cos \varphi.$$

где

Сила трения dF на элементарной дуге кольца в точке с координатой φ

$$dF = \frac{\mu}{2\pi} \left(dN - 2rk\cos\varphi \right),\tag{5}$$

где µ — коэффициент трения, 120 *N* — сила предварительного прижатия,

$$k=\frac{c_{\psi}}{R},$$

С_ψ — поперечный момент на контактной поверхности при едипичном смещении шайбы.

Сила трения *dF* будет направлена в сторону, противоположную вектору скорости. Проекции *dF* в радиальном и окружном направлениях соответственно будут равны:

$$dF_r = dF \sin \nu, dF_{\alpha} = dF \cos \nu.$$
(6)

Представим зависимость коэффициента трения от относительной скорости скольжения на контактной поверхности в виде

$$\mu = \mu_0 (1 + \xi_1 v + \xi_2 v^2 + \xi_3 v^3), \tag{7}$$

где µ₀ — коэффициент трения покоя;

ξ₁, ξ₂, ξ₃ — константы, характеризующие контактную пару.

Подставляя соотношения (3) и (5) с учетом (4) и (7) в равенства (6), а затем интегрируя полученные выражения по окружности контактного кольца, получим

$$F_{\mathbf{r}} = \frac{\mu_0 N_{\mathbf{r}}}{2\omega R} q_1, \quad F_{\alpha} = \frac{\mu_0 N_{\alpha} r}{2\omega R} q_1 - \mu_0 \kappa r q_2, \tag{8}$$
$$q_1 = 1 + 2\xi_1 \omega R + 3\xi_2 (\omega R)^2 + 4\xi_2 (\omega R)^3,$$

где

$$q_1 = 1 + 2\xi_1 \,\omega R + 3\xi_2 \,(\omega R)^2 + 4\xi_3 \,(\omega R)^3,$$

$$q_2 = 1 + \xi_1 \,\omega R + \xi_2 \,(\omega R)^2 + \xi_3 \,(\omega R)^3.$$

Подставляя формулы (8) в (1) и аппроксимируя коэффициент **п линейной** зависимостью, окончательно получим уравнения движения шайбы:

$$mr - mr\alpha^{2} + r\left(2n_{0r} + 2n_{1r}r + \frac{1}{2}\mu_{0}q_{1}\frac{N}{\omega R}\right) + cr = 0,$$

$$m\alpha + \alpha\left(2n_{0x} + 2n_{1x}r + \frac{1}{2}\mu_{0}q_{1}\frac{N}{\omega R}\right) - \mu_{0}q_{2}k = 0.$$
(9)

$$n_{0r} = \frac{\gamma_0 c}{2\omega_r}, \quad n_{1r} = \frac{\gamma_1 c}{2\omega_r}, \quad n_{0x} = \frac{\gamma_0 c}{2\omega_z}, \quad n_{1x} = \frac{\gamma_1 c}{2\omega_a},$$

*γ*₁₀, *η*₁ — соответственно постоянная и амплитудно-зависимая состав-ляющие коэффициента потерь в материале сильфона.

Как следует из системы (9), нелинейная зависимость (7) не приводит к дополнительным нелинейным членам в уравнениях движения. Учет этой зависимости уточняет только эффективные динампческие коэффициенты трения $\mu_0 q_1$, $\mu_0 q_2$ и устанавливает их зависимость от скорости вращения ротора ωR .

Система (9) допускает частное решение:

$$r_0 = \text{const},$$

$$\dot{\alpha}_0 = \text{const},$$

 $\omega_{\alpha} = \dot{\alpha}_0,$

что соответствует движению точек шайбы по окружности раднуса r_0 с постоянной скоростью $\alpha_0 r_0$ в направлении, противоположном вращению ротора. Тогда из уравнений (9) получим:

$$r_{0} = \frac{\mu_{0} q_{2} k - \eta_{0} c - \frac{1}{2} \frac{\mu_{0} q_{1} N}{\omega R} \sqrt{\frac{c}{m}}}{\eta_{1} c},$$

$$\dot{a}_{0} = \sqrt{\frac{c}{m}}.$$
(10)

Из равенств (10) следует, что скорость α₀ равна собственной частоте поперечных колебаний шайбы на сильфоне и условие возникновения рассматриваемого движения выполняется при соблюдении неравенства

$$\mu_0 k q_2 > \gamma_0 c + \frac{1}{2} \frac{\mu_0 q_1 N}{\omega R} \sqrt{\frac{c}{m}} .$$
 (11)

Исследуем устойчивость полученного решения (10). Для этого решение уравнений (9) представим в виде:

$$\begin{aligned} r &= r_0 + \delta, \\ \dot{a} &= a_0 + \hat{s}, \end{aligned}$$
 (12)

где о, с — малые возмущения.

Ввиду малости δ и ε возмущенное движение будет слабо отличаться от стационарного, поэтому для учета трения в материале сильфона при рассмотрении устойчивости движения используем схему условной эквивалентной вязкости.

Подставляя равенства (12) в (9), получим уравнения в вариациях:

$$\begin{split} & m\ddot{\delta} - 2mr_{0}\,\alpha_{0}\,\varepsilon + \left(2n_{0r} + 2n_{1r}\,r_{0} + \frac{1}{2}\,\frac{\mu_{0}\,q_{1}\,N}{\omega R}\right)\dot{\delta} = 0, \\ & m\varepsilon + \left(2n_{0\alpha} + 2n_{1\alpha}\,r_{0} + \frac{1}{2}\,\frac{\mu_{0}\,q_{1}\,N}{\omega R}\right)\dot{\varepsilon} + 2\dot{\alpha}_{0}\,n_{1\alpha}\,\delta = 0. \end{split}$$

Характеристическое уравнение системы (12) относительно б и є после подстановки в него решення (10) имеет вид

 $a_3p^3 + a_2p^2 + a_1p + a_0 = 0,$

где

$$a_{0} = 2 \sqrt{\frac{c}{m}} \left(\mu_{0} q_{2} k - \eta_{0} c - \frac{1}{2} \frac{\mu_{0} q_{1} N}{\omega R} \sqrt{\frac{c}{m}} \right),$$
$$a_{1} = \frac{\mu_{0}^{2} k^{2} q_{2}^{2}}{c},$$

122

$$a_2 = 2\mu_0 k q_2 \quad \sqrt{\frac{m}{c}}; \ a_3 = m.$$

При этом предполагалось, что $\omega_r = \omega_{\alpha} = \alpha_0$.

В соответствии с критерием Гурвица при $t \longrightarrow \infty$ δ и ε будут стремиться к нулю, если

 $a_0 > 0, a_1 > 0, a_1 a_2 - a_0 a_3 > 0, a_3 > 0.$

Коэффициенты a_1 и a_3 всегда положительны, поэтому условия устойчивости движения сводятся к двум неравенствам:

$$\begin{split} & \mu_0 \, kq_2 \! > \! \eta_0 \, c \, + \, \frac{1}{2} \, \frac{\mu_0 \, q_1 \, N}{\omega R} \, \sqrt{\frac{c}{m}} \, , \\ & \mu_0^4 \, k^3 \, q_2^3 \! > \! c_- \! \left(\mu_0 \, kq_2 - \eta_0 \, c \, - \, \frac{1}{2} \, \frac{\mu_0 \, q_1 \, N}{\omega R} \, \sqrt{\frac{c}{m}} \right) \, . \end{split}$$

В. И. Цейтлин

ОЦЕНКА ПРОЧНОСТИ ДЕТАЛЕЙ В УСЛОВИЯХ МНОГОКОМПОНЕНТНОГО НАГРУЖЕНИЯ

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

👦 — амплитудное напряжение переменной составляющей цикла, кгс/мм²:

- предел выпосливости при симметричном цикле, кгс/мм²;

- предел выносливости или предельное напряжение при асимметричном цикле, $\kappa c C/MM^2$;

🔮 — предел выносливости при асимметричном нагружении с учетом повторности нагружения статической составляющей, кгс/мм²;

э⁴ — эквивалентные термические напряжения при теплосменах, кгс/мм²;

m — среднее напряжение асимметричного цикла, кгс/мм²;

- я среднее повторно-статическое напряжение асимметричного цикла. KEC/MM2;
- среднее напряжение асимметричного цикла с учетом температурных напряжений, кес/мм²;
- з_В предел прочности материала, кгс/лм²;
- $\sigma_{H,5}^{\prime}$ предел длительной прочности при температуре t°C за время au часов. кгс/см²;
- $z_{B/z}^{z}$ предел длительной прочности с учетом повторности нагружения, $\underset{\kappa \in \mathcal{C}/\mathcal{MM}^2}{\kappa};$
 - эт действующее переменное напряжение, кгс/мм²;
 - k_{β} коэффициент запаса прочности при пропорциональном возрастании составляющих нагрузок до предельного состояния;
 - $k_v \rightarrow$ коэффициент запаса прочности при возрастании только переменной составляющей до предельного состояния;
 - N число циклов нагружения переменной составляющей;
 - z число циклов повторного статического нагружения.

Известно, что большинство деталей ГТД работает в условиях многокомпонентного нагружения. Например, рабочие лопатки