УДК 004.932

ВЫДЕЛЕНИЕ АНАТОМИЧЕСКИХ ЗОН НА ИЗОБРАЖЕНИИ ГЛАЗНОГО ДНА С ПРИМЕНЕНИЕМ СВЕРТОЧНЫХ НЕЙРОННЫХ СЕТЕЙ

© Климов И.А.¹, Ильясова Н.Ю.^{1,2}, Широканёв А.С.^{1,2}

e-mail: klimov.ilya.05@gmail.com

¹Самарский национальный исследовательский университет имени академика С.П. Королёва, г. Самара, Российская Федерация

²Институт систем обработки изображений РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН, г. Самара, Российская Федерация

В данной статье предметом исследований является класс изображений глазного дна с патологическими отклонениями на различных этапах. Диабетическая ретинопатия является заболеванием, которое характеризуется наличием экссудатов и как следствие утолщением сетчатки [1]. Изображение глазного дна с патологией содержит в общем 4 класса объектов: толстые, тонкие сосуды, здоровые участки и экссудаты (рис.).

Рис. Изображение глазного дна без патологии (а), с патологией (б), сегментированное (в)

Наиболее предпочтительным методом классификации объектов является свёрточная нейронная сеть [2,3]. Свёрточная нейронная сеть обучалась на сбалансированной выборке, которая содержала 543 изображения. Исходная выборка состояла из 75% обучающих изображений и тестовых. Точность обучения достигла 99,3%.

Ν	Слои	Параметры	N слоя	Слои	Параметры
1	Convolutional	300 нейронов	3	Activation	Функция: RELU
1	Activation	Функция: RELU	4	Convolutional	150 нейронов
2	Convolutional	300 нейронов	4	Activation	Функция: RELU
2	Activation	Функция: RELU	4	MaxPooling	Размер 2×2
2	Dropout	0,5	4	Dropout	0.5
2	MaxPooling	Размер 2×2	5	Fully-connected	4
3	Convolutional	150 нейронов	5	Activation	softmax

Таблица 1. Архитектура свёрточной нейронной сети.

Для проведения экспериментов были сформированы выборки, содержащие указанные выше 4 класса изображений размером 12×12, на котором достигается наилучший результат тестирования CNN. В настоящем исследовании технология глубокого обучения применялась для сегментации изображении глазного дна (рис.1в) [4]. Была использована оценка врача-эксперта в качестве эталонного изображения для оценки

ошибки сегментации. Исследования производились на классе экссудатов, которые были выделены в отдельное изображение. Ошибка сегментации области с патологией, проводимой с использованием технологии CNN, вычислялась относительно оценки эксперта. Результат сравнения выделенных зон экссудатов (CNN и эксперта) представлен в таблице 2.

Зоны	Доля зоны экссудатов, %
Зона экссудатов на изображении эксперта	9
Зона экссудатов на изображении CNN	15
Общая зона экссудатов	95.6
Зона экссудатов эксперта, которой нет у CNN	0.4
Зона экссудатов CNN, которой нет у эксперта	6

Таблица 2. Доля зон экссудатов на изображении.

На основе указанных в таблице данных была определена ошибка сегментации на классе экссудатов: E = (k + t)/NM, где NM – размер изображения, k – количество пикселей, которые CNN не распознала, как экссудаты, но они присутствуют на изображении эксперта, t – количество пикселей, которые CNN распознала, как экссудаты, однако они не присутствуют на изображении эксперта, и составила 7%. Ошибка первого рода: $E_1 = l/F$, где 1 – количество ложно определенных классов-экссудатов, F – общее количество пикселей с экссудатами по изображению эксперта составила 5%.

Заключение

В данной работе была применена свёрточная нейронная сеть для анализа изображения глазного дна. Была подобрана архитектура свёрточной нейронной сети, которая обеспечила ошибку тестирования не больше 4%. Размер ядра свёртки был выбран 3×3. CNN обучалась на изображениях размерности 12×12, на которой был достигнут наилучший результат тестирования CNN. В настоящей работе была произведена сегментация входного изображения, при этом свёрточная нейронная сеть с большой точностью смогла определить все классы, на которых производилось обучение. Ошибка сегментации была рассчитана на классе экссудатов, поскольку данный класс является ключевым при проведении операции лазерной коагуляции.

Благодарности

Работа выполнена при поддержке Федерального агентства научных организаций (соглашение № 007-ГЗ/ЧЗЗ6З/26); Министерства образования и науки РФ в рамках реализации мероприятий Программы повышения конкурентоспособности Самарского Университета среди ведущих мировых научно-образовательных центров на 2013–2020 годы; грантов РФФИ № 16-41-630761, № 17-01-00972, 19-29-01135.

Библиографический список

1. Шадричев. Ф.Е. Диабетическая ретинопатия // Современная оптометрия. – 2008. – Т. 36, №4. – С. 8-11.

2. CNNs Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and more [Электронный pecypc] // Medium. – Electronic data. – 2017. – URL:https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5 (дата обращения: 10.08.2017).

3. Введение в машинное обучение с помощью Python: руковод. для специалистов по работе с данными / А. Мюллер [и др.]; под ред. С. Гвидо. – М.: O'Reily Media, 2017. – 392 с.

4. Ilyasova, N. A smart feature selection technique for object localization in ocular fundus images with the aid of color subspaces / Ilyasova, N, Paringer R, Shirokanev A, Kupriyanov A, Ushakova N. // Procedia Engineering 2017; 201: 736-745. DOI: 10.1016/j.proeng.2017.09.599.