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1. Satellite Aist (stork) was produced by Center CSDB-Progress and was intended for sci-

entific experiments. Specialists of Samara State Aerospace University took part in making its air-

borne equipment. The satellite was launched 2013.04.21 by means of separation from spacecraft 

Bion M-1, which was in the almost circular orbit with the altitude 570 km and the inclination 64.9°. 

The main mode of the satellite flight is undirected. The satellite has the navigation system, which 

provides measuring its motion parameters and communication with ground controlling means. The 

real attitude motion of the satellite was reconstructed by processing onboard magnetic field meas-

urements. 

2. Motion equations. The satellite is assumed to be a rigid body. To write down the equa-

tions of its attitude motion and the relations, used in processing measurement data, we introduce the 

following four right-hand Cartesian coordinate systems. 

The structural system 321 yyOy  is rigidly fixed to the satellite body. The point O  is the sat-

ellite mass center. The system serves for interpretation of onboard magnetic measurements. The 

system 321 xxOx  is formed by the satellite principal central axes of inertia. Bellow, components of 

all vectors regards to this system unless specifically stated to the contrary. 

The system 321 YYCY  is closed to the second equatorial coordinate system of date. Its origin 

coincides with the Earth center of mass; the plane 21YCY  coincides with the equatorial plane; the 

axis 3CY  is directed to North Pole. The axis 1CY  is directed approximately to the equinoctial point; 

the axis is turned from the plane of Greenwich meridian on the mean sidereal time against the Earth 

rotation. The system 321 YYCY  is used in the model SGP4 [1], which serves for description the satel-

lite orbital motion. The system is assumed to be inertial one. 

The quasi inertial system 321 ZZOZ  serves for description and graphic representation of the 

satellite attitude motion. The axis 2OZ  is directed along the orbital angular momentum at every in-

stant, the axis 3OZ  is parallel to the nodal line of the satellite osculating orbit. The absolute value of 

the angular rate of this system did not exceed 5 per day. 

We denote the matrix of transition from the system 321 xxOx  to the structural system by 

3
1,|||| jiija , where )cos( jiij OxOya


 . The matrix elements are expressed by functions of the angles 

 ,, , which are defined as follows. The system 321 yyOy  is transformed to the system 321 xxOx  

by three sequential rotations: (1) through the angle   around the axis 2Oy , (2) through the angle   

around the new axis 3Oy , (3) through the angle   around the new axis 1Oy , which coincides with 

the axis 1Ox . 

We use the normalized quaternion ),,,( 3210 QQQQQ , 12
3

2
2

2
1

2
0  QQQQ  to assign 

the attitude of the system 321 xxOx  with respect to the system 321 YYCY . The quaternion transition 

formula is 1
321321 ),,,0(),,,0(  QQ  xxxYYY . Here, the points O  and C  are assumed to be coin-
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cident. We assign the attitude of the system 321 xxOx  with respect to the system 321 ZZOZ  by the 

common Euler’s angles  ,, . The system 321 ZZOZ  is transformed to the system 321 xxOx  by 

three sequential rotations: (1) through the angle   around the axis 3OZ , (2) through the angle   

around the new axis 1OZ , (3) through the angle   around the new axis 3OZ , which coincides with 

the axis 3Ox . 

We use the model SGP4 to assign the satellite orbital motion. The input data for the model 

are NORAD two line elements [1]. The equations of satellite attitude motion consist of Euler’s dy-

namic equations for the components i  of the angular rate and kinematical equations for compo-

nents of the quaternion Q . We take into account the gravitational torque and the restoring torque 

from the Earth magnetic field. The equations of attitude motion have the form 
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Here, ix  are the components of the vector ;CO iH  are the components of the Earth magnetic field 

strength at the point O ; iI  are the moments of inertia of the satellite relative to the axes iOx ; ipI1  

are the components of the spacecraft magnetic dipole moment; ijke  is Levi-Civita’s symbol ( 1ijke  

when the indexes kji ,,  form an even permutation of numbers 1, 2. and 3; 1ijke  when the in-

dexes form an odd permutation, 0ijke  in other cases). The components iH  are specified by the 

models IGRF and SGP4, as well as the transfer equations from Greenwich system to the system 

321 YYCY  and next to the system 321 xxOx . We use 1000 s as a unit of time and 1000 km as a unit of 

length when numerical integrate equations (1). Then the units of the other quantities are following: 
13s10][ i , Oe10scmg10][ 512/12/15  iH , ][ ip  12/12/1 scm1.0 g . The units for ip  and 

iH  are given in the CGSM system.  

 The variables iQ  are not independent owing to the normalizing condition of the quaternion 

Q . If Q  satisfies this condition at initial time, then Q  will satisfy it identically owing to properties 

of the kinematical equations in (1). So it is enough to normalize Q  only at initial time.  

The parameters  ,  , ip ,  ,,  are assumed to be constant in an interval of data processing, but 

their values are estimated by processing measurement data along with initial values of a satellite 

attitude motion, i.e. they are fitted parameters. 

3. Data processing. There are two triaxial magnetometers onboard Aist. We denote them 

magnetometer 1 and magnetometer 2. Magnetic measurements were carried out in separate time 

segments, which lasted not more than 6 hr. Readings of the magnetometers were digitized for the 

same instants of time. The distances between neighbor instants were either 5 or 10 s. The measura-

ble components of the magnetic strength are referred to the own magnetometer coordinate systems. 

The coordinate system of magnetometer 2 is used as structural one. Magnetometer 1 proved to be 

less precise than magnetometer 2 [2], and we didn’t include its measurement in final processing. 

The measurements of magnetometer 2, obtained during a measurement séance, form the set 

of numbers ),,2,1;3,2,1(,
)(

Nniht
n
in  . Here, 

)(n
ih  is a result of measuring the component 
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ih  of the magnetic strength by magnetometer 2 in its own coordinate system at instant nt . Follow-

ing the least squares method, we consider a solution of system (1) to be a reconstruction of the real 

satellite motion in the interval Nttt 1  if it minimizes the functional 
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Here, i  is the estimate of the unknown constant shift in measurements of the component ih . The 

functional has to be minimized over initial conditions of a solution of equations (1) at the instant 1t  

and the parameters ip ,  ,  ,  ,, . At that, the quaternion )( 1tQ  must be normalized to unity. 

4. The example of reconstruction of Aist attitude motion is presented in the plots below. 

The plots in the upper left part of the next page describe the time dependence of Euler’s angles 

 ,, , as well as the angle   between the Earth magnetic field strength and the estimated mag-

netic dipole of the satellite. The upper right part of the page contains the plots of the angular rates 

i . All these plots illustrate the motion of the system 321 xxOx  relative to the quasi inertial coordi-

nate system 321 ZZOZ . The plots in the lower part of the next page illustrate the quality of approxi-

mation of measurement data in the framework of our mathematical model. Here, the left plots are 

the plots of the functions )(ˆ thi  and broken lines whose links join in series the points ),(
)(

i
n
in ht  , 

Nn ,,2,1  . Each pair of the broken line and the plot of its approximating function )(ˆ thi  are de-

picted in the common coordinate system. The corresponding plot and broken lines are in a good 

agreement. Therefore to illustrate the approximation errors the lower right part of the page contains 

marks, which depict the points ))(ˆ,(
)(

ini
n

in thht  .  

In this example 29:25:201 t  UTC 2013.05.16, 2098N , 4.2141  ttN min, the 

standard deviation of errors in the measurement data 
)(n

ih  equals 817 , )00042.0(226.1 , 

)00045.0(306.0 , )0015.0(024.0 , )0017.0(160.0 , )0020.0(191.0 . Hear, the an-

gles are presented in radians; parameters ip  are given in units used at integration of equations (1); 

standard deviations of estimated parameters are given in brackets. One can find more detail recon-

struction results on the Aist attitude motion in [2]. 
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Fig. 1Example of reconstruction of Aist attitude motion and approximation of the measurement da-

ta. 
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