# ПРИМЕНЕНИЕ ТОПОЛОГИЧЕСКОЙ ОПТИМИЗАЦИИ ДЛЯ СНИЖЕНИЯ МАССЫ ИЗДЕЛИЙ НА ПРИМЕРЕ КРОНШТЕЙНА КВАДРОКОПТЕРА

Сивишкин Н.А., Хупутдинов В.Р., Агаповичев А.В. Самарский университет, г. Самара 2020-01907@students.ssau.ru

Ключевые слова: аддитивные технологии, топологическая оптимизация, снижение массы.

Аддитивные технологии применяются во многих современных производственных сферах. В настоящее время интенсивно развиваются аддитивные методы изготовления деталей. Многие компании, такие как МТU, Boeing, Pratt&Whitney, General Electric, АО «ОДК Авиадвигатель», ОАО «ОКБ Сухого», ФГУП «НАМИ», все более широко применяют детали, изготовленные с применением аддитивных технологий. И один из методов – топологическая оптимизация.

Топологическая оптимизация (TO) — метод автоматизированного проектирования, позволяющий получить оптимальную форму изделия в заданных условиях эксплуатации. Внедрение этого инструмента в процесс разработки позволяет сократить время, отводимое на данный этап жизненного цикла изделия, более широко использовать возможности как традиционных способов изготовления, так и аддитивных технологий. ТО является одним из самых быстрых и эффективных методов облегчения изделий при сохранении их прочностных и жесткостных характеристик.

Минимизация массы — популярная постановка задачи топологической оптимизации, позволяющая добиться наиболее легковесных конструкций, благодаря учёту прочностных свойств материала детали, доступен для трёхмерных и двухмерных конечных элементов. Алгоритм работает на основе модуля нелинейной оптимизации, благодаря чему в нём так же доступен учёт объемных сил и технологических ограничений.

В данной работе процесс топологической оптимизации был проведен на примере кронштейна квадрокоптера. Первоначальная конструкция кронштейна (массой 11,176 г) представлена на рис. 1.

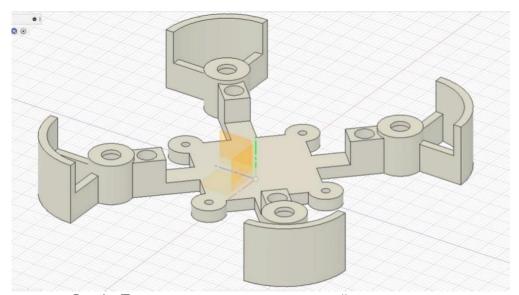



Рис. 1 – Первоначальная конструкция кронштейна квадрокоптера

Применение ТО при проектировании 3D-модели кронштейна позволило сократить его массу до 9,272 г (рис. 2).

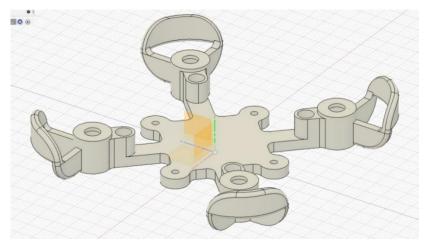



Рис. 2 – Типологически оптимизированная конструкция кронштейна квадрокоптера

#### Заключение

Проектирование облегченных деталей актуально во многих областях промышленности, где снижение массы основных силовых элементов означает увеличение полезной нагрузки (например, в аэрокосмической промышленности), экономию материала при изготовлении и энергоэффективность. На примере кронштейна квадрокоптера была проведена топологическая оптимизация, применение которой позволило достичь снижения массы кронштейна на 17% по сравнению с исходной конструкцией.

## Список литературы

- 1. Топологическая оптимизация конструкций [Электронный ресурс] URL <a href="https://apm.ru/optimization">https://apm.ru/optimization</a> (Дата обращения 21.04.21).
- 2. Супотницкий Е.С. Топологическая оптимизация конструкций в области проектирования / Супотницкий Е.С., Курносов В.Е., Андреева Т.В. // Материалы XI международной студенческой научной конференции «Студенческий научный форум 2019». 2019. С. 92-93.
- 3. Хитрин А.М. Топологическая оптимизация корпусных деталей вертолетного редуктора / А.М. Хитрин [и др.] // Вестник Пермского национального исследовательского политехнического университета. Аэрокосмическая техника. 2018. С. 1-2.

### Сведения об авторах

Хупутдинов Вадим Рифович, студент Самарского университета. Область научных интересов: двигатели летательных аппаратов.

Сивишкин Никита Алексеевич, студент Самарского университета. Область научных интересов: двигатели летательных аппаратов.

Агаповичев Антон Васильевич, научный руководитель, старший преподаватель кафедры технологий производства двигателей.

# APPLICATION OF TOPOLOGICAL OPTIMIZATION TO REDUCE THE WEIGHT OF PRODUCTS ON THE EXAMPLE OF A QUADROCOPTER BRACKET

Agapovichev A.V., Sivishkin N. A., Khuputdinov V.R. Samara University, Samara 2020-01907@students.ssau.ru

*Keywords: additive technologies, topological optimization, mass reduction.* 

Additive technologies are used in many modern production areas. Currently, additive methods of manufacturing parts are being intensively developed. Many companies, such as MTU, Boeing, Pratt & Whitney, General Electric, "Sukhoi Design Bureau", "NAMI", are increasingly using parts made with the use of additive technologies.