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Let in an infinite space there is a cylindrical cavity of radius a. We choose a
coordinate system so that the z axis coincides with the axis of the cylinder. Let the harmonic
load p(r,t) = pye'®t act on the boundary r = a of the elastic region r > a, where t — time.

Fig. 1. Cylindrical cavity

Cylindrical waves caused by this load are described by equation
92 19 1 1
(ﬁ‘l' ;;—gatz) (rt)=10 r=(x+ x3)72 (1)
To the equation (1) we add the boundary condition
Orr = — pOelwt- (2)
A solution of equation (1), satisfying the boundary condition (2) and the radiation

condition at infinity, is the

O(r,t) = AHgD (kr)e't, k= 2, 3)
1
Where H(gl) is the Hankel function of first kind or Bessel functions of the third kind
and equals to Hél)(kr) = J (kr) + iY, (kr),
here J,, Y, are Bessel function of first and second kind, respectively.
Noticing that
20 1 9%

Oy = ZMF + EW’ (4)

We obtain from the boundary condition (2):
A= L (5)

B 2#{%[Hél)(kr)]}r_a—)tszél)(ka)-
So the function (r,t) is thus defined. And we can calculate the displacements and
stresses with the help of it:
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vz = AV, 9)
we get, that
w, = 22 = _kAel@t(],(kr) + iY,(kr)), (10)
or
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opp = 222+ A28 o _kaelt(J,(er) + Y,0er))- 2 (2 AH (er)et) (12)

Then we reahze all of these formulas of dlsplacements and stresses in the MatLab

Onsiocrmant ot momernt 10 sec
at the moment t=10 s¢
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Fig. 2. Displacemérﬂl't of wave at the Fig. 3. Tension a,, at the moment t = 10
moment t=10 sec

On the this graph we can see how changed tension on the each point along the radius.

In conclusion, we calculate tensor displacement and stress for several medium, such as
sandstone, granite and steel. To solve this problem, the numerical calculations were made by
using Matlab environment.
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