УДК 535.36

ИССЛЕДОВАНИЕ ВОЗРАСТНЫХ ИЗМЕНЕНИЙ ПОВЕРХНОСТИ СУСТАВНОГО ГИАЛИНОВОГО ХРЯЩА С ПОМОЩЬЮ СПЕКТРОСКОПИИ КОМБИНАЦИОННОГО РАССЕЯНИЯ

Тюмченкова А. С. 1 , Маркова М. Д. 1 , Лазарев В. А. 2 , Волова Л. Т. 2 , Долгушкин Д. А. 2 , Тимченко П. Е. 1 , Тимченко Е. В. 1

¹Самарский национальный исследовательский университет имени академика С. П. Королёва, г. Самара

²Самарский государственный медицинский университет, г. Самара

На сегодняшний день существует несколько способов диагностики состояния суставной поверхности: компьютерная томография, магнитно-резонансная томография; ультразвуковое исследование; рентгенография; биопсия хряща [1]. Общим недостатком вышеперечисленных методов является отсутствие возможности ранней диагностики поверхностных повреждений суставного хряща, лежащих в основе возникновения деструктивно-дистрофических заболеваний суставов.

Материалом исследования являлись суставные поверхности межфаланговых суставов пальцев кистей взрослых старше 40 лет и детей до 1 года. Пальцы взрослых людей получали в случае их травматической ампутации. Пальцы детей при их удалении во время операции по поводу полидактилии. Границы возраста для взрослых людей были определены в связи с началом развития деструктивно-дистрофических процессов в суставном гиалиновом хряще. Для детей — наиболее частым возрастом выполнения операции по поводу полидактилии.

Образцы исследовали с помощью стенда, реализующего метод СКР. Стенд включал в себя высокоразрешающий цифровой спектрометр Shamrock sr-303i со спектральным диапазоном 200-1200 нм, со встроенной охлаждаемой камерой DV420A-ОЕ, волоконно-оптический зонд RPB-785 для спектроскопии КР, совмещённый с лазерным модулем LuxxMaster LML-785.0RB-04 с длиной волной лазерного излучения 785 нм и с шириной линии 0,2 нм [2].

Показаны различия спектральных характеристик поверхности суставного хряща, проявляющиеся в изменениях интенсивностей линий С-С колебаний протеинов (811 см⁻¹), С-С колебаний колец пролина (853 см⁻¹), пролин/гидроксипролин (936 см⁻¹), С-С валентных колебаний фенилаланина (1000 см⁻¹), колебаний сульфатов в гликозаминогликанах (1059 см⁻¹), колец пиранозы (1158 см⁻¹), амида III (1270 см⁻¹), гликозаминогликанов (1376 см⁻¹). А также были введены новые оптические коэффициенты, позволяющие оценивать возрастные изменения хрящевой ткани.

Библиографический список

- 1. Хисматуллина 3. Н. Биохимические изменения соединительной ткани при старении и других патологических процессах //Вестник Казанского технологического университета. $-2012.-T.\ 15.-N_{\odot}.\ 8$
- 2. Timchenko P. E., Timchenko E. V., Zherdeva L. A., Belousov N. V., Volova L. T., Rossinskaya V. V., Boltovskaya V. V. and Pugachev E. I. Optical Methods for Controlling Cell-Tissue Implants under Zero Gravity Conditions // Bulletin of the Lebedev Physics Institute. −2015. V. 42. №10. P. 305–308.