УДК 004.932.2

ОТБОР ПРИЗНАКОВ ДЛЯ КЛАССИФИКАЦИИ ИЗОБРАЖЕНИЙ, ПОЛУЧЕННЫХ ПРИ ДИСТАНЦИОННОМ ЗОНДИРОВАНИИ ЗЕМЛИ

Гончарова Е. Φ . , Гайдель А. В. 1,2

¹Самарский национальный исследовательский университет имени академика С. П. Королёва, г. Самара

²Институт систем обработки изображений РАН, г. Самара

В данной работе решается задача выявления группы наиболее информативных признаков, влияющих на классификацию изображений, полученных при дистанционном зондировании Земли (ДЗЗ). Были исследованы две группы признаков: гистограммные и текстурные. Отбор информативных признаков осуществлялся с помощью метода, основанного на дискриминантном анализе и жадном добавлении признаков. Для обнаружения влияния отобранных признаков на разделимость классов была произведена классификация объектов с помощью метода ближайшего соседа. Изображения, для которых рассчитывались признаки, были получены из открытой базы данных UC Merced Land Use Dataset, которая содержит изображения размерностью 256×256 отсчетов, относящиеся к различным классам: поле, лес, пляж и другие.

Для формирования признаков для каждого изображения была рассчитана матрица яркости $I^{(M\times N)}$, где $M\times N$ — размер изображения в пикселях:

$$I(m,n) = \frac{R(m,n) + G(m,n) + B(m,n)}{3}, m = \overline{1,M}, n = \overline{1,N},$$

где R, G, B — интенсивность красной, зеленой и синей составляющей отсчета с координатами (m,n) соответственно.

Изображение можно считать реализацией двумерного случайного процесса, тогда оценки распределения интенсивности являются характеристиками данного изображения. Были рассмотрены начальные (ν_k) и центральные моменты (μ_k) , которые определяются следующими формулами:

определяются следующими формулами:
$$\nu_k = \frac{1}{MN} \sum_{i=1}^M \sum_{j=1}^N I^k(i,j), \ \mu_k = \frac{1}{MN} \sum_{i=1}^M \sum_{j=1}^N (I(i,j) - \nu_1)^k.$$

Было рассчитано 8 гистограммных характеристик: $\bar{I}, \bar{I}_R, \bar{I}_G, \bar{I}_B$ (средняя интенсивность полутонового изображения, а также интенсивность в красном, зеленом и синем каналах соответственно), $s = v_2$ (средняя энергия), $\sigma = \sqrt{\mu_2}$ (среднеквадратическое отклонение), $\gamma_1 = \frac{\mu_3}{\sigma^3}$ (коэффициент асимметрии) и $\gamma_2 = \frac{\mu_4}{\sigma^4} - 3$ (коэффициент эксцесса).

Текстура изображения может быть рассчитана с помощью автокорреляционной функции [1], характеризующей зависимость между отсчетами изображения, которую можно вычислить по следующей формуле: $R(m,n) = \frac{\frac{1}{(N-|n|)(M-|m|)} \sum_{i=1}^{M} \sum_{j=1}^{N} I(i,j)I(i+m,j+n)}{\frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} I^2(i,j)}$.

В качестве признаков было рассчитано усредненное значение четырех отсчетов для двух расстояний: $r_1 = \frac{1}{4}(R(0,1) + R(0,-1) + R(1,0) + R(-1,0))$ и $r_5 = \frac{1}{4}(R(0,5) + R(0,-5) + R(5,0) + R(-5,0))$.

Также были рассчитаны текстурные признаки Харалика [2]. Были построены матрицы смежности для восьми пар расстояний (r_1, r_2) : (1,0), (0,1), (1, \pm 1), (2,0), (0,2) и (2, \pm 2). Для получения инвариантности относительно поворота использовались усредненные значения матриц. Из каждой матрицы было рассчитано четыре основных

признака: $f_1(f_{12})$ — второй угловой момент, $f_2(f_{22})$ — контрастность, $f_3(f_{32})$ — корреляция и $f_4(f_{42})$ — энтропия.

Отбор признаков производился с помощью метода дискриминантного анализа. Пусть имеется пространство признаков $\Omega \subseteq R^K$, где K – количество признаков, каждый вектор признаков x_k относится к соответствующему классу $\Phi(x_k)$. Задачей классификации является построение оператора $\widetilde{\Phi}(x_k)$, который, способен перевести объект распознавания в его класс. Для построения оператора $\widetilde{\Phi}(x_k)$ используется информация из обучающей выборки $U \subseteq \Omega$, для объектов которой класс известен.

В методе дискриминантного анализа [3] выбирается набор признаков, обеспечивающий максимум критерия $J(Q) = \frac{trR}{\sum_{j=1}^L P(\Omega_j) trR_j}$, где Q — текущий набор признаков; R — корреляционная матрица смеси распределений; R_j — корреляционная матрица внутри j-го класса; $P(\Omega_j)$ — вероятность появления объекта из класса Ω_j ; L — количество классов.

При жадном отборе признаков на каждом шаге в признаковое пространство добавлялся один из ранее не добавленных признаков, и рассчитывался критерий дискриминантного анализа J(Q). В группу информативных признаков добавлялся тот признак, который обеспечивал максимум критерия. Для заданной системы распознавания вероятность ошибочного распознавания оценивалась по формуле: $\varepsilon = \frac{|\{x_k \in \widetilde{U} | \Phi(x_k) \neq \widetilde{\Phi}(x_k)\}|}{|\widetilde{U}|}, k = \overline{1|\widetilde{U}|}, \widetilde{U}$ – контрольная выборка [4].

При проведении экспериментальной проверки было использовано 500 изображений из базы данных UC Merced Land Use, принадлежащих пяти разным классам (пляж, дома, поле, лес, самолет). В результате эксперимента были получены данные, представленные в таблице 1:

Таблица 1. Группы из первых 9 признаков и вероятность ошибочной классификации

Признаки	ε	Признаки	${\cal E}$
σ , s	0,36	$\sigma, s, \bar{I}_R, \bar{I}, \bar{I}_B, \bar{I}_G$	0,23
σ, s, \bar{I}_R	0,21	$\sigma, s, \bar{I}_R, \bar{I}, \bar{I}_B, \bar{I}_G, f_{42}$	0,19
$\sigma, s, \bar{I}_R, \bar{I}$	0,30	$\sigma, s, \bar{I}_R, \bar{I}, \bar{I}_B, \bar{I}_G, f_{42}, f_{32}$	0,18
σ , s , \bar{I}_R , \bar{I} , \bar{I}_B	0,27	$\sigma, s, \bar{I}_R, \bar{I}, \bar{I}_B, \bar{I}_G, f_{42}, f_{32}, f_4$	0,15

Согласно полученным результатам наименьшая вероятность ошибочной классификации была получена в группе из 9 признаков, в которую входят средние интенсивности изображения и СКО, а также три текстурных признака Харалика. Группа из девяти лучших признаков позволяет верно классифицировать 85% изображений. Можно заметить, что в группе из 7-8 признаков доля неверно классифицированных объектов незначительно больше, чем в лучшей группе. Таким образом, предложенный метод отбора признаков позволил снизить размерность признакового пространства в два раза для предложенных пяти классов изображений.

Библиографический список

- 1. Гайдель А. В. Исследование текстурных признаков для диагностики нефрологических заболеваний по ультразвуковым изображениям / Гайдель А. В., Ларионова С. Н., Храмов А. Γ // Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение. − 2014. − № 1 (43). − С. 229-237.
- 2. Haralick R. M., Shanmugam K., Dinstein Its'Hak. Textural features for image classification // IEEE Transactions on Systems, Man, and Cybernetics. November 1973. V. SMC-3. P. 610-621.

- 3. Fukunaga, K. Introduction to statistical pattern recognition / K. Fukunaga. San Diego: Academic Press, 1990.-592 p.
- 4. Гончарова, Е. Ф. Статистическое исследование факторов, влияющих на развитие сердечно-сосудистых заболеваний / Е. Ф. Гончарова, А. В. Гайдель, А. Г. Храмов // сб. тр. конференции ИТНТ. 2016. С. 1020-1025.