ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П.КОРОЛЕВА"

ПРОЕКТИРОВАНИЕ ДИСКОВЫХ МОДУЛЬНЫХ ФРЕЗ

Утверждено Редакционно-издательским советом университета в качестве методических указаний к курсовой работе

САМАРА Издательство СГАУ 2007 Составитель *А.Н. Волков* Рецензент А. В. Тарасов

Проектирование дисковых модульных фрез: метод. указания к курсовой работе/ сост. A.H.Волков. — Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2007. - 24c.

Приведены основные сведения по конструкции, проектированию и расчету профиля дисковых модульных фрез для нарезания цилиндрических колес с прямым зубом, допуски основных элементов и пример выполнения рабочего чертежа фрезы.

Предназначены для студентов факультета №2 дневного и вечернего отделений.

1. ДИСКОВАЯ МОДУЛЬНАЯ ФРЕЗА

1.1. НАЗНАЧЕНИЕ И СХЕМА ФРЕЗЕРОВАНИЯ. ЭЛЕМЕНТЫ РЕЖИМА РЕЗАНИЯ

Дисковая модульная фреза представляет собой фасонную фрезу с затылованным зубом. Она предназначена для нарезания цилиндрических прямозубых и косозубых колес с эвольвентным профилем зуба по методу копирования на фрезерных станках в индивидуальном и мелкосерийном производстве. Точность нарезания зубьев соответствует 9...10 степени по ГОСТ 9178-81 и ГОСТ 1643-81.

На рис.1 показана схема нарезания колеса и основные рабочие движения.

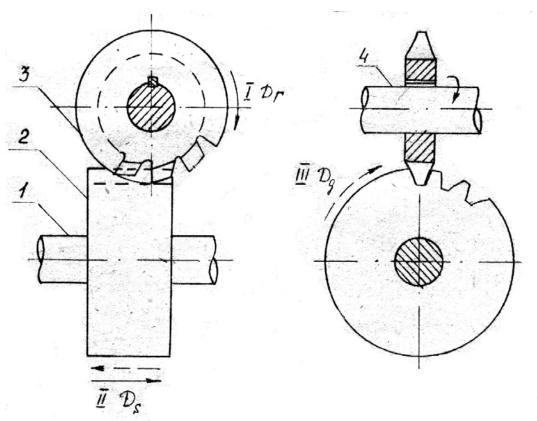


Рис.1. Схема фрезерования зуба цилиндрического колеса и основные движения

Заготовка 2 устанавливается на оправке 1, которая закрепляется в патроне делительной головки и поддерживается центром задней бабки, размещенной на столе фрезерного станка. Фреза 3 устанавливается на оправке 4, закрепленной в шпинделе станка. Фреза получает главное вращательное движение $\mathbf{D_r}$ с заданной скоростью \mathbf{v} (м/с), а заготовка вместе со столом получает поступательное движение $\mathbf{D_s}$ со скоростью подачи.

Скорость движения выбирается по нормативам в зависимости от свойств обрабатываемого материала и материала инструмента, заданного периода резания, выбранной подачи и глубины резания. Для быстрорежущих фрез при обработке стальных колес с **HRC**₃ 20...30 скорость колеблется в пределах 0,2...0,6 м/с. Затем подсчитывается частота вращения шпинделя в об/мин:

$$n=\frac{1000\cdot v\cdot 60}{\pi D},$$

где \mathbf{D} – диаметр фрезы, мм.

Подача на зуб S_z выбирается по таблицам нормативов в зависимости от заданной шероховатости и измеряется в пределах от 0,05 до 0,15 мм/зуб. Чем ниже шероховатость профиля зуба колеса, тем меньше подача. Затем подсчитывается минутная подача (скорость подачи) в мм/мин:

$$S_{\scriptscriptstyle M} = S_z Z_u n,$$

где $\mathbf{Z}_{\mathbf{u}}$ – число зубьев фрезы,

n – частота вращения шпинделя, об/мин.

Глубина резания \mathbf{t} при работе в один проход принимается равной высоте зуба колеса h=2,25m, при работе в два прохода: $t_1=(1,25...1,5)m$, $t_2=h-t_1$.

После прорезки одной впадины зуба стол станка отводится ускоренным движением назад в исходное положение и производится поворот заготовки (деление) на $1/\mathbf{z}$ с помощью делительной головки.

Машинное время обработки одного зуба в минутах подсчитывается по формуле

$$T_M = \frac{b + l + x + y}{S_M},$$

где **b** – ширина венца зубчатого колеса, мм;

$$l = \sqrt{t(D-t)}$$
 - путь врезания, мм;

 \boldsymbol{x} и \boldsymbol{y} – подход и пробег фрезы (1...3 мм).

При обработке зубчатых колес, изготавливаемых из жаропрочных или титановых сплавов, применяется попутное фрезерование, когда направление движения подачи $\mathbf{D_s}$ совпадает с направлением движения $\mathbf{D_r}$. Скорость резания колеблется в пределах $0,1\dots 1,2$ м/с.

2. ПРОФИЛЬ ЗУБА ДИСКОВОЙ МОДУЛЬНОЙ ФРЕЗЫ ДЛЯ ЦИЛИНДРИЧЕСКИХ КОЛЕС С ПРЯМЫМ ЗУБОМ

Профиль зуба чистовой модульной фрезы в точности соответствует впадине между зубьями нарезаемого колеса. Он состоит из рабочего участка ${\bf AB}$ (рис. 2), оформленного по эвольвенте, и переходной кривой BC, оформленной по радиусу ${\bf \rho_f}'$ с координатами центра ${\bf X}'$.

Рис.2. Профиль впадины цилиндрического зубчатого колеса

УРАВНЕНИЯ ЭВОЛЬВЕНТЫ В ПОЛЯРНЫХ КООРДИНАТАХ И ИХ АНАЛИЗ

Эвольвента — это кривая, которая описывается точкой \mathbf{M} прямой $\mathbf{M}\mathbf{A}$ (рис.3) при качении ее без скольжения по основной окружности с радиусом \mathbf{r}_b . Из рис.3 видно, что полярные координаты текущего положения точки \mathbf{M} определяются углом $\mathbf{\Theta}_{\mathbf{x}}$ и радиусом $\mathbf{r}_{\mathbf{x}}$. Из рис.3 видно, что полярные координаты текущего положения точки \mathbf{M} определяются углом $\mathbf{\Theta}_{\mathbf{x}}$ и радиусом $\mathbf{r}_{\mathbf{x}}$.

Из рассмотрения треугольника ОМА можно написать:

$$r_{\chi} = \frac{r_b}{\cos \alpha_{\chi}},\tag{1}$$

где α_x – угол давления в точке M;

 r_b – радиус основной окружности.

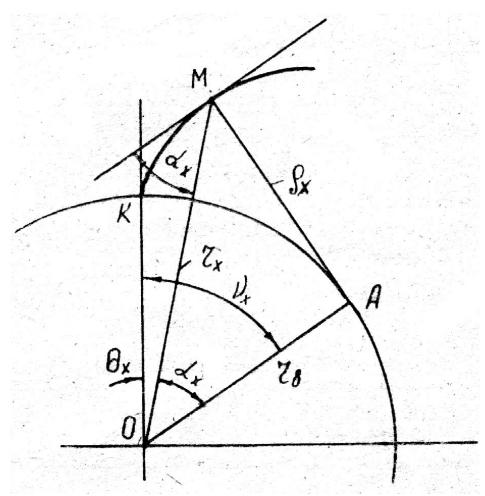


Рис.3. Схема построения эвольвенты

Принимая во внимание, что КА=МА, получим

$$r_b \cdot v_x = r_b \cdot tg\alpha_x$$

где V_x – угол развернутости эвольвенты.

Заменяя $\mathbf{v}_{\mathbf{x}}$ через $\mathbf{\Theta}_{\mathbf{x}}$ и $\mathbf{\alpha}_{\mathbf{x}}$, получим

$$\Theta_{\mathbf{x}} = \mathbf{tg}\alpha_{\mathbf{x}} - \alpha_{\mathbf{x}}.$$
 (2)

Функцию $\mathbf{tg}\alpha_{x}$ - α_{x} обозначают как \mathbf{inv} α_{x} и называют инвалютой или эвольвентной функцией

inv
$$\alpha_x = tg\alpha_x - \alpha_x$$
. (2a)

Существуют специальные таблицы значений этой функции. При расчете на ЭВМ она может быть подсчитана с заданной степенью точности.

Уравнения (1), (2) и (2а) называются уравнениями эвольвенты в полярных координатах. Задаваясь значениями радиуса $\mathbf{r}_{\mathbf{b}}$, можно определить $\mathbf{\alpha}_{\mathbf{x}}$ и $\mathbf{\Theta}_{\mathbf{x}}$ и построить кривую.

Из уравнения (1) вытекает, что $\cos\alpha_x = r_b / r_x$. С увеличением r_x , $\cos\alpha_x$ непрерывно уменьшается от 1 до некоторого значения, а α_x возрастает от нуля. В связи с этим непрерывно увеличивается радиус кривизны

$$\rho_x = A\overline{M} = r_x \cdot \sin\alpha_x.$$

Для точки M, расположенной на делительной окружности $\rho_w = r_w \cdot \sin \alpha_{tw}$,

$$\rho_w = \frac{mz}{2} \cdot \sin \alpha_{tw},\tag{3}$$

где ${\bf Z}$ — число зубьев нарезаемого колеса.

Из (3) видно, что радиус кривизны эвольвенты зависит от модуля, числа зубьев и угла зацепления нарезаемого колеса.

Таким образом, для точного нарезания зубчатого колеса необходимо для каждого сочетания \mathbf{m} , \mathbf{z} , α_{tw} изготавливать фрезу со своим расчетным профилем. На практике фрезы для каждого модуля и стандартного $\alpha_{tw}=20^{\circ}$ изготавливаются наборами из 8 или 15 фрез. В табл.2.1 приведены интервалы зубьев для набора из 8 фрез.

Таблица 2.1 *Назначение модульных фрез в наборе из 8 штук*

Номер	1	2	3	4	5	6	7	8
фрезы								
Z	12-13	14-16	17-20	21-25	26-34	35-54	55-134	135-∞

Для расчета профиля фрезы берут наименьшее число зубьев каждого интервала. При профилировании по другим **z** неточности профиля могут привести к заклиниванию сцепляемых колес.

3. АНАЛИТИЧЕСКИЙ РАСЧЕТ ПРОФИЛЯ И РАЗМЕРОВ ЗУБА МОДУЛЬНОЙ ФРЕЗЫ

3.1. ИСХОДНЫЕ ДАННЫЕ

Рабочий участок зуба AB (рис.4) расположен между окружностью выступов и основной окружностью с радиусами r_a и r_b . Для расчета точек профиля в декартовых координатах X и Y с началом координат в центре окружностей используются следующие исходные данные, характеризующие зубчатое колесо: \mathbf{Z} - число зубьев колеса, \mathbf{m} - модуль, $\boldsymbol{\alpha}_{tw}$ - угол зацепления, $\mathbf{inv}\,\boldsymbol{\alpha}_{tw}$ - эвольвентная функция.

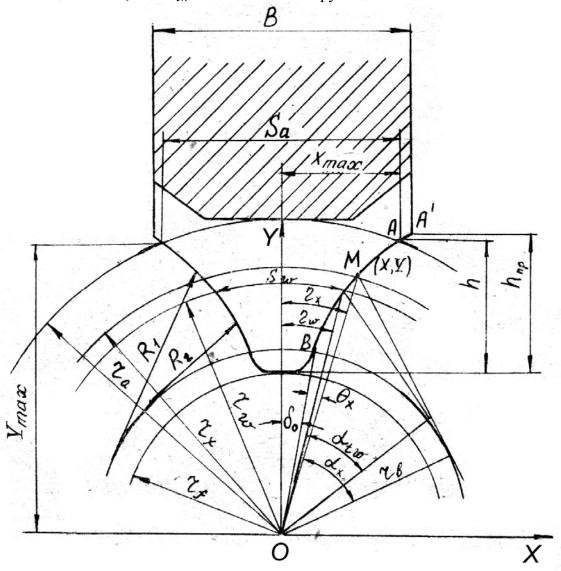


Рис.4. Схема к расчету координат эвольвентной части профиля и размеров зуба фрезы

3.2. РАСЧЕТНЫЕ ФОРМУЛЫ ПАРАМЕТРОВ ЗУБЧАТОГО КОЛЕСА

$$r_{\mathcal{W}} = \frac{m \cdot z}{2},\tag{4}$$

$$r_b = r_w \cdot \cos \alpha_{tw},\tag{5}$$

$$r_a = r_W + m, (6)$$

$$r_f = r_w - 1,25m, (7)$$

$$S_{W} = \frac{\pi \cdot m}{2} . \tag{8}$$

Точность подсчета 0,001 мм.

3.3. РАСЧЕТ КООРДИНАТ ПРОФИЛЯ ЭВОЛЬВЕНТНОГО УЧАСТКА ЗУБА. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

Расчетные формулы для координат точек профиля зуба вытекают из рассмотрения рис.4 [1].

Первую точку профиля располагаем на основной окружности симметрично оси \mathbf{Y} , т.е. принимаем

$$\mathbf{r}_{\mathbf{x}} = \mathbf{r}_{\mathbf{1}} = \mathbf{r}_{\mathbf{b}} \,. \tag{9}$$

Радиус окружности каждой последующей точки увеличиваем на **0,2m** и производим расчет в следующей последовательности:

$$\mathbf{r}_{x+1} = \mathbf{r}_x + \mathbf{0.2m}, \ \mathbf{r}_x \le \mathbf{r}_a \,,$$
 (10)

$$\cos \alpha_{x} = \frac{r_{b}}{r_{x}},\tag{11}$$

$$\sin \alpha_x = \sqrt{1 - \cos^2 \alpha_x} \,, \tag{12}$$

$$tg\alpha_x = \frac{\sin \alpha_x}{\cos \alpha_x},\tag{13}$$

$$\alpha_x = \operatorname{arctg}\alpha_x, \tag{14}$$

$$\mathbf{inv} \ \boldsymbol{\alpha}_{x} = \mathbf{tg} \boldsymbol{\alpha}_{x} - \boldsymbol{\alpha}_{x}, \tag{15}$$

$$\eta_x = \frac{\pi}{2z} + \text{inv}\alpha_x - \text{inv}\alpha_{tw}, \tag{16}$$

$$\eta_a = \frac{\pi}{2z} + \text{inv}\alpha_a - \text{inv}\alpha_{tw}, \tag{16a}$$

Углы α_x и η_x в формулах (14) и (16) приводятся в радианах. Точность подсчета в формулах 11–16–0,000001 мм.

$$X = r_{r} \cdot \sin \eta_{r}, \tag{17}$$

$$Y = r_{\chi} \cdot \cos \eta_{\chi}, \tag{18}$$

$$X_{\max} = r_a \cdot \sin \eta_a, \tag{19}$$

$$Y_{\text{max}} = r_a \cdot \cos \eta_a. \tag{20}$$

Точность подсчета в формулах 17-20 – 0,001 мм.

3.4. РАСЧЕТ РАДИУСОВ ЗАМЕНЯЮЩИХ ОКРУЖНОСТЕЙ

Для облегчения изготовления контрольных шаблонов и заправки профиля затыловочных резцов и шлифовального круга расчетная эвольвента может быть заменена дугами окружностей с радиусами \mathbf{R}_1 и \mathbf{R}_2 , центры которых расположены на основных окружностях:

$$R_{1} = \frac{mz}{2} \sqrt{1 - \cos^{2} \alpha_{tw} \frac{z - 1}{z + 2}},$$
 (21)

$$R_2 = \frac{mz^2 \sin^2 \alpha_{tW}}{4R_1}. (22)$$

Точность подсчета 0,01 мм.

3.5. РАСЧЕТ РАЗМЕРОВ ЗУБА ПРОФИЛЬНОЙ ЧАСТИ ФРЕЗЫ

Ширина профильной части зуба в точке А (рис.4)

$$S_a = 2r_a \cdot \sin \eta_a. \tag{23}$$

Ширина фрезы

$$B = (1 + 0,01Q) \cdot S_a$$
 (24)

Значения \mathbf{Q} берутся по графику зависимости $\mathbf{Q=F(m)}$ [2]. Этот график разбиваем на три части и для каждого интервала m берем \mathbf{Q}_{cp} . От 1 до 4 $\mathbf{Q=25}$, свыше 4 до 7 $\mathbf{Q=20}$, свыше 7 $\mathbf{Q=15}$. Высота профиля, соответствующая точке A,

$$h = r_a \cdot \cos \eta_a - r_f \tag{25}$$

Высота профиля, соответствующая точке \mathbf{A}' ,

$$h_{np} = h + \Delta h = h + \frac{(B - S_a)}{2 \operatorname{tg} \alpha_a}.$$
 (26)

Величины радиусов $\rho_{\mathbf{f}}$ у вершины зуба фрезы для формирования переходной кривой на участке **BC** (рис.2) и абсцисс $\mathbf{X'}$ центра радиусов приведены в табл. 3.1 [2].

Таблица 3.1 Величины переходных радиусов $ho_{\mathbf{f}}^{'}$ и абсцисс \mathbf{x}' профиля модульных зуборезных фрез, мм

z	12-13	14-16	17-20	21-25	26-34	35-54	55-134	135
$ ho_{\!f}^{'}$	5,2	4,9	4,6	4,3	4,0	3,6	3,2	2,5
x'	1,043	1,075	1,191	1,320	1,475	1,600	1,729	2,00

<u>Примечание</u>. При модуле, отличающемся от m=10, приведенные данные необходимо разделить на 10 и умножить на соответствующий модуль.

3.6. РАСЧЕТ ПРОФИЛЯ ФРЕЗЫ ДЛЯ КОСОЗУБЫХ ЦИЛИНДРИЧЕСКИХ КОЛЕС

Для точного нарезания колес с косым зубом профиль фрезы рассчитывается по специальной методике [2]. Для неточных колес с небольшим углом наклона зуба β можно использовать методику расчета профиля для прямого зубчатого колеса, подставляя в расчетные формулы нормальный модуль \mathbf{m}_n и приведенное число зубьев \mathbf{z}_{np} , которое определяется по формуле

$$z_{np} = \frac{z}{\cos^3 \beta}.$$

3.7. РАСЧЕТ ПРОФИЛЯ И РАЗМЕРОВ ЗУБА ФРЕЗЫ НА ПЭВМ

Блок-схема расчета профиля и размеров зуба модульной фрезы приведена на рис.5. Расчет параметров зубчатого колеса $\mathbf{r_w}$, $\mathbf{r_b}$, $\mathbf{r_a}$, $\mathbf{r_f}$, $\mathbf{S_w}$ по формулам (4) – (18), полярных координат точек профиля $\mathbf{r_x}$, $\mathbf{\eta_x}$ по формулам (10) - (16), прямоугольных координат \mathbf{X} и \mathbf{Y} по формулам (17) – (20), радиусов заменяющих окружностей профиля по формулам (21) – (22) и размеров зуба $\mathbf{S_a}$, \mathbf{B} , \mathbf{h} и \mathbf{h}' по формулам (23) – (26) производится на ПЭВМ с выводом на печать.

4. ОПРЕДЕЛЕНИЕ ГЕОМЕТРИИ РЕЖУЩЕЙ ЧАСТИ ЗУБА И КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ ФРЕЗЫ

Дисковые модульные фрезы изготавливаются с затылованными зубьями для сохранения профиля при переточке по передней поверхности. При нарезании особо точных колес и из труднообрабатываемых материалов применяют черновые фрезы для предварительной прорезки зубьев, которые могут иметь ступенчатый профиль [1].

4.1. Для облегчения условий резания черновые фрезы затачиваются с передним углом $\gamma=5...10^{\circ}$. Чистовые фрезы для сохранения точности профиля делаются с передним углом $\gamma=0^{\circ}$.

Основные конструктивные элементы модульной фрезы показаны на рис.6.

- 4.2. Наружный диаметр \mathbf{D} , диаметр отверстия \mathbf{d} и число зубьев $\mathbf{Z}_{\mathbf{u}}$ приведены в табл. 4.1 [3].
 - 4.3. Задний угол на вершинной кромке зуба определяется из формулы

$$tg\alpha_e = \frac{tg\alpha_{\delta}}{\sin \varphi}$$
,

где α_{δ} – задний угол на боковой стороне зуба;

 ϕ – угол наклона профиля у наружного диаметра фрезы, выбираемый из табл. 4.2.

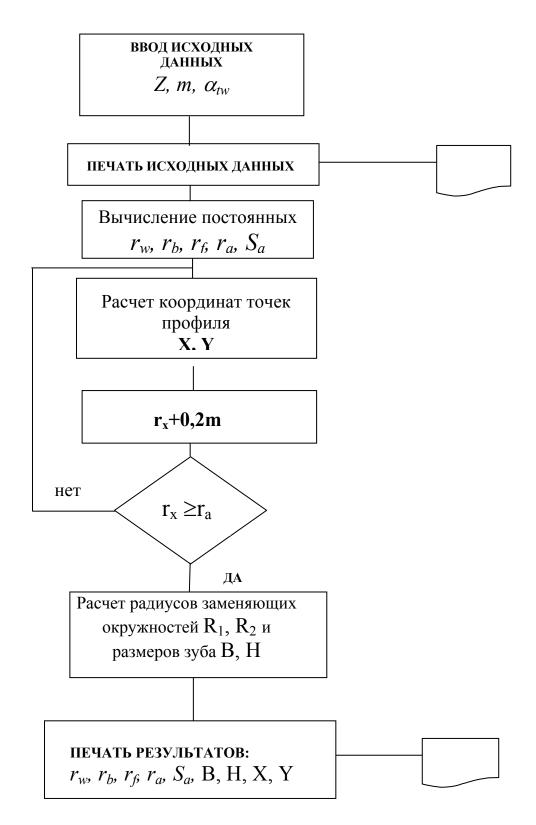


Рис.5. Блок-схема расчета профиля и размеров зуба модульной фрезы на ПЭВМ

Основные размеры модульной фрезы

Модуль						
m	1-1,375	1,5-1,75	2-2,25	2,5-2,75	3-3,75	4-4,5
D	50	55	63	70	80	90
d	19	22	22	22	27	27
$\mathbf{z}_{\mathbf{u}}$	14	14	12	12	12	12
Модуль	5-5,5	6-7	8-9	10		
m						
D	100	110	125	140		
d	27	32	32	40		
$\mathbf{Z}_{\mathbf{u}}$	12	10	10	10		

Таблица 4.2

Величина углов ϕ , $\alpha_{\bar{0}}$ для дисковых модульных фрез

Номер фрезы	1	2	3	4	5	6	7	8
Угол наклона профиля Ф	5°	5°20′	8°10′	9°40′	11°30′	14°	17°	18°
Принимае- мый для расчета α_6	1°20′	-1°30′		1°3	0′-2°		2°-3°	

<u>Примечание</u>. Большие значения α_{6} принимать при более точной обработке, при небольшой и средней твердости материала колеса, меньшие - для обработки твердых и прочных материалов.

4.4. Величина затылования (рис.6) определяется по формуле

$$K = \frac{\pi D}{z_u} \operatorname{tg} \alpha_g$$
 . Величина **К** округляется до 0,5мм.

Фрезы со шлифованным профилем при нарезании высокоточных колес делаются с двойным затылованием [1], $\mathbf{K_1}$ =(1,2...1,5) \mathbf{K} .

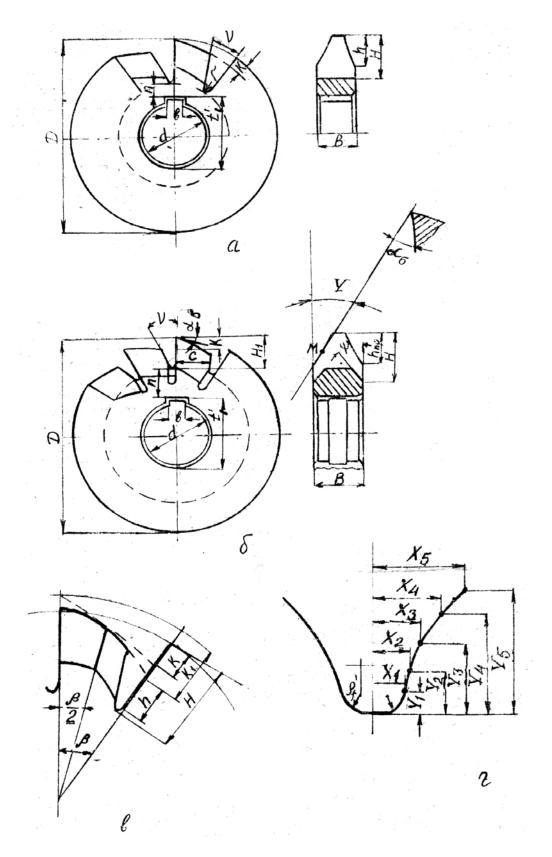


Рис. б. Конструктивные элементы дисковой модульной фрезы: a- без подфрезеровки; b- с подфрезеровкой; b- элементы двойного затылования; b- профиль зуба фрезы

4.5. Зуб дисковой модульной фрезы выполняется двух типов (рис.4): а) без подфрезеровки (для фрез малых и средних модулей), б) с подфрезеровкой средних и крупных модулей (m>3).

Размер Н определяется для одинарного затылования.

 $H=h_{\pi p}+K+r$

для двойного затылования

$$H = h_{\pi p} + 0.5(K + K_1) + r$$

где $\mathbf{h}_{\mathbf{np}}$ высота затылуемого профиля,

К – величина падения затылка,

 \mathbf{K}_1 - падение второго затылка,

 ${f r}$ – радиус дна канавки, принимается от 1 до 5 мм в зависимости от модуля.

Размер H_1 (для типа б) определяется ориентировочно, угол ψ – из конструктивных соображений.

4.6.Размер угла впадины между зубьями *v* определяется по формуле [4]:

$$v = \frac{\beta}{2} + 10^{\circ}$$

где eta - центральный угол между зубьями $eta = rac{360^\circ}{Z_u}$.

Полученное значение υ округляем до 18; 22; 25 $^{\circ}$ и далее через 5 $^{\circ}$.

- 4.7. Размеры шпоночного паза b и t_1' определяются по ГОСТ 9472-83. После расчета фрезы производят вычерчивание и проверку на соблюдение следующих условий:
- 1. Толщина n тела фрезы в опасном сечении должна быть не менее **0,35d**;
- 2. Ширина C зуба у основания должна быть не менее 0,75H (для фрез типа а) и не менее $0,75H_1$ (для фрез типа б).

5. ДОПУСКИ НА ИЗГОТОВЛЕНИЕ ОСНОВНЫХ ЭЛЕМЕНТОВ ФРЕЗЫ

Допуски на диаметр посадочного отверстия \mathbf{d} устанавливаются по $\mathbf{H7}$.

Предельные отклонения наружного диаметра фрез D по h16, ширины B по h12 .

Технические условия на изготовление фрез приведены в табл.5.1. Величины допусков на изготовление элементов фрезы не должны превышать указанных в таблице величин.

Таблица 5.1

ЭЛЕМЕНТЫ	Модуль						
	От 1 до 2	Свыше 2 до 6	Свыше 6 до 10	Свыше 10			
Отклонения от радиальности передней поверхности. Радиальное биение по наружному диаметру относительно оси отверстия (мкм):	±1°	±45′	±30′	±25′			
у двух смежных зубьев за один оборот фрезы Биение торцов по наиболее удаленным точкам от отверстия	32 63	40 80	40 100	40 100			
фрезы не должно превышать (мкм) Торцевое биение кромок зубьев не должно	32	40	40	40			
превышать (мкм) Разность расстояний от торцевых плоскостей фрезы до точек профиля, лежащих на одном диаметре, не	63	80	100	100			
должно превышать (мкм) Погрешность профиля не должна превышать (мкм):	200	250	320	320			
на участке эвольвенты на вершине зуба и закруглениях	50 100	63 125	80 160	80 160			

6. ШЕРОХОВАТОСТЬ ПОВЕРХНОСТЕЙ

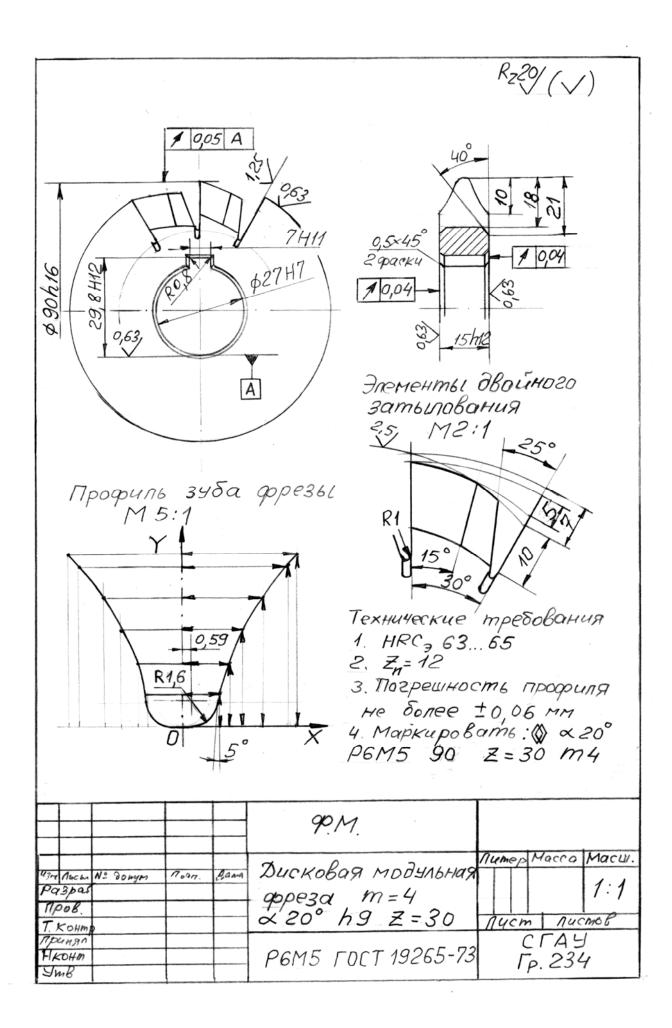
Шероховатость поверхностей назначается в соответствии с общими правилами.

Точные посадочные и базовые поверхности обычно шлифуются и шероховатость их выбирается: для отверстия R_a =1,25...0,08, для торцов 0,63...0,32. Шероховатость передней поверхности R_z =6,3, шероховатость задней поверхности: для шлифованных - R_a =1,25...0,63 мкм, для нешлифованных по профилю фрез назначается в пределах R_z =10 мкм. Остальные поверхности обрабатываются с шероховатостью R_z =10...20 мкм.

7. ВЫБОР МАТЕРИАЛА МОДУЛЬНОЙ ФРЕЗЫ

Дисковые чистовые фрезы (цельные) для изготовления зубчатых колес из чугуна, незакаленных сталей или цветных сплавов обычно изготавливаются из низколегированной стали 9ХС, ХВГ, ХВСГ по ГОСТ 5950-73 с закалкой на твердость HRC_3 62...64. Для обработки зубчатых колес из углеродистых или легированных конструкционных сталей, подкаленных на твердость HRC_3 35...45, рекомендуется изготавливать фрезы из быстрорежущих сталей P6M5, P6M3, P9 по ГОСТ 19265-73, закаливаемых на твердость P8K5, для закаленных сталей на более высокую твердость рекомендуется сталь P9K5, для жаропрочных и титановых сплавов — P9K10, $P9\Phi5$, $P10K5\Phi5$, закаливаемых на твердость HRC_3 64...67.

8. ТРЕБОВАНИЯ К РАБОЧЕМУ ЧЕРТЕЖУ


Рабочий чертеж фрезы делается в соответствии с общими требованиями. На нем должно быть отражено следующее:

- изображение фрезы в двух проекциях по типу рис.6 с обозначением всех размеров и их отклонений, геометрических углов с указанием шероховатости поверхностей;
- для фрез с двойным затылованием желательно изображение зуба в увеличенном масштабе (рис.6, в);
- изображение профиля фрезы в увеличенном масштабе с нанесением координат \boldsymbol{X} и \boldsymbol{Y} расчетных точек для изготовления шаблона и контршаблона (рис.6, г);
- технические условия на изготовление фрезы и ее элементов;
- обозначение марки материала с указанием задаваемой твердости HRC₃;
- маркировка на торце фрезы с указанием: товарного знака завода изготовителя, модуля $\mathbf{m}=$, угла зацепления $\mathbf{\alpha}_{tw}=$, марки инструментальной стали;
- стандартный штамп чертежа.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Алексеев Г.А. Расчет и конструирование режущего инструмента. / Г.А. Алексеев, В.А. Аршинов, Е.А. Смольников М.: Машиностроение, 1958. 602c.
- 2. Справочник инструментальщика-конструктора / В.И. Климов, А.С. Лернер [и др.] М.: Машгиз, 1958. 608с.
- 3. Справочник инструментальщика / под ред. И.А.Ординарцева. Л.: Машиностроение, 1987. 846с.
- 4. Либерман, А.И. Расчет многолезвийных инструментов, работающих методом копирования / А.И. Либерман М.: Машгиз, 1962. 359с.

приложение

ОГЛАВЛЕНИЕ

1. ДИСКОВАЯ МОДУЛЬНАЯ ФРЕЗА	3
2. ПРОФИЛЬ ЗУБА ДИСКОВОЙ МОДУЛЬНОЙ ФРЕЗЫ ДЛЯ ЦИЛИНДР КОЛЕС С ПРЯМЫМ ЗУБОМ	
3. АНАЛИТИЧЕСКИЙ РАСЧЕТ ПРОФИЛЯ И РАЗМЕРОВ ЗУБА МОДУЈ ФРЕЗЫ	
4. ОПРЕДЕЛЕНИЕ ГЕОМЕТРИИ РЕЖУЩЕЙ ЧАСТИ ЗУБА И КОНСТРУ ЭЛЕМЕНТОВ ФРЕЗЫ	
5. ДОПУСКИ НА ИЗГОТОВЛЕНИЕ ОСНОВНЫХ ЭЛЕМЕНТОВ ФРЕЗЫ	16
6. ШЕРОХОВАТОСТЬ ПОВЕРХНОСТЕЙ	18
7. ВЫБОР МАТЕРИАЛА МОДУЛЬНОЙ ФРЕЗЫ	18
8. ТРЕБОВАНИЯ К РАБОЧЕМУ ЧЕРТЕЖУ	18
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	19
приложение	20

Учебное издание

ПРОЕКТИРОВАНИЕ ДИСКОВЫХ МОДУЛЬНЫХ ФРЕЗ

Методические указания к курсовой работе

Составитель Волков Александр Николаевич

Редактор Н. С. Куприянова Компьютерная верстка О. А. Ананьев

Подписано в печать 25.12.2007 г. Формат 60х84 1/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 1,5. Тираж 100 экз. Заказ Арт. С - 31/2007

Самарский государственный аэрокосмический университет. 443086, Самара, Московское шоссе, 34.

Изд-во Самарского государственного аэрокосмического университета. 443086, Самара, Московское шоссе, 34.