## СРАВНЕНИЕ ПЛАНЕТАРНЫХ РЕДУКТОРОВ С РАЗЛИЧНЫМ ЧИСЛОМ САТЕЛЛИТОВ

#### Тукмаков В.П.

Самарский национальный исследовательский университет имени академика С.П. Королёва, г. Caмapa, tukmakov.vp@ssau.ru

Ключевые слова: передача Джеймса, программа расчёта, передаточное отношение, число сателлитов, число зубьев

Достоинствами планетарных передач являются широкие кинематические возможности, компактность и малая масса. В планетарной передаче мощность передаётся по нескольким потокам, число которых равно числу сателлитов. Наибольшее распространение получила планетарная передача с одновенцовым сателлитом – передача Джеймса (рис. 1).

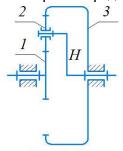



Рис. 1 – Схема планетарной передачи

Её применяют при передаточном отношении  $u_{1H}=3...8$ , КПД при этом 0,92...0,97. Для передачи Джеймса число сателлитов  $a_n=3...8$ . Число сателлитов зависит от передаточного отношения. Максимальное число сателлитов из условий сборки  $a_n=8$  возможно при  $u_{1H}=3$ . До  $u_{1H}=3,66$  — максимально  $a_n=6$ , до  $u_{1H}=4,30$  — максимально  $a_n=5$ , до  $u_{1H}=5,69$  — максимально  $a_n=4$ , при  $u_{1H}\geq 5,69$  число сателлитов только  $a_n=3$ .

Для передачи Джеймса разработана программа расчёта, которая определяет несколько вариантов сочетания чисел зубьев колёс для заданного передаточного отношения с учётом допуска,

программа проверяет условия соосности, соседства и сборки.

Выигрыш в размерах у планетарного редуктора происходит и благодаря применению нескольких сателлитов, так как при этом уменьшается нагрузка на каждый зуб и можно принять меньший модуль колёс. Поэтому для силовых передач число сателлитов надо выбирать возможно большим. Рассмотрим передачу Джеймса при  $u_{1H} = 3.8; 4.0$  и 4,2, в этом диапазоне  $a_n = 3, 4$  и 5. Возможное сочетание чисел зубьев приведено в табл. 1.

Табл. 1 – Варианты сочетания чисел зубъев

| зуоьев |                |                |            |       |
|--------|----------------|----------------|------------|-------|
| u      | $\mathbf{z}_1$ | $\mathbf{z}_2$ | <b>Z</b> 3 | $a_n$ |
| 3,8    | 19             | 17             | 53         | 3, 4  |
| 3,8    | 21             | 19             | 59         | 4, 5  |
| 4,0    | 18             | 18             | 54         | 3, 4  |
| 4,0    | 20             | 20             | 60         | 4, 5  |
| 4,2    | 18             | 20             | 58         | 4     |
| 4,2    | 19             | 21             | 61         | 4, 5  |

Из табл. 1 видно, что максимальное число сателлитов получается не при минимальном числе зубьев. Габариты передачи зависят от чисел зубьев, модуля и ширины зубчатых колёс. Модуль и ширину зубчатых колёс определим из расчёта передачи на прочность [1]. Рассмотрим передачу Джеймса при  $u_{1H} = 4$  и  $a_n = 3$ , 4 и 5. При  $u_{1H} = 4$  число зубьев солнечного колеса 1 и сателлита 2 одинаково (рис. 1). Возможное сочетание чисел зубьев приведено в табл. 2.

Табл. 2 – Варианты сочетания чисел зубьев колёс

| $\mathbf{z}_1$ | $\mathbf{Z}_2$ | <b>Z</b> 3 | $a_n$   |
|----------------|----------------|------------|---------|
| 18             | 18             | 54         | 3, 4    |
| 20             | 20             | 60         | 4, 5    |
| 30             | 30             | 90         | 3, 4, 5 |

В работе выполнено семь вариантов расчётов при  $z_1 = 18$ , 20, 30 с разным числом сателлитов, определены диаметры зубчатых колёс d, ширина зубчатых колёс  $b_w$  и модуль m. Результаты расчётов показаны в табл. 3. Анализ результатов расчётов показывает, что для  $z_1 = 18$ , 20 при увеличении числа сателлитов модуль уменьшается и соответственно уменьшается

диаметр колёс. При  $z_1 = 30$  модуль получается меньше минимального, поэтому принято  $m_{min} = 2,5$  мм для цементированных колёс. Тогда размеры колёс будут одинаковые, и при увеличении числа сателлитов уменьшается ширина зубчатого венца.

Табл. 3 – Результаты расчёта на прочность передачи с заданным числом зубьев

| передачи с заданным числом зубьев |       |       |      |             |     |       |
|-----------------------------------|-------|-------|------|-------------|-----|-------|
| $\mathbf{z}_1$                    | $a_n$ | $d_1$ | Ψbd  | $b_{\rm w}$ | m   | $d_3$ |
| 18                                | 3     | 81    | 0,45 | 36,5        | 4,5 | 243   |
| 18                                | 4     | 72    | 0,50 | 36,0        | 4,0 | 216   |
| 20                                | 4     | 70    | 0,54 | 37,5        | 3,5 | 210   |
| 20                                | 5     | 60    | 0,72 | 43,5        | 3,0 | 180   |
| 30                                | 3     | 75    | 0,66 | 49,5        | 2,5 | 225   |
| 30                                | 4     | 75    | 0,50 | 38,0        | 2,5 | 225   |
| 30                                | 5     | 75    | 0,41 | 31,5        | 2,5 | 225   |

При выполнении расчёта по методике [1] условие прочности сошлось для трёх вариантов  $\psi_{bd}$  при  $a_n=5$  и m=2,5 мм. Результаты расчёта приведены в табл. 4. Анализ результатов расчётов показывает, что при увеличении ширины зубчатого венца диаметры колёс уменьшаются.

Табл. 4 – Результаты расчёта на прочность

| Ψbd  | $\mathbf{z}_1$ | <b>Z</b> 2 | <b>Z</b> 3 | $b_{\rm w}$ | $d_1$ | d <sub>3</sub> |
|------|----------------|------------|------------|-------------|-------|----------------|
| 0,41 | 30             | 30         | 90         | 31          | 75    | 225            |
| 0,50 | 28             | 27         | 82         | 35          | 70    | 205            |
| 0,60 | 25             | 25         | 75         | 40          | 62,5  | 187,5          |

При увеличении числа сателлитов, скорее всего, стоимость изделия увеличивается, а масса уменьшается. Для сравнения массовых характеристик возьмём вариант с  $z_1 = 18$  и  $a_n = 3,4$ . Планетарная ступень показана на рис. 2.

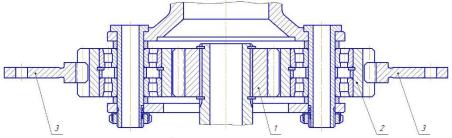



Рис. 2 – Планетарная ступень

Созданы 3-D модели зубчатых колёс и других деталей, определена масса каждой детали, масса подшипников взята из каталога. Определена общая масса без учёта входного и выходного валов. Сравнение показало, что планетарная ступень с  $a_n = 4$  легче на 7 % планетарной ступени с  $a_n = 3$ .

Разработанные программы расчёта позволяют провести оптимизацию конструкции по габаритам, запасу прочности и плавности зацепления. Оптимизацию конструкции редуктора по массовым характеристикам можно выполнить с помощью 3D-модели редуктора.

### Список литературы

1. Расчёт на прочность планетарной передачи: метод. указания к курс. проекту/ Е.П. Жильников, В.П. Тукмаков. — Самара: Самар. ун-т, 2017. - 28 с.

Сведения об авторе

Тукмаков Владимир Петрович, канд. техн. наук, доцент, доцент кафедры основ конструирования машин. Область научных интересов: теория механизмов и машин, детали машин, триботехника.

# COMPARISON OF PLANETARY REDUCER WITH DIFFERENT NUMBERS OF SATELLITES

#### Tukmakov V.P.

Samara National Research University, Samara, Russia, tukmakov.vp@ssau.ru

Keywords: James transmission, calculation program, gear ratio, number of satellites, number of teeth.

The programs of the calculation model of the planetary transmission, comparison of planetary transmissions with a different number of satellites is performed.