- в нелинейной механике. М.: Наука, 1973, 512 с.
- 2. D. Henry, Geometrie theory of semilinear parabolic equation, Leet. Notes Math., 1981, 348c.
- 3. Джрбанян М.М. Интегральные преобразования и представления функций в комплексной области. М.: Науке, 1966, 672с.
- 4. Стрыгин В.В., Соболев В.А. Влияние геометрических и кинетических параметров и диосипации энергии на устойчивость ориентации спутников с двойным вращением. Космические исследования, 1976, 14, № 3, с.3€6.371.
- 5. Кобрин А.И., Мартиненко Ю.А. Движение проводящего твердого тела около центра масс в медленно изменяющемся магнитном поле, ДАН СССР, т.261, \$5, 1981.
- 6. Ладыженская О.А., Солонников В.А. О принципе линеаризации и инвариантных многообразиях для задач магентной гидродинамики. Записки научных семинаров ЛОМИ, т.38, 1973.

м.И. Васенина

ОБ АППРОКСИМАЦИИ УСЛОВИЙ НА СВОБОДНОЙ ГРАНИЦЕ

Задачи движения вязкой несжимаемой жидкости со свободными границами представляют значительный интерес. Особую роль они иг-PART B BONDOCAX XEMEYECKOÑ, KOCMEYECKOÑ TEXHOLOFRE, FEOGNISKE E . др. Однако их расчет затруднителен, так как жаряну с проблемами решения нелинейных уравнений, какими являются уравнения Навье-Стокса, возникают принципиальные трудности, связанные с нелинейностью задачи по границе области, которая находится одновременно с вычислением полей скорости и давления. Решение этих задач может онть осуществлено либо в переменных "выхрь, функция тока", либо в переменных "скорость, давление". При использовании уравнений в переменных "спорость, давление" постановка граничных условий значительно проще, чем при других способах расчета, и качественно карактер расчела не зависит от числа пространственных переменных (плоский и пространственный случай), однако при этом возникают дополнительные трудности, связанные с необходимостью удовлетворения неразрывности и расчета поля давления. При решении уравнений Навье-Стокса в переменных "вихрь, функция тока" уравнение неразривности удовлетверяется автоматически, что ведет и более эффективным алгоритмам, но аппроисимация граничных условий требует дополнительных исследований. Для случая твердых границ (условие прилипания) вопросы керректности перехода от граничного условия для функции тока к граничному условие для вихря были рассмотрены в работах [1,2,6]. В настоящей работе подобные исследования проводятся для задач со свободными границами. Ранее некоторые способы аппроисимении рассматривались в работах [3,5].

І. Постановка задачи

Рассмотрим течение вязкой несжимаемой жидкости со свободной границей в прямоугольной области (течение пленки). Уравнения Навые-Стокса в переменных "вихрь, функция тока" в системе координат, связанной с поверхностью тела, имеют вил

$$\frac{\partial \omega}{\partial t} + u \frac{\partial \omega}{\partial x_{1}} + \frac{v}{H} \frac{\partial \omega}{\partial x_{2}} = \frac{1}{Re} \left\{ \frac{\partial^{2} \omega}{\partial x_{1}^{2}} + \frac{1}{H^{2}} \frac{\partial^{2} \omega}{\partial x_{2}^{2}} \right\}$$

$$\frac{\partial^{2} \psi}{\partial x_{1}^{2}} + \frac{1}{H^{2}} \frac{\partial^{2} \psi}{\partial x_{2}^{2}} = \omega,$$

$$u = -\frac{1}{H} \frac{\partial \psi}{\partial x_{2}} \qquad v = \frac{\partial \psi}{\partial x_{1}},$$
(I)

где ω - выхрь, ψ - функция тока, u и v - нормальная и касательная составляющие вектора скорости, H = 1 + n k, n - нормаль в свободной поверхности, k - ее кривизна.

Граничные условия на свободной поверхности:

- а) кинематическое условие нормальная к свободной поверхности составляющая скорости должна опвиадать со скоростью перемещения поверхности разрыва;
- в) динамическое условие вектор напряжения для площадок, касательных к свободной поверхности, должен быть направлен по нормали к этим площадкам и по численной величине равен ρ_0 .

Обозначим S = S(t)- уравнение свободной поверхности. Тогда граничные условия на свободной поверхности примут выд

$$\frac{1}{Re H} \frac{\partial^2 \Psi}{\partial x_1 \partial x_2} - p = p \text{ BRETHER}$$
 (2)

(нормальное напряжение равно заданному внешнему давлению),

$$\frac{\partial^{2} \psi}{\partial x_{1}^{2}} = \frac{1}{H^{2}} \frac{\partial^{2} \psi}{\partial x_{2}^{2}}$$
 (3)

(отсутствие насательного напряжения),

$$\frac{\partial S}{\partial t} = u \tag{4}$$

(кинематическое условие совместности), Эта задача имеет точное решение:

$$\mathcal{V} = \mathcal{X}_1(2\alpha - \mathcal{X}_1). \tag{5}$$

Возьмем его в качестве начального условия.

Таким образом, имеем систему уравнений (I) с граничными условиями на свободной поверхности (2)-(4) и начальным условием (5).

П. Разностная скема

Аппроисвымируем уравнения для выхря разностной схемой, примения для аппроисвымии конвентивных членов монотонную аппроисвымению A.A. Самарского $\sqrt{1}$

Обозначим : $h_1 = h_2 = h$ — шаги сетки по координатам OX_1 , OX_2 соответственно; T — шаг сетки по времени.

Разностний аналог уравнения для вихря запишется при $t = n + \frac{1}{2}$ $\frac{\omega_{i,j}^{n+1/2} - \omega_{i,j}^{n}}{0.5 \tau} + \frac{u_{i,j}^{n} - |u_{i,j}|^{n}}{2} \frac{\omega_{i+1,j}^{n+1/2} - \omega_{i,j}^{n+1/2}}{h} + \frac{u_{i,j}^{n} + |u_{i,j}|^{n}}{2} \frac{\omega_{i,j}^{n-1/2} - \omega_{i-1,j}^{n+1/2}}{h} + \frac{v_{i,j}^{n} - (v_{i,j}^{n})^{n}}{h} \frac{\omega_{i,j+1}^{n} - \omega_{i,j}^{n}}{h} + \frac{v_{i,j}^{n} + |v_{i,j}|^{n}}{2h} \frac{\omega_{i,j-1,j}^{n} - \omega_{i,j-1}^{n}}{h} = \frac{1}{1 + |u_{i,j}|^{n}h} \frac{\omega_{i+1,j}^{n+1/2} - 2\omega_{i,j}^{n+1/2} + \omega_{i-1,j}^{n+1/2}}{h^{2}} + \frac{1}{h^{2}}$

$$+\frac{1}{\frac{1+|v_{i,j}|^nh}{2}}\frac{\omega_{i,j+1}^n-2\omega_{i,j}^n+\omega_{i,j-1}^n}{\mathcal{H}^2h^2}.$$

Аналогично при t = n+1. Уравнение для функции тока аппроксимируется:

 $\frac{\psi_{i,j}^{n+1/2} - \psi_{i,j}^{n}}{0.5\tau} = \frac{\psi_{i+1,j}^{n+1/2} - 2\psi_{i,j}^{n+1/2} + \psi_{i-1,j}^{n+1/2}}{h^{2}} + \frac{1}{H^{2}} \frac{\psi_{i,j+1}^{n} - 2\psi_{i,j}^{n} + \psi_{i,j-1}^{n}}{h^{2}} - \omega^{n},$ $\frac{\psi_{i,j}^{n+1} - \psi_{i,j}^{n+1/2}}{0.5\tau} = \frac{1}{H^{2}} \frac{\psi_{i,j+1}^{n+1/2} - 2\psi_{i,j}^{n+1} + \psi_{i,j-1}^{n+1/2}}{h^{2}} + \frac{\psi_{i+1,j}^{n+1/2} - 2\psi_{i,j}^{n+1/2} + \psi_{i-1,j}^{n+1/2}}{h^{2}} - \omega^{n}.$

Вывене алгебранческих смотем уравнений; аппроясимирующих разностную ехему

Как и в случае твардой границы, нетривнальным является вопрос перехода от заданных гранданых условий в виде производных для функции тока и граничному условию для вихря.

Условия на свободной границе (2),(3), записанные в точке (M-1, 1), аппроисимируются разностными уравнениями и объединяются в систаму

$$\frac{\Psi_{M-1,j+1} - 2 \Psi_{M-1,j} + \Psi_{M-1,j-1} = H^{2}(\Psi_{M,j} - 2 \Psi_{M-1,j} + \Psi_{M-2j})}{1}$$

$$\frac{1}{Re H} (\Psi_{M,j} - \Psi_{M-1,j} + \Psi_{M,j-1} + \Psi_{M-1,j-1}) = p$$

$$\downarrow = I N - 1.$$
6)

Обозначим: $\mathcal{G}_{j} = \psi_{M-1,j}$; $\mathcal{Z}_{j} = \psi_{M,j}$; $\mathcal{A}_{i} = \psi_{M-2,j}$. Тогда система уравнений (6) передивется

$$\begin{aligned}
y_{j+1} - 2(1 - H^2) y_j + y_{j-1} - H^2 z_j &= H^2 f_j \\
z_j - z_{j-1} - y_j + y_{j-1} &= Re H \rho \\
j &= 1, N-1
\end{aligned}$$
(7)

На входе задане y_0, z_0 : на виходе $z_N = z_{N-1}$, $y_N = y_{N-1}$. Таким образом, имеем систему уравнений с 2N неизвестными относительно функции тока на действительной свободной границе y_i к функции тока на фиктивной свободной границе z_i ; свободные члени в этой системе уравнений — функции тока в точке, отстоящей от свободной граници на один ваг сетии.

Матрица коэффициентов системы имеет выд

Этэ матрица специял ного вида и экономичным методом ее решения является немототоннал прогонка для скалярных пятиточечных уравнений [?], иля определения вихря на свободной поверхности вводильов, полобко [1]. различные сеточные области для вихря и функции тока, ном этом вихри определялся внутри области, отстоящей от границь на одик маг сетки. Уравнение для $\,\psi\,\,\,$ решается в областв [0,Mh] . а для ω — в области [0,(M-1)h] в сочетании з втерационным пропессом на границе $\omega^{s+1}=\alpha f(\psi^{s+1})+(1-\alpha)\omega^s$, где $f(\psi)=2\psi_{x_1x_1}$. α — параметр релаксации. Величину этого параматра можно вывести подобне [8].

последовательность расчатов:

Последовательность расчатов: S+11) регостся система (7), находятся $\psi_{M-1,j}$; $\psi_{M,j}$; 2) речастся уравнение ду ψ внутри области $\psi_{M-1,j}^{S+1}$; $\psi_{M,j}^{S+1}$

методом верхнай редаксации или методом переменных направлений;

3) BHTDALRGTON

$$\omega/s' = 2f(\psi^{s+1}) + (1-\alpha)\omega^{s}$$
.

Если $|\omega|_S^{S+1} = |\omega|_S^S > \varepsilon$ — цикл повторяетоя, если сходимость на границе достигнута, то уравнение для вихря решается внутри области методом переменных направления;

4) определяется новая форма свебодная монержности.

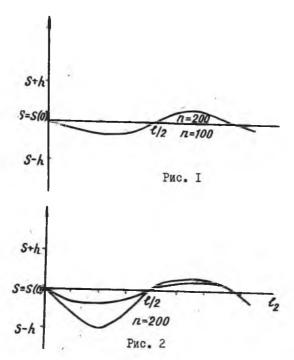
Давление исключается из уравнений навые-Стокса путем интегрирования но граница: Это приведит в зедалению в граничном условии (2) производных функции тока тратьбер доржека, что приводит к ухудшению сходимости. Целессобразно момольвовать процесс редагоапик в виде

$$\frac{1}{ReH} \frac{\partial^2 \psi}{\partial x_1 \partial x_2} = \sqrt{p^{n+1}} + (1-1)\mu^n.$$

Расчеты проводились на сет ак 1/ · 10 и - 20 в пленке, цвлиндре и конусе с параметрами $T=10^{-1}$ $4 \leqslant 2e < 10$, n=300.

IУ. Результаты расчанов

- I) Расчеты показали:
- I) при использовании предложенного метода удовлетверения граничных условий сходимость итераций для вихря есть для любых 🌾 , во при $\alpha \leqslant \alpha^*$, где α^* выбирается по [8] , погрешность значитель-HO MERLES;
- 2) параметр втерацив eta метода релаксацие для функции тока вкут-



ри области оказывает существенное влияние на сходимость для вихря на границе: при $\beta < \beta^*$ и $\propto > \propto^*$ итерации для вихря на границе расходятся; для метода переменных направлений такой зависимости нет; 3) при Re > 10 граница разбалтывается, происходит эффект "опрокадывания" сеток — точки границы попадают во внутреннюю область, при Re < 10 граница имеет сходную форму на всех временных слоях, но амплитуда воли на свободной поверхности постепенно увеличивается, что приводит к распространению воли вглубь жидкости.

Форма свободной поверхности при Re=1 в пленке и цилиндре показана на рис. I и рис. 2 соответственно.

Литература

- I. Грязнов В.Л., Полежаев В.И. Исследования некоторых разностных схем и аппровсимаций граничных условий для численного решения уравнений тепловой конвекции. М., Преприят ипмех, 1974.
 - 2. Дородинцын А.А., Меллер Н.А. О некоторых подходах и реше-

нию стационариях уравнечий Навье-Стокса.- жвимо, 1968, т.8, № 2, с.393-402.

- 3. Матеева Э.И., Пальцев Б.В. О разделении областей при решении краевых задач для уравнения Пуассона в областях сложной формы.— ЖВММФ, 1973, т.13, № 6, с.1441—1452.
- 4. Непомнящий А.А., Тарунин К.А. Двухноловой метод расчета течений вязкой жидкости со свободной поверхностью. Тр.УІ Всесованого семинара по численным методам механини визкой жидкости. Новосибирси, 1978, с.197-207.
- 5. Осмоловский В.Г., Ривинд В.Я. О методе разделения областей для уравнений с разрывании коэффициентами.— **ВВММО**, 1981, т.21, 1, 101-104.
- 6. Отрощенко И.В., Федоренко Р.Н. О приближенном решении стационарных уравнений навые-Стокса. М.: ИПМ, 1975.
- 7. Самарский А.А., Николаев К.С. Методы решения сеточных уравнений. М., 1978.
- 8. Тарунин К.Л. Оптимизация неявных схем для уравнений Навье-Стокса в переменных функции тока и вихря скорости. — Тр.У Всесоюзного семинара по численным методам мехадики вязкой жидности. Новосибирся, 1975, с.3-26.

Б.Д.Гельман, Ю.К.Гликлих

OTN LATTHN NUHPAHEOTOHM

В настоящей работе двется конструкция многозначного аналога интеграца ито и исследуются его свойства. С немощью введенного понятия удается рассмотреть стохастические дифференциальные виличения и подучить утверждения о существовании их решений.

В теории стохостических уравнений, как и в теории обыновенных дифференциальных уравнений, вилочения возникают естественно, например, в случае управляемых систем или при исследовании уравнений с разрывными коэффициентами (так называемые ослабленные решения стохостических уравнений). Однако в известных авторам работах (см., например, [I-3] и приведенную там библиографию) рассматривались стохастические дифференциальные вилочения лишь с однозначной непрерывной диффузией, что видимо, объясняется используемым аппаратом и отсутствием конструкции многозначного интеграла Итс.