- 6. Туристские услуги. Экскурсионные услуги. Общие требования // ГОСТ Р 54604 2011. URL.: http://www.gostedu.ru/51530.html (дата обращения: 15.01.2020).
- 7. Щербакова В. М., Ивушкина Е. Б. К вопросу подготовки гидов переводчиков // Новая наука: Стратегии и векторы развития. 2016. № 1-2 (58). С. 195-198.

ОПЫТ ИСПОЛЬЗОВАНИЯ ЦЕНТРА ИСПЫТАНИЙ НАНОСПУТНИКОВ ПРИ ПОДГОТОВКЕ И ПЕРЕПОДГОТОВКЕ КАДРОВ В ОБЛАСТИ КОСМИЧЕСКОЙ ТЕХНИКИ

И.В. Белоконов, А.В. Ивлиев

Самарский национальный исследовательский университет имени академика С.П. Королёва

Центр испытаний и отработки наноспутников (ЦИОН) был создан в 2014 году Правительством Самарской области в составе государственного автономного учреждения «Центр инноваций и кластерных инициатив» Самарской области (ГАУ «ЦИК» СО) под научным руководством проф. Белоконова И.В. На базе ЦИОН был реализован проект первого наноспутника, созданного студентами и аспирантами Самарского университета и выведенного на орбиту в апреле 2016 года. В конце 2018 года комплекс оборудования был передан на межвузовскую кафедру космических исследований, и с этого момента времени активно используется не только при выполнении исследовательских работ, но и в учебном процессе. К настоящему моменту времени ЦИОН был доукомплектован и модернизирован. В результате в его состав включены: лаборатория разработки, изготовления, сборки и тестирования электронных систем наноспутников; лаборатория термовакуумных испытаний; лаборатория вибрационных испытаний; лаборатория отработки систем стабилизации и ориентации наноспутников; лаборатория имитации динамики движения наноспутников и тестирования датчиков инерциальной информации; стенд тестирования панелей солнечных батарей; стенд определения массово-инерционных характеристик наноспутников.

Лаборатория разработки, изготовления, сборки и тестирования электронных систем наноспутников включает следующий комплект оборудования: полуавтомат для установки всех видов современных ком-

понентов, прецизионный дозатор и трафаретный принтер для нанесения, печь и фены для оплавления паяльных паст, система ультразвуковой отмывки, контрольно — измерительное и другое необходимое оборудование

Лаборатория термовакуумных испытаний оборудована термовакуумной камерой УП-125ТХД, предназначенной для исследования влияния факторов космического пространства (глубокого вакуума, циклического нагрева-охлаждения) на работоспособность бортовых систем и наноспутника в целом при орбитальном движении.

Лаборатория вибрационных испытаний оснащена установкой испытательной вибрационной электродинамической ВСВ-202-150, позволяющей производить динамические испытания наноспутников и их компонентов, имитирующие процесс выведения на орбиту.

Лаборатория отработки систем стабилизации и ориентации наноспутников, включающей в себя платформу на воздушной опоре, системой катушек Гемгольца, позволяющей имитировать магнитное поле Земли при орбитальном движении, системы имитации звёздного неба и засветки Солнцем, запитываемых от программно управляемых источников питания.

Основу лаборатории имитации динамики движения наноспутников и тестирования датчиков инерциальной информации составляет стенд, оснащенный роботизированным манипулятором FANUC M-10iA/12HS, с шестью степенями свободы, обеспечивающим точность позиционирования 0,08 мм и позволяющим перемещать массу до 10 кг, что позволяет калибровать инерциальные датчики на сложных режимах углового движения наноспутника. В качестве объекта испытаний наиболее часто рассматривается датчик угловой скорости наноспутника, закручивающийся вокруг продольной оси на различных режимах работы робота-манипулятора: 1, 2, 3, 4, 5, 10, 15 % от максимальной скорости вращения 6-ой оси робота манипулятора (600 °/c).

Основу стенда тестирования панелей солнечных батарей составляет имитатор Солнца ИС-100, произведённый ЛОМО. Тестируемые панели солнечных батарей устанавливаются на представленном выше роботизированном манипуляторе либо по отдельности, либо в составе наноспутника. Манипулятор позволяет с высокой точностью совместить рабочую поверхность панелей фотоэлектронных преобразователей с поверхностью облучаемой имитатором Солнца.

В дополнение к переданному оборудованию, сотрудниками кафедры был разработан стенд определения моментов инерции и положения центра масс наноспутников, который защищён патентом на изобретение (патент 2 698 536 РФ, Устройство для определения центров масс и моментов инерции объектов/ Белоконов И.В., Баринова Е.В., Ивлиев А.В., Ключник В.Н., Тимбай И.А.// Опубликован 28.08.2019. Бюллетень № 25). Принцип его работы основан на измерении периода колебаний платформы с установленным наноспутником с помощью крутильных весов.

Описанное оборудование смонтировано, налажено и применяется как для выполнения научных разработок, так и используется в учебном процессе. Проводятся занятия у бакалавров по направлению 240301 «Ракетные комплексы и космонавтика» (профиль «Малогабаритные космические аппараты и наноспутники»), магистров по направлению 240401 «Ракетные комплексы и космонавтика» (профили «Перспективные космические технологии и эксперименты в космосе», «Advanced space technologies and experiments in space»), при проведении международной летней космической школы: «Перспективные космические технологии и эксперименты в космосе», при переподготовке зарубежных специалистов по краткосрочным программам (Азербайджан, Шри-Ланка, Мексика). В 2019 года по программе дополнительного профессионального образования повысили квалификацию 25 сотрудников предприятий аэрокосмического кластера Самарской области.

ОБРАЗОВАТЕЛЬНЫЙ ПОТЕНЦИАЛ СОЦИАЛЬНЫХ СЕТЕЙ О.В. Власова, Д.Д. Габелия, Е.Г. Шиханова

Самарский национальный исследовательский университет имени академика С.П. Королёва

В современных условиях к проблеме использования студентами социальных сетей проявляется все больше внимания. Студенты играют важную роль в развитии общества, в создании инновационных технологий, а контент интернет-платформ не всегда является корректным для формирования позитивных социокультурных характеристик молодого человека. Актуальность данной проблемы возрастает в связи с тем, что постоянно развивающиеся технологии задают темп изменения тенден-