ОПРЕДЕЛЕНИЕ РАДИАЛЬНЫХ ЗАЗОРОВ МЕЖДУ ЛОПАТКОЙ И СТАТОРОМ ТУРБИНЫ

<u>Юртаев А.А.</u>, Ирышков Б.В., Бадыков Р.Р. Самарский национальный исследовательский университет имени академика С.П. Королёва, г. Самара, don.yurtaev2016@yandex.ru

Ключевые слова: микро-ГТД, турбина, радиальный зазор, ANSYS, конечно-элементная модель, давление на лопатку, распределение температур, изгиб, ротор, статор, газодинамика.

В тезисах рассматривается работа по определению величины радиального зазора осевой турбины на максимальном режиме работы малоразмерного газотурбинного двигателя тягой 220 Н в двух вариантах расчета: с учетом газодинамики и без. Величина радиального зазора между ротором и статором турбины определяет КПД турбины и обеспечивает её надежную работу. Минимальный радиальный зазор соответствует максимальному режиму работы двигателя, а также режиму останова двигателя [1]. Турбина (рис. 1) состоит из рабочего колеса *I* и соплового аппарата *2*.

Рис. 1 – Конструктивная схема турбины и суммарные радиальные деформации, мм

Для расчета без учета газодинамики в качестве граничных условий задавались: давление на лопатки, температура на входе и выходе, а также коэффициенты теплоотдачи. Для учета газодинамики использовался предварительный CFX-расчет. Для этого были импортированы сектора рабочего колеса и статора в TurboGrid, где настраивалась геометрия лопаток ротора и статора (осевой и радиальный зазоры) и создавалась сетка конечно-элементной модели (554564 кэ), которая затем передавалась в Fluid Flow (CFX). В CFX была настроена модель: на входе в турбину задавался массовый расход G = 0,432 кг/с, а на выходе статическое давление P = 136806 Па, также задавались параметры рабочего тела (идеальный газ) и турбины, соответствующие максимальному режиму работы двигателя: $\omega = 120000 \frac{\text{об}}{\text{мин}}$, $T_r^* = 1020$ К. В результате проведенного CFX-расчета были получены значения давлений на лопатки и распределение температур по лопаткам ротора и статора, которые затем были перенесены в прочностной расчет турбины. Для уменьшения времени расчета в пакете ANSYS были созданы две конечноэлементные (КЭ) модели: ротор (30 тыс. кэ) и статор (12 тыс. кэ). Модели обладают поворотной симметрией. Материалом для СА и турбины служит высокопрочный жаропрочный гранулируемый никелевый сплав ВВ751П. Ввиду отсутствия некоторых данных (таких как модуль Юнга) для расчёта было принято решение заменить его практически идентичным исходному по химическим и физическим характеристикам сплавом ЭП881 со следующими характеристиками: плотность 8300 кг/м³, коэффициент температурного расширения, $1,5 \cdot 10^{-5} \text{ C}^{-1}$, модуль Юнга, $1,94 \cdot 10^{11}$ Па, коэффициент Пуассона 0,3. Теплоемкость задавалась в виде табличной зависимости от температуры.

Рис. 2 – Суммарные радиальные деформации статора и ротора

	Ротор турбины				Статор СА			
	Min		Max		Min		Max	
Радиальные	Без	С	Без	С	Без	С	Без	С
деформации	учета	учетом	учета	учетом	учета	учетом	учета	учетом
	газодина	газодина	газодина	газодина	газодина	газодина	газодина	газодина
	мики	мики	мики	мики	мики	мики	мики	мики
Термическое расширение, мкм	283,58	374,83	292,31	385,36	317,19	284,64	377,2	312,53
Центробежные силы, мкм	38,866	38,866	67,794	67,801	-	-	-	-
Перепад давления, мкм	-3,072	-1,356	3,802	1,609	-2,7	-0,41	4,78	0,65
Суммарные деформации, мкм	326,4	415,3	357,06	451,85	319,47	287,39	378,44	314,23

Таблица 1 – Результаты расчетов

В соответствии с результатами расчёта установлено, что максимальное влияние на величину зазора оказывает термическое расширение (85% для ротора и 100% для статора), а минимальное – центробежные силы (15%) и перепад давления (менее 1%). Отрицательное значение зазора от перепада давления вызвано изгибом лопаток и компенсируется центробежными силами. Расхождение результатов объясняется тем, что при расчете без учета газодинамики температуры были завышены, а так как максимальное влияние на радиальный зазор оказывает именно термическое расширение, отсюда и большое расхождение в величине зазора. Благодаря расчету в CFX удалось определить тягу и КПД двигателя, которые соответственно равны 212,15H и 0,865, что соответствует заданным исходным данным.

Результаты расчета в дальнейшем предстоит уточнить с помощью связанного термопрочностного расчета, который позволит определить тепловой поток от рабочего тела к стенкам лопатки и получить более точное распределение температуры по лопаткам рабочего колеса и соплового аппарата, так как именно распределение температур оказывает большое влияние на радиальный зазор.

Список литературы

1. Шалина Р. Е. Авиационные материалы // Жаропрочные стали и сплавы. Сплавы на основе тугоплавких металлов. Т. 3. М.: ВИАМ, 1989. 566 с.

2. Старцев Н.И., Фалалеев С.В. Конструкция узлов авиационных двигателей: учебное пособие. Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2006. 112 с.

3. Кулагин В.В. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн.1. Совместная работа узлов выполненного двигателя и его характеристики. Кн.2. М.: Машиностроение, 2003. 616 с.

Сведения об авторах

Юртаев Артем Алексеевич, студент. Область научных интересов: динамика процессов в торцевых газодинамических бесконтактных уплотнениях.

Ирышков Борис Владимирович, студент. Область научных интересов: динамика процессов в торцевых газодинамических бесконтактных уплотнениях.

Бадыков Ренат Раисович, канд. техн. наук, старший преподаватель. Область научных интересов: динамика процессов в торцевых газодинамических бесконтактных уплотнениях, условия работы активных магнитных подшипников в авиационном двигателе.

DETERMINING THE RADIAL CLEARANCE BETWEEN TURBINE BLADE AND STATOR

Yurtaev A.A., Iryshkov B.V., Badykov R.R.

Samara National Research University, Samara, Russia, don.yurtaev2016@yandex.ru

Keywords: micro-GTE, turbine, radial clearance, ANSYS, finite element model, blade pressure, temperature distribution, bending, rotor, stator, gas dynamics.

In this work, the radial clearance between the turbine blade and the stator flange of a smallsized GTE with 220N thrust was determined at the maximum operating mode in the CAE-package Ansys using two finite element models in two versions: taking into account the gas dynamics in the farm and not taking it into the account. As a result, the deformation of the rotor and stator in the radial direction were obtained.