УДК 681.3

ПОДТВЕРЖДЕНИЕ МЕТРОЛОГИЧЕСКОЙ ПРИГОДНОСТИ ПРИ АТТЕСТАЦИИ ИСПЫТАТЕЛЬНОГО ОБОРУДОВАНИЯ

© Васильева Е.К., Жирнова Е.А.

Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева, г. Красноярск, Российская Федерация

E-mail: ekaterinavasileva1998@mail.ru

Как известно, под метрологической пригодностью понимается состояние СИ, обеспечивающее, по средствам метрологических характеристик, необходимое качество реализации технологических процессов и работу систем управления этими процессами.

Испытательное оборудование как средство испытаний, являющееся техническим устройством для воспроизведения условий испытаний, должно быть аттестовано. Аттестация испытательного оборудования — это определение нормированных точностных характеристик данного оборудования, их соответствия требованиям нормативно-технической документации и установление пригодности этого оборудования к эксплуатации [1].

Рассмотрим подтверждение метрологический пригодности при аттестации испытательного оборудования на примере установки пробойной универсальной УПУ-6, основным назначением которой выступает испытание изоляции электротехнического оборудования и материалов

Данная установка способна выполнять измерения изоляции электротехнического оборудования и материалов, по средствам переменного синусоидального напряжения промышленной частоты и выпрямленного напряжения отрицательной полярности, которое настраивается в интервале 0-6 кВ с выходным током до 100 мА по ГОСТ 6433.3-71 [2].

Сопротивление является основным показателем состояния изоляции, вследствие чего измерение значения сопротивления выступает неотъемлемой частью испытаний всех видов электрооборудования и электрических цепей.

В целях подтверждения метрологической пригодности необходимым является определение аттестуемых параметров, их номинальных значений и допустимых отклонений, а также установления пределов измерений, класса точности и погрешности измерения.

Проведение метрологической экспертизы является необходимым условием для подтверждения метрологической пригодности.

Целями метрологической экспертизы являются [3]:

- анализ рациональности номенклатуры измеряемых параметров;
- установление полноты и правильности требований к средствам измерений;
- установление правильности выбора средств измерений;
- установление полноты и правильности требований к методикам (методам) измерений;
- установление правильности метрологической терминологии, наименований и обозначений величин и их единиц.

В ходе метрологической экспертизы проводен расчет метрологических цепей. Погрешность выбранных средств измерений должна составлять не более одной трети от проверяемого параметра. В таблице приведен перечень проверяемых параметров, указаны выбранные приборы и расчетные погрешности измерений. Исходя из данной

таблицы, может быть сформирован вывод о том, что подобранные СИ находятся в допуске и соответствуют условиям программы и методики аттестации.

Таблица. Расчет метрологических цепей при метрологической экспертизе программы и методики аттестации установки пробойной УПУ-6

Наименование	Номи-	Допус-	Средство	Предел Σ	Показатели		Резуль-
параметра	нальное	тимое	измерений	погреш-	точности		тат
	значение	отклоне-		ности	требу-	факти-	оценки
		ние			емое	ческое	
Измерение	1 кВ	± 3 %	Вольтметр В7-	± 0,2 %	± 1 %	± 0,2 %	± 0,2 %
испытатель-	3 кВ	± 3 %	35				
ного	6 кВ	± 3 %					
выпрямленного							
напряжения							
Измерение	1 кВ	± 3 %	Вольтметр	$\pm 0,5$	± 1	$\pm 0,5$	$\pm 0,5$
испытатель-	3 кВ	± 3 %	переменного				
ного	6 кВ	± 3 %	тока Ф5263				
напряжения							
промышленной							
частоты							
Определение	72 мА	± 5 %	Миллиамперме	$\pm 0,2$	$\pm 1,7$	$\pm 0,2$	$\pm 0,2$
погрешности			тр М2018				
измерителя							
тока							
проводимости							

Таким образом, если результаты аттестации показывают, что контролируемые параметры испытательной установки соответствуют установленным метрологическим требованиям, то метрологическая пригодность испытательного оборудования подтверждается.

Библиографический список

- 1. ГОСТ 8.568-2017. ГСОЕИ. Аттестация испытательного оборудования. Основные положения. М.: Стандартинформ, 2019. 16 с.
- 2. Установка пробойная универсальная. Руководство по эксплуатации. УПУ- 6/07.00.00.00РЭ
- 3. РМГ 63-2003. Государственная система обеспечения единства измерений. Обеспечение эффективности измерений при управлении технологическими процессами. Метрологическая экспертиза технической документаци». М.: ИПК Изд-во стандартов, 2004.