ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЁВА»

ПОДБОР СЕЧЕНИЙ СИЛОВЫХ ЭЛЕМЕНТОВ НЕСТРЕЛОВИДНОГО КРЫЛА

Утверждено Редакционно-издательским советом университета в качестве методических указаний

> Самара Издательство СГАУ 2008

УДК 629.7.01(075) ББК 68.53

Составитель В.А. Мехеда

Рецензент канд. техн. наук, доц. В.К. Шадрин

ПОДБОР СЕЧЕНИЙ СИЛОВЫХ ЭЛЕМЕНТОВ НЕСТРЕЛОВИДНОГО КРЫЛА: метод. указания / В.А. Мехеда. – Самара: Изд-во СГАУ, 2008. – 48 с.

В методических указаниях рассматривается приближенный расчет нагрузок на нестреловидное крыло. Эпюры перерезывающих сил, изгибающих и крутящих моментов для крыла определяются численным методом интегрирования – методом трапеций. Излагается методика подбора сечений основных силовых элементов крыла: обшивки, стрингеров, лонжеронов. В приложении приведены механические характеристики рекомендуемых материалов, допустимые напряжения для различных элементов крыла, сортамент стандартных профилей из алюминиевых и магниевых сплавов и др.

Методические указания рассчитаны на студентов вечерней формы обучения специальности 160201 и дневной формы обучения специальности 160901, выполняющих расчетно-графическую работу соответственно по дисциплинам: «Прочность конструкций» и «Конструкция и прочность летательных аппаратов». Методические указания будут полезны студентам других технических специальностей.

Подготовлены на кафедре прочности летательных аппаратов

УДК 629.7.01(075) ББК 68.53

© Самарский государственный аэрокосмический университет, 2008

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1 ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ КРЫЛА	6
2 НАГРУЗКИ КРЫЛА И ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВ	ЫХ
ФАКТОРОВ	6
2.1 Нагрузки крыла	6
2.2 Построение эпюры перерезывающих сил	10
2.3 Построение эпюры изгибающих моментов	12
2.4 Построение эпюры крутящих моментов для крыла	
с безмоментным профилем поперечного сечения	13
2.5 Построение эпюры крутящих моментов для крыла	
с моментным профилем поперечного сечения	<i>16</i> 16
3.1 Построение профиля расчетного сечения	17
3.2 Расчетные нагрузки. Усилия в верхней и нижней панелях крыла 4 ПОДБОР СЕЧЕНИЯ ЛОНЖЕРОННОГО КРЫЛА	<i>18</i> 18
4.1 Подбор обшивки	
4.2 Подбор поясов лонжеронов нижней панели	
4.3 Подбор стрингеров нижней панели	
4.4 Подбор поясов лонжеронов верхней панели	
4.5 Проверка нижней панели крыла на сжатие	
4.6 Подбор толщины стенок лонжеронов	
5 ПОДБОР СЕЧЕНИЯ МОНОБЛОЧНОГО КРЫЛА	
5.1 Подбор поясов лонжеронов	
5.2 Подбор обшивки и стрингерного набора нижней панели крыла	
5.3 Подбор обшивки и стрингерного набора верхней панели крыла	23
5.4 Проверка нижней панели моноблочного крыла на сжатие ПРИЛОЖЕНИЕ А	24 26
Материалы, рекомендуемые для силовых элементов крыла ПРИЛОЖЕНИЕ Б	26 26
<i>Разрушающие напряжения силовых элементов крыла</i> ПРИЛОЖЕНИЕ В	26 27
Рекомендуемый сортамент листов и прессованных профилей для	
силовых элементов крыла ПРИЛОЖЕНИЕ Г	27 28
Стандартные прессованные профили из алюминиевых и магниевых	
Сплавов	
Профили прессованные бульбообразные уголкового сечения	
из алюминия и алюминиевых сплавов (сортамент)	

Профили прессованные прямоугольные равнополочного	
уголкового сечения из алюминиевых и магниевых сплавов (сорт	амент) 29
Профили прессованные прямоугольные неравнополочного уголк	ового 31
сечения из алюминиевых и магниевых сплавов (сортамент)	
Профили прессованные прямоугольные равнополочного швеллер	рного 33
сечения из алюминиевых и магниевых сплавов (сортамент)	
Профили прессованные прямоугольные равнополочного	
таврового сечения из алюминиевых и магниевых сплавов (сорт	амент) 34
Профили прессованные прямоугольные фасонного зетового сеч	іения
из алюминия и алюминиевых сплавов (сортамент)	
Профили прессованные прямоугольные равнополочного зетовог	20
сечения из алюминиевых и магниевых сплавов (сортамент)	
Профили прессованные косоугольные трапециевидного	
отбортованного сечения из алюминия и алюминиевых сплавов	(сортамент)37
Профили прессованные прямоугольные отбортованного швелл	ерного 37
сечения из алюминиевых и магниевых сплавов (сортамент) ПРИЛОЖЕНИЕ Д	<i>37</i> 38
Расчет силовых элементов крыла на устойчивость	
1 Обшивка	
2 Стрингер	
2.1 Расчет на местную потерю устойчивости	
2.2 Расчет на общую потерю устойчивости	
3 Пояс лонжерона	
ПРИЛОЖЕНИЕ Е	40
Основные понятия электронных таблиц Excel ПРИЛОЖЕНИЕ Ж	
Стандартная атмосфера ПРИЛОЖЕНИЕ З	
Операции с приближенными числами	

введение

В задании на проектирование внешний облик самолета приводится в виде трех проекций, масштаб которых может быть определен по размаху крыла *l* (рис.1).

Рис. 1. Внешний облик самолета

Исходные данные для расчета крыла содержат следующие сведения о самолете:

- максимальная скорость полета V_{max} ;
- полетная масса самолета *m*;
- масса крыла *m_{кр}* и его размах *l*;
- относительная толщина крыла в центральном \overline{C}_0 и концевом \overline{C}_{κ} сечениях (в процентах от размера хорды);
- $n_{y,\max}^{\circ}$ -максимальная эксплуатационная перегрузка;

- максимальное значение коэффициента аэродинамической подъемной силы крыла Сумах;
- коэффициент аэродинамического момента профиля крыла без учета влияния сжимаемости воздуха С_{м0};
- производная от коэффициента аэродинамического момента по коэффициенту аэродинамической подъемной силы без учета влияния сжимаемости воздуха dC_m/dC_v;
- максимальная высота полета Н.

Профиль крыла в расчетном сечении строится по точкам, координаты которых задаются в виде таблицы. Zpacy

2

Приводятся массы сосредоточенных грузов в крыле m_{cp} и координаты их центров тяжести.

Рис. 2. Спрямление внешних кромок крыла: 1 - элерон; 2 - кромки спрямленного крыла

1 ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ КРЫЛА

С целью упрощения расчетов крыло реальной формы заменяем крылом трапециевидной формы. Спрямляя переднюю, заднюю и концевую кромки крыла следует стремиться к тому, чтобы при этом площадь крыла практически не изменилась (рис. 2).

По проекциям самолета определяем действительные значения хорд b_{κ} и b_{θ} в концевом и центральном сечениях крыла. В этих же сечениях рассчитываем толщины профилей

$$C_{\kappa} = \overline{C}_k b_k / 100, \qquad C_o = \overline{C}_o b_o / 100$$

Строим две проекции спрямленного крыла: вид сверху и вид спереди (рис. 3) и подсчитываем его площадь с под фюзеляжной частью $S = \frac{b_0 + b_k}{2}l.$

Определяем удельную нагрузку на крыло $q_{yo} = mg/S$. Ее величина должна

определяем удельную нагрузку на крыло $q_{y\partial} = mg/S$. Ее величина должна находиться в пределах от 500 ∂o 8000 H/m^2 .

2 НАГРУЗКИ КРЫЛА И ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ

2.1 Нагрузки крыла

Наибольший изгиб крыла наблюдается в расчетных случаях A и A'. В настоящей работе ограничимся только расчетным случаем A, для которого, согласно Нормам прочности, максимальная эксплуатационная перегрузка n_A^3 принимается равной n_{\max}^3 , а коэффициент безопасности $f_A = 1,5$.

В силу симметрии рассчитаем нагрузки и построим эпюры для одной консоли крыла.

Для удобства построения эпюр введем новую ось координат ξ (рис. 3). Начало её расположим на краю консоли. Тогда

$$\xi = 0, 5l - z,$$
 (2.1)

а текущее значение хорды крыла будет:

$$b(\xi) = b_k + \frac{b_0 - b_k}{0.5l} \xi.$$
(2.2)

В проектировочном расчете распределяем аэродинамические нагрузки по размаху крыла пропорционально хордам крыла

$$q_{ay} = \frac{mgn_A^{\circ}}{S}b(\xi).$$
(2.3)

Здесь $g = 9,81 \ \text{м/c}^2$ - ускорение силы тяжести;

S - площадь крыла.

Массовые силы крыла распределяем по тому же закону, что и аэродинамические

$$q_{\kappa p} = -\frac{m_{\kappa p} g n_A^3}{S} b(\xi).$$
(2.4)

Кроме распределенных нагрузок на крыло действуют и сосредоточенные массовые силы от грузов, расположенных в крыле. К таким грузам относятся подвесные баки, двигатели, шасси и др.

Рис.3. Прямое крыло со спрямленными кромками

Рис.4. Изгиб крыла

Рис. 5. Кручение крыла

Так, если груз имеет массу m_{zp} , то на крыло передается от него сила P_{zp} , точка приложения которой совпадает с центром масс груза

$$P_{zp} = -m_{zp}gn_A. \tag{2.5}$$

Результирующая погонных аэродинамических и массовых нагрузок крыла будет

$$q_{y}(\xi) = q_{ay} - |q_{\kappa p}| = \frac{(m - m_{\kappa p})gn_{A}^{\circ}}{S}b(\xi).$$
(2.6)

Крыло разбиваем на отдельные участки, как показано на рис 4 и 5. Границы участков рекомендуется совмещать с центрами масс грузов в крыле, с координатами концевого, расчетного и бортового сечений, с координатами сечений, соответствующих концам элерона (например, сечения 2 и 4) и т.д. Длинные участки произвольно разбиваем на более мелкие и доводим общее количество участков не менее, чем до десяти. Обозначаем границы участков (сечений крыла) арабскими цифрами, начиная с единицы.

В выбранных сечениях внешние нагрузки на крыло и внутренние силовые факторы могут изменяться скачком. Поэтому в каждом сечении вводим две точки (до скачка и после скачка), которым будут соответствовать значения рассчитываемых величин до и после скачка. Цифры, соответствующие точкам сечений, выделены курсивом.

При таком подходе к вычислениям некоторые данные в таблице 1 повторяются, но расчеты в Excel и построение графиков значительно упрощаются. Необходимые сведения для начинающих по Excel приведены в *приложении* ζE .

Для каждой *i*-той точки находим безразмерную координату \overline{z}_i , размерные координаты z_i и ξ_i , значения $b(\xi)$, q_{ay} , $q_{\kappa p,i}$ и q_{yi} (по формулам (2.1)...(2.5)) и заносим их величины в таблицу 1.

2.2 Построение эпюры перерезывающих сил

Величину перерезывающей силы в сечении ξ определим суммированием нагрузки, расположенной по одну сторону от рассматриваемого сечения

$$Q(\xi) = \int_{0}^{\xi} q_{y}(\xi) d\xi + \sum_{j=1}^{k(\xi)} P_{zp,j}.$$
(2.7)

Здесь $k(\xi)$ - количество грузов, расположенных на участке от края консоли до рассматриваемого сечения с координатой ξ .

При расчете значений Q_i в выбранных точках используем метод численного интегрирования – метод трапеций. Подынтегральная функция $q_y(\xi)$ изменяется по линейному закону (2.6). Площадь каждой *i*-той трапеции численно равна приращению поперечной силы на данном участке крыла

$$\Delta Qi = 0,5 (q_{i-1} + q_i) \Delta \xi_i , \qquad \Delta \xi_i = \xi_i - \xi_{i-1}. \quad (2.8)$$

Номер	,	1		2		3		Примеча-
Номер					_		 	ние
точки, і	Ι	2	3	4	5	6	 	
\overline{z}_i	1,000	1,000					 	См. стр. 5
Z _i , M	<0,5l>	<0,5l>					 	См. рис. 3
ξ _i , Μ	0,000	0,000					 	См. рис. 3
$\Delta \xi_i$, м	0,000	0,000					 	Формула (2.8) < ΣДξ _i =0,5l>
b(ξі), м	$<\!\!b_k\!\!>$	$< b_k >$					 	Формула (2.2)
q _{ay,i} , Н/м							 	Формула (2.3)
q _{кр,і} , Н/м							 	Формула (2.4)
q _{y,i} , Н/м							 	Формула (2.6)
$\Delta Q_i, H$	0,000	0,000					 	Формула (2.8)
т _{гр і} , кг							 	См. рис. б
Р _{гр і} , Н							 	Формула (2.5)
<i>Q</i> _{<i>i</i>} , <i>H</i>							 	Формула (2.9) <Проверка по (2.10) >
⊿Мі, Н:м	0,000	0,000					 	Формула (2.12)
<i>М</i> _і , <i>Н</i> ∙м	0,000	0,000					 	Формула (2.13)
$X_{T,i}, M$							 	См. стр. 13
Х _{ж,і} , М							 	См. стр. 13
Х _{д,і} , М							 	Формула (2.16)
$m_{\xi,i}, H$							 	Формулы (2.14) или (2.19)
∆М _{ξі} , Н∙м	0,000	0,000					 	Формула (2.17)
$x_{\mathcal{H}i}$ - $x_{\mathcal{P},i}$, M							 	См. рис. 6
М _{ξгр} , Н:м							 	Формула (2.15)
<i>М_{ξ,і}, Н∙м</i>							 	Формула (2.18)

Таблица 1. Расчет внутренних силовых факторов крыла

Последовательное суммирование приращений ΔQ_i и $P_{2p,i}$ от края крыла до рассматриваемого сечения ξ_i дает величину перерезывающей силы:

$$Q_{i} = \sum_{i=1}^{n} \Delta Q_{i} + \sum_{j=1}^{k(\xi)} P_{zp,j}.$$
(2.9)

Здесь *i* - номер точки;

n - количество точек от свободного края до рассматриваемой точки *i* с координатой *ξ_i*;

j - номер груза;

 $k(\xi)$ - количество грузов в крыле от свободного края до рассматриваемой точки. Результаты расчетов заносим в таблицу 1 и строим эпюру перерезывающих сил (см. рис. 4).

Контрольная проверка правильности расчета эпюры перерезывающих сил производится по значению Q_{22} в центральном сечении крыла. Оно должно быть равно:

$$Q_{22} = \left\{ \frac{m - m_{\kappa p}}{2} - \sum m_{\rho p} \right\} g n_A^{\circ}, \qquad (2.10)$$

где Σm_{zp} - суммарная масса грузов, расположенных в одной консоли крыла. Отличие эпюрного значения перерезывающей силы от вычисленного по формуле (2.10) не должно превышать трех процентов.

2.3 Построение эпюры изгибающих моментов

Как известно, изгибающий момент определяется через перерезывающую силу следующим образом:

$$M(\xi) = \int_{0}^{\xi} Q(\xi) d\xi.$$
 (2.11)

Интегрирование выполним так же, как и при расчете перерезывающей силы, численным методом трапеций. Для участка крыла $\Delta \xi_i$ определяем приращение изгибающего момента:

$$VM_{i} = 0,5 (Q_{i-1} + Q_{i}) Vx_{i} . (2.12)$$

Суммируя с нарастающим итогом приращения ΔM_i от края крыла, получаем изгибающий момент в сечении

$$M_i = \sum_{i=1}^n \Delta M_i. \tag{2.13}$$

Результаты расчетов представляем в табличном виде (см. таблицу 1) и строим эпюры (см. рис. 4).

2.4 Построение эпюры крутящих моментов для крыла с безмоментным профилем поперечного сечения

Наибольшее кручение крыла наблюдается в расчетном случае *B*, если профиль крыла безмоментный ($C_{M0} = 0$), или в случае *C*, если профиль крыла моментный ($C_{M0} \neq 0$).

Согласно Нормам прочности для расчетного случая *B*: $n_B = 0,5n_{\max}^3$, $f_B=2$, $q = q_{\max \max} = \rho_H V_{\max \max}^2 / 2$.

Здесь ρ_H – плотность воздуха, соответствующая максимальной высоте полета *H* (см. приложение Ж).

Для маневренных самолетов (истребителей и др.) $V_{max max} \ge 1,6 V_{max}$.

Для ограниченно маневренных самолетов (штурмовиков) $V_{max max} \ge 1, 1 V_{max}$.

Для пассажирских и транспортных самолетов $V_{max max} \ge (V_{max} + 50) \kappa M/4$.

Погонные аэродинамические нагрузки q_{ay} действуют по линии центров давления, а массовые $q_{\kappa p}$ - по линии центров тяжести (рис. 6).

Рис. 6. Схема закручивания крыла

Согласно статистике координаты центра жесткости x_{∞} и центра тяжести x_T в сечении находятся от передней кромки крыла на расстоянии $(0,38...0,42)b(\xi)$ и $(0,45...0,50)b(\xi)$ соответственно.

Погонные нагрузки относительно центра жесткости $x_{\mathcal{H}}$ дают погонный крутящий момент (см. рис. 6)

$$m_{\xi} = q_{ay}(x_{x} - x_{o}) + |q_{\kappa p}|(x_{T} - x_{x}).$$
(2.14)

От грузов в крыле возникают сосредоточенные крутящие моменты

$$M_{_{2p}} = P_{_{2p}}(x_{_{\mathcal{H}}} - x_{_{2p}}) = -m_{_{2p}}gn_B^{_{\mathcal{H}}}(x_{_{\mathcal{H}}} - x_{_{2p}}), \qquad (2.15)$$

где x_{cp} - расстояние от носка сечения до центра масс груза.

Координату центра давления x_d, входящую в формулу (2.14), определим из выражения

$$\overline{x}_{\partial} = \frac{x_{\partial}}{b(\xi)} = \left| \frac{dC_m}{dC_y} \right| F_2(M) \pm \frac{\frac{dC_{m0}}{d\delta} \delta_{_{3\phi}}^*}{C_y(\xi)} F_1(M), \qquad (2.16)$$

10

где | dCm/dCy | - абсолютная величина производной от коэффициента аэродинамического момента по коэффициенту аэродинамической подъемной силы без учета влияния сжимаемости воздуха (см. исходные данные). Для сечений, проходящих через элерон, её величина принимается равной 0,26;

 $F_1(M)$ и $F_2(M)$ поправочные коэффициенты, позволяющие учесть влияние сжимаемости воздуха на аэродинамические характеристики профиля. Они определяются по графикам рис. 7 в зависимости от числа Маха

$$M = V_{max max}/a_H.$$

Здесь a_H - скорость звука в воздухе на максимальной высоте полета самолета (см. Приложение Ж).

Из-за отсутствия данных при $M \ge 0.95$ значения $F_1(M)$, $F_2(M)$ принимать равными единице.

Рис. 7. Графики для определения поправочных коэффициентов учета сжимаемости воздуха

 $dC_{m0}/d\delta$ - производная по углу отклонения элерона δ от коэффициента аэродинамического момента профиля при нулевой подъемной силе (или при $C_v=0$) без учета влияния сжимаемости воздуха. Значение ее определяется по графику рис. 8 в зависимости от величины отношения хорды элерона b_3 к хорде крыла b.

$$\delta_{\scriptscriptstyle {\mathcal{P}}\phi}^* = \delta_0 - \frac{(\delta_0)^2}{100}.$$

Рис.8. График изменения $dC_{m0}/d\delta$ от $b_{\scriptscriptstyle 3\!/}b$

Угол отклонения элерона δ_o задается Нормами прочности в следующем виде $\delta_o = 100 \ (0.05 + 0.6 \ C_{M0}) \ge 2^{\circ}$.

C_y(ξ) - коэффициент подъемной силы для сечения крыла (принимаем равным коэффициенту аэродинамической подъемной силы крыла)

$$C_{y}(\xi) = C_{y} = \frac{mgn_{B}^{3}}{q_{\max\max}S}.$$

Для сечений без элерона второй член в формуле (2.16) равен нулю. В сечениях с элероном знак этого члена (плюс или минус) определяется направлением отклонения элерона (вверх или вниз). В расчетах направление отклонения элерона следует взять таким, чтобы элерон догружал расчетное сечение крыла крутящим моментом, а не приводил к его разгрузке.

По формулам (2.14) и (2.15) подсчитываем значения погонных и сосредоточенных крутящих моментов в выбранных сечениях крыла и заносим их в таблицу 1. Строим эпюру погонных моментов m_{ξ} (рис. 5).

Величина крутящего момента в сечении ξ_i определяется последовательным суммированием приращений ΔM_{ξ_i} на выделенных ранее участках $\Delta \xi_i$ и моментов $M_{\xi_i cp}$ от свободного конца крыла до рассматриваемого сечения ξ_i .

$$\Delta M_{\xi,i} = 0,5(m_{\xi,i} + m_{\xi,i-1})\Delta\xi_i, \qquad (2.17)$$

$$M_{\xi,i} = \sum_{i=1}^{n} \Delta M_{\xi,i} + \sum_{j=1}^{k(\xi)} M_{\xi,i}$$
(2.18)

где $\kappa(\xi)$ - количество сосредоточенных крутящих моментов, передающихся от грузов, расположенных на участке крыла от свободного края до рассматриваемого сечения ξ_i .

Результаты расчетов представляем в табличном виде (см. табл. 1) и строим эпюру M_{ξ} (рис. 5).

2.5 Построение эпюры крутящих моментов для крыла с моментным профилем поперечного сечения

Для расчетного случая $C: n_C^3 = 0, q = q_{max max}, f_C = 2.$

В сечениях крыла действует погонный крутящий момент, который рассчитывается следующим образом

$$m_{\xi} = (C_{m0} \pm \frac{dC_{m0}}{d\delta} \delta^*_{\flat\phi}) F_1(M) q_{\max\max} b^2(\xi), \qquad (2.19)$$

где *С*_{м0} - коэффициент аэродинамического момента профиля без учета влияния сжимаемости воздуха (см. исходные данные).

Остальные расчеты, начиная с формулы (2.17), производим также, как и в расчетном случае *B*. Так как $n_C^3 = 0$, то сосредоточенные крутящие моменты от грузов $M_{\xi cp}$ в случае *C* отсутствуют. Следовательно, в таблице 3 строки, содержащие величины x_{Ti} , x_{xci} , x_{di} , x_{xci} - x_{cpi} и $M_{\xi cp}$, следует опустить.

3 ВЫБОР ТИПА КРЫЛА

Для легких самолетов *(массой менее 25 монн)* более выгодна в весовом отношении лонжеронная схема крыла. Самолеты с массой более *25 монн* проектируют с моноблочным крылом.

В лонжеронном крыле основная доля изгибающего момента (60...70%) воспринимается поясами лонжеронов, а сравнительно тонкая, слабо подкрепленная обшивка, главным образом, воспринимает крутящий момент.

В моноблочных крыльях роль поясов лонжеронов в работе крыла на изгиб невелика (10...20%). Относительно толстая, хорошо подкрепленная общивка работает как на общий изгиб, так и на кручение.

При назначении силового набора крыла (рис. 9) необходимо руководствоваться следующими рекомендациями:

- передний лонжерон располагается на расстоянии (0,2...0,3)b(ξ) от носка сечения, а задний на (0,6...0,7) b(ξ);
- расстояние *между соседними стрингерами* b_{стр} лежит в пределах от 120 до 300 мм для лонжеронного крыла и 80...160 мм для моноблочного крыла;
- расстояние *между нервюрами* в лонжеронном крыле a = 200...300 *мм*,

в моноблочном *a* = 400...800 *мм*.

Рекомендуется ограничиться рассмотрением двухлонжеронной схемы крыла. Расчет трехлонжеронных и более схем см. в [2].

Хвостовая часть крыла в дальнейшем не рассматривается, так как она практически не участвует в восприятии основных силовых факторов, действующих на крыло, и занята, как правило, механизацией крыла.

3.1 Построение профиля расчетного сечения

Подсчитаем относительную толщину профиля в расчетном сечении (см. рис. 3)

 $C(\xi_{pacy}) = C_{\kappa} + \frac{C_0 - C_k}{0,5l} \xi_{pacy}.$

Рис. 9. Назначение силового набора

Рис. 10. Построение профиля расчетного сечения крыла

Размер хорды расчетного сечения $b(\xi_{pacy})$ можно взять из таблицы 1. По заданным в табличном виде относительным координатам $\overline{x} = 100x/b(\xi_{pacy})$, $\overline{y}_{e} = 100 y_{e} / C(\xi_{pacy})$ и $\overline{y}_{\mu} = 100 y_{\mu} / C(\xi_{pacy})$ находим абсолютные координаты точек профиля *x*, *y*_e и *y*_µ и по ним (в одинаковом масштабе по осям *x* и *y*) строим профиль поперечного сечения крыла (рис. 10) и назначаем силовой набор согласно рекомендациям начала раздела 3.

3.2 Расчетные нагрузки. Усилия в верхней и нижней панелях крыла

Расчет самолета на прочность производится по разрушающим нагрузкам. Поэтому эксплуатационные значения силовых факторов, действующих в расчетном сечении (см. рис. 4), увеличиваем на соответствующие расчетному случаю коэффициенты безопасности и, таким образом, получаем значения расчетных разрушающих нагрузок

$$M^p = f_A M^\circ$$
, $Q^p = f_A Q^\circ$, $M^p_{\xi} = f_B M^\circ_{\xi}$ или $M^p_{\xi} = f_C M^\circ_{\xi}$.

Принимается допущение (в запас прочности), что расчетный изгибающий момент M^p воспринимается только межлонжеронной частью крыла. В расчетном случае A нижняя панель крыла работает на растяжение, а верхняя - на сжатие. Усилие растяжения (или сжатия) панелей будет

$$N = \frac{M^p}{H}.$$
(3.1)

Здесь Н - плечо пары нормальных сил N

$$H = 0.5 \,\mu(H_1 + H_2), \tag{3.2}$$

где $\mu = 0.95$ - коэффициент, показывающий насколько расстояние между центрами тяжести поясов лонжерона меньше габаритной высоты лонжерона;

 H_1 и H_2 – габаритные высоты лонжеронов.

Под Н₁ – понимается высота самого высокого лонжерона в сечении крыла.

4 ПОДБОР СЕЧЕНИЯ ЛОНЖЕРОННОГО КРЫЛА

4.1 Подбор обшивки

Минимальную потребную толщину обшивки рассчитываем из условия работы ее на сдвиг при кручении крыла по формуле

$$\delta^0_{o\delta} = \frac{M^p_{\xi}}{\Omega \tau_{pasp}},\tag{4.1}$$

где Ω - удвоенная площадь, охваченная внешним контуром сечения крыла и стенкой заднего лонжерона (без хвостовой части). На рис. 9 эта площадь заштрихована.

 τ_{pasp} – разрушающее напряжение общивки при сдвиге (*см. приложение Б*).

По потребной толщине обшивки d_{oo}^0 из сортамента алюминиевых листов подбираем ближайшую большую стандартную толщину $\delta_{oo} \geq \delta_{oo}^0$ (см. приложение B).

4.2 Подбор поясов лонжеронов нижней панели

Минимальную потребную площадь поперечного сечения первого лонжерона находим по формуле

$$F_{1p}^{0} = \frac{\kappa N}{\sigma_{pa3p} (1 + (\frac{H_2}{H_1})^2)}$$
(4.2)

где $\kappa = 0, 7...0, 8$ - коэффициент, определяющий долю нормальной силы *N*, воспринимаемой поясами лонжеронов;

 σ_{pasp} - разрушающее напряжение материала растянутого пояса. Оно определяется по таблицам *приложений А* и *Б*.

Для второго лонжерона принимаем:

$$F_{2p}^{0} = F_{1p}^{0} \frac{H_2}{H_1}.$$
(4.3)

По потребным площадям F_{2p}^0 и F_{1p}^0 подбираем ближайшие большие по площади стандартные прессованные профили $F_{1p} \ge F_{1p}^0$, $F_{2p} \ge F_{2p}^0$ (см. *приложение* Γ). При больших потребных площадях пояса назначают фрезерованными.

Если количество назначаемых лонжеронов в сечении более двух, то при подборе лонжеронов следует обращаться к пособию [2].

4.3 Подбор стрингеров нижней панели

Задаёмся количеством стрингеров *m*, исходя из диапазона рекомендуемых расстояний между ними (*см. стр. 16*). Стрингеры в пределах межлонжеронной части крыла располагаем равномерно и находим фактическое расстояние между ними

$$b_{cmp} = \frac{B}{m+1},\tag{4.4}$$

где В - ширина межлонжеронной части крыла;

m – число стрингеров в верхней (нижней) панели крыла. Вычисляем нормальную силу в поясах лонжеронов

$$N_{n} = \sigma_{pasp} \left(F_{1p} + \frac{H_{2}}{H_{1}} F_{2p} \right)$$
(4.5)

и в обшивке

$$N_{o\delta} = 0.5\sigma_{pasp}(1 + \frac{H_2}{H_1})B\varphi_{o\delta}\delta_{o\delta}, \qquad (4.6)$$

где φ_{ob} - редукционный коэффициент, который назначаем по рекомендациям таблицы 2.

Оставшаяся часть растягивающей силы воспринимается стрингерами. Минимальную потребную площадь стрингера вычисляем по формуле

$$F_{cmp}^{0} \ge \frac{N - N_n - N_{o\delta}}{0.5\sigma_{pa3p}(1 + \frac{H_2}{H_1})m},$$
(4.7)

Таблица 2. Значения редукционного коэффициента при растяжении обшивки

$\delta_{o ar{o}}$, мм	0,8	0,9	1,0	1,2	1,5	1,6	1,8	1,9	≥2,0
$arphi_{o \delta}$	0,59	0,65	0,70	0,79	0,90	0,93	0,97	0,99	1,00

В формулах (4.2), (4.5) и (4.6) σ_{pasp} - разрушающие напряжения при растяжении пояса лонжерона, обшивки и стрингера соответственно.

По потребной величине F_{cmp}^0 подбираем стандартный ближайший по площади профиль $F_{cmp} \ge F_{cmp}^0$.

Если в числителе формулы (4.7) получается отрицательная величина, то стрингерный набор назначается конструктивно, причем самым легким.

4.4 Подбор поясов лонжеронов верхней панели

В верхней сжатой панели стрингерный набор и обшивку принимаем такими же, как и в нижней растянутой. Тогда расчет сжатой зоны сводится к подбору поясов лонжеронов.

Сначала находим нормальную силу, которая приходится на долю стрингеров и обшивки. Рассчитываем критические напряжения обшивки $\sigma_{\kappa p \ o \delta}$ и стрингеров $\sigma_{\kappa p \ cm p}$ (см. приложение Д). Вычисляем редукционный коэффициент обшивки при сжатии

$$\varphi_{ob} = \sqrt{\frac{\sigma_{\kappa p.ob}}{\sigma_{\kappa p.cmp}}}.$$

Если расчет дает $\varphi_{o\delta} > 1$, то принимаем $\varphi_{o\delta} = 1$.

Определяем эффективную площадь стрингера и присоединенной к нему обшивки

$$F_{cmp+o\delta} = F_{cmp} + \delta_{o\delta} \ \varphi_{o\delta} \ b_{cmp}.$$

Требуемые площади сечений поясов лонжеронов рассчитываем по формулам [1, 2]:

$$F_{1,c}^{0} \ge \frac{N - m\sigma_{\kappa p.cmp}F_{cmp+o\delta}}{\sigma_{\kappa p}(1 + (\frac{H_{2}}{H_{1}})^{2})}, \qquad F_{2,c}^{0} = F_{1,c}^{0}\frac{H_{2}}{H_{1}}.$$
(4.8)

Здесь $\sigma_{\kappa p}$ - критическое напряжение местной потери устойчивости пояса самого высокого лонжерона. Этой величиной следует сначала задаться в пределах: $\sigma_{\kappa p} = (0, 5 \dots 0, 7) \sigma_{\epsilon}$.

По вычисленным площадям $F_{1,c}^0$ и $F_{2,c}^0$ подбираем стандартные профили с $F_{1,c} \ge F_{1,c}^0$ и $F_{2,c} \ge F_{2,c}^0$. Теперь, подобрав профиль первого лонжерона, определяем его действительное значение критического напряжения. Оно должно быть равно или больше первоначально задаваемой величины.

Если это условие не выполняется, то можно подобрать другой стандартный профиль с примерно той же площадью поперечного сечения, но с более узкими и толстыми полками, и, следовательно, лучше работающий на устойчивость. Можно задаться новым значением $\sigma_{\kappa p}$ в формуле (4.8) и расчеты повторить.

Если пояса лонжеронов получаются мощные и предполагается изготавливать их фрезерованием, то тогда в формулах (4.8) вместо критического напряжения $\sigma_{\kappa p}$ следует взять σ_{θ} материала пояса.

4.5 Проверка нижней панели крыла на сжатие

Нижняя панель крыла, подобранная из условия работы её на растяжение в расчетном случае A, будет работать на сжатие в расчетном случае D. Поэтому ее следует проверить на устойчивость по случаю D:

$$\sigma_{1\kappa p}F_{1p} + \sigma_{2\kappa p}F_{2p} + m\sigma_{\kappa p.cmp}F_{cmp+o\delta} \ge N_D,$$
(4.9)

где $\sigma_{1\kappa p}$ и $\sigma_{2\kappa p}$ – критические напряжения потери устойчивости поясов первого и второго лонжеронов нижней панели, определяемые по формулам *приложения* Д;

 $N_D = 0,5 N_A$ - осевая сила в панели в расчетном случае *D*.

4.6 Подбор толщины стенок лонжеронов

В проектировочном расчете принимается допущение, что перерезывающая сила воспринимается только лонжеронами.

Между лонжеронами она перераспределяется пропорционально их изгибной жесткости, а в каждом лонжероне она воспринимается, в основном, стенками и частично поясами, если крыло конусное. Тогда расчетные формулы принимают вид [1, 2]:

$$Q_{\tau}^{p} = Q^{p} - \frac{M^{p}}{H}\gamma, \qquad (4.10)$$

$$Q_1^p = Q_\tau^p \ \frac{1}{1 + (\frac{H_2}{H_1})^3}, \qquad Q_2^p = Q_\tau^p \frac{1}{1 + (\frac{H_1}{H_2})^3}, \tag{4.11}$$

где Q^{p} и M^{p} - расчетные разрушающие значения силовых факторов для случая A;

 Q^p_{τ} - часть перерезывающей силы, воспринимаемой стенками лонжеронов;

 Q_1^p - перерезывающая сила, воспринимаемая стенкой первого лонжерона;

 Q_2^p - перерезывающая сила, воспринимаемая стенкой второго лонжерона; $H = 0.5(H_1 + H_2)$ - средняя высота лонжеронов в расчетном сечении; $g \gg \frac{C_0 - C_\kappa}{0.5l}$ - угол сходимости поясов лонжеронов (*в радианах*) (см. рис. 3).

Касательные напряжения в стенках лонжеронов не должны превышать разрушающих значений. Из этого условия рассчитываем минимальную потребную толщину стенок первого и второго лонжеронов

$$\delta_1^0 = \frac{Q_1^p}{H_1 \tau_{pa3p}}, \qquad \delta_2^0 = \frac{Q_2^p}{H_2 \tau_{pa3p}}.$$
(4.12)

Подбираем бо́льшие ближайшие стандартные значения $\delta_1 \ge \delta_1^0$ и $\delta_2 \ge \delta_2^0$. Если при расчете окажется, что стенка заднего лонжерона тоньше обшивки, то следует принять $\delta_2 = \delta_{o\delta}$, так как эта стенка входит в контур, воспринимающий крутящий момент.

5 ПОДБОР СЕЧЕНИЯ МОНОБЛОЧНОГО КРЫЛА

5.1 Подбор поясов лонжеронов

Пояса лонжеронов верхней и нижней панелей моноблочного крыла подбираем одинаковыми по формулам (4.2) и (4.3). При этом коэффициент, определяющий долю изгибающего момента, воспринимаемого поясами лонжеронов, выбираем из диапазона $\kappa = 0, 1 \dots 0, 2$.

5.2 Подбор обшивки и стрингерного набора нижней панели крыла

Для моноблочного крыла вводится в рассмотрение условная величина: *толщина приведенной общивки*. Она включает в себя эффективно работающую часть реальной общивки и дополнительный член от «размазывания» стрингерного набора по общивке:

$$\delta_r = \delta_{o\delta} \varphi_{o\delta} + \frac{F_{cmp}}{b_{cmp}},\tag{5.1}$$

где $\varphi_{o\delta}$ - редукционный коэффициент обшивки;

b_{стр} - шаг стрингеров (см. формулу (4.4)).

Необходимая толщина приведенной обшивки определяется из выражения [1,2]:

$$\delta_r = \frac{(1-\kappa)N}{0.5\sigma_{pasp}(1+\frac{H_2}{H_1})B},$$
(5.2)

где *N* - осевая растягивающая сила в панели (см. формулу (3.1));

к – коэффициент, значение которого выбрано в пункте 5.1;

 σ_{pasp} - разрушающее напряжение общивки при растяжении (см. *приложения* $A \ u B$);

В - ширина межлонжеронной части крыла.

Минимальную потребную толщину общивки принимаем равной $\delta_{o\delta}^0 = 0,65\delta_r$.

По сортаменту (*приложение B*) подбирается ближайшая большая стандартная толщина $\delta_{ob} \geq \delta_{ob}^{0}$.

Выделяем из толщины приведенной обшивки толщину подобранной эффективно работающей обшивки и, исходя из формулы (5.1), подсчитываем минимальную потребную площадь поперечного сечения стрингера

$$F^{0}_{cmp} = (\delta_r - \delta_{o\delta} \varphi_{o\delta}) b_{cmp}, \qquad (5.3)$$

где φ_{ob} - редукционный коэффициент обшивки, работающей на растяжение (см. таблицу 2).

Подбираем по стандарту ближайший по площади профиль, удовлетворяющий условию $F_{cmp} \ge F_{cmp}^0$.

5.3 Подбор обшивки и стрингерного набора верхней панели крыла

В верхней сжатой панели обшивка работает менее эффективно, чем в нижней, растянутой. Поэтому стрингерный набор в верхней панели назначим более мощный, чем в нижней.

Примем шаг стрингеров b_{cmp} в верхней панели, таким же, как и в нижней.

Зададимся в первом приближении критическим напряжением стрингера в пределах следующего диапазона $\sigma_{\kappa p.cmp}^{(1)} = (0, 5...0, 7)\sigma_{e}$ и подсчитаем толщину приведенной общивки первого приближения по формуле

$$\delta_r^{(1)} = \frac{(1-\kappa)N}{0.5\sigma_{\kappa p.cmp}^{(1)}B(1+\frac{H_2}{H_1})}.$$
(5.4)

Выделим на стрингеры половину площади приведенной обшивки $(F_{cmp}^0)^{(1)} = 0,5\delta_r^{(1)}b_{cmp}$ (в нижней, растянутой зоне эта доля составляла примерно 35%) и подберем стандартный профиль $F_{cmp}^{(1)} \ge (F_{cmp}^0)^{(1)}$ с учетом того, что при одной и той же площади поперечного сечения профили с малыми значениями отношения ширины свободной полки к ее толщине лучше работают на устойчивость.

Теперь подсчитаем фактическое значение критического напряжения подобранного профиля $\sigma_{\kappa p \ cm p}$ (см. *приложение* Д) и сравним его с напряжением, которым задались в первом приближении. Если отклонение не превышает ±10%, то подбор стрингера заканчиваем.

В противном случае задаемся новым значением критического напряжения стрингера и расчеты, начиная с формулы (5.4), повторяем и так до тех пор, пока не выполнится условие

$$0,9\sigma_{\kappa p.cmp}^{(i)} \le \sigma_{\kappa p.cmp} \le 1,1\sigma_{\kappa p.cmp}^{(i)}.$$
(5.5)

Закончив подбор стрингера, уточним толщину приведенной обшивки. Опять воспользуемся формулой (5.4) и подставим в неё критическое напряжение стрингера из последнего приближения

$$\delta_r = \frac{(1-\kappa)N}{0.5\sigma_{\kappa p.cmp}B(1+\frac{H_2}{H_1})}.$$
(5.6)

Руководствуясь формулой (5.1), определим произведение

$$\delta_{o\delta}^{0}\varphi_{o\delta} = \delta_r - \frac{F_{cmp}}{b_{cmp}}.$$
(5.7)

В левой части этого выражения находятся две неизвестные величины, причем φ_{ob} зависит от толщины обшивки. Правая часть формулы (5.7) при подобранном стрингере - величина постоянная. Обозначим её через A, тогда получим исходное уравнение для подбора толщины обшивки методом последовательных приближений

$$\delta^0_{o\delta} \varphi_{o\delta} \ge A. \tag{5.8}$$

В первом приближении задаемся $(\delta_{o\delta}^0)^{(1)} = A$ и подбираем ближайшую большую стандартную толщину $\delta_{o\delta}^{(1)}$ по сортаменту. Теперь вычисляем значение редукционного коэффициента

$$\varphi_{o\delta}^{(1)} = \sqrt{\frac{\sigma_{\kappa p.o\delta}^{(1)}}{\sigma_{\kappa p.cmp}}}$$
(5.9)

Критическое напряжение общивки $\sigma_{\kappa p.o\delta}^{(1)}$ шириной b_{cmp} и толщиной $\delta_{o\delta}^{(1)}$ подсчитывается по формуле (Д1) *приложения* Д.

Проверяем условие (5.8): $\delta_{o\delta}^{(1)} \varphi_{o\delta}^{(1)} \ge A$ и, если оно выполняется, то подбор обшивки заканчиваем. Если условие не выполняется, то толщину обшивки увеличиваем до следующего стандартного значения (см. ряд стандартных толщин обшивки в *приложении B*) и расчет повторяем. Подбор прекращаем по выполнению условия (5.8).

5.4 Проверка нижней панели моноблочного крыла на сжатие

Нижняя панель крыла работает на сжатие в расчетном случае *D*. Проверку работы панели на устойчивость производим по формуле:

$$\sigma_{1\kappa p}F_{1p} + \sigma_{2\kappa p}F_{2p} + m\sigma_{\kappa p.cmp}(F_{cmp} + \varphi_{o\delta}\delta_{o\delta}b_{cmp}) \ge 0,5N.$$
(5.10)

Критические напряжения потери устойчивости поясов лонжеронов и стрингеров определяются по формулам *приложения* Д.

Подбор толщины стенок лонжеронов в моноблочном крыле осуществляется также как и в лонжеронном (см. пункт 4.6).

ПРИЛОЖЕНИЕ А

Материалы, рекомендуемые для силовых элементов крыла

Материал	<i>σ_{nų},</i> МПа	<i>σ</i> _{0,2} , МПа	$σ_{{}_{\textit{β}}}, MΠa$	Е, МПа	Область применения
Д16АТ	190	270	440	7,2·10 ⁴	Нижняя и верхняя панели кры- ла, пояса и стенки лонжеро- нов, стрингеры
<i>B95</i>	260	420	570	7, $2 \cdot 10^4$	Верхняя панель крыла
30ХГСА	850	960	1080	$2, 1 \cdot 10^5$	Пояса лонжеронов

Механические характеристики материалов и область их применения

ПРИЛОЖЕНИЕ Б

Разрушающие напряжения силовых элементов крыла

Наименование си-	Разрушающее	Harrison and a									
лового элемента	напряжение, МПа	Примечание									
	СДВИ	Γ									
		Нижний предел для тонких обшивок									
Обшивка	$\tau_{pa3p} = (0, 250, 33) \sigma_{\scriptscriptstyle \theta}$	(менее 1 мм), верхний – для обшивок,									
		толщиной более 1,5 мм									
Стенка лонжерона	$\tau_{pa3p} = (0, 600, 65) \sigma_{e}$										
РАСТЯЖЕНИЕ											
Обшивка	$\sigma_{pa3p}=0,90\sigma_{e}$	Vинтыелется ослабление сецения от-									
Пояс лонжерона	$\sigma_{pasp} = (0, 800, 90)\sigma_{\theta}$	верстиями под заклепки и концентра.									
Стрингер	$\sigma_{pa3p} = 0,90 \sigma_{e}$	ция напряжений									
	СЖАТ	ИЕ									
Пояс лонжерона	σ – σ	Потери устойчивости не происходит									
фрезерованный	$O_{pa3p} = O_{\theta}$										
Пояс лонжерона из		Возможна мастиая потаря устойни-									
прессованного	$\sigma_{pa3p} = \sigma_{\kappa p \ M}$										
профиля		600 mu									
Стрингор	$\sigma_{pa3p} = \sigma_{\kappa p \ M} \ u \pi u$	Разрушающим считается меньшее из									
Стрингер	$\sigma_{\kappa p.o \delta u}$	двух напряжений: б _{кр.м} или б _{кр.общ}									

ПРИЛОЖЕНИЕ В

Рекомендуемый сортамент листов и прессованных профилей

для силовых элементов крыла

Обшивка крыла и стенки лонжеронов проектируются из стандартных листов алюминиевых сплавов (ГОСТ 21631-76Е). Если по расчету общивка получается очень тонкой, то ее толщина назначается конструктивно, но не менее **0,8 мм**. Аналогично поступают со стенками лонжеронов. Их толщина должна быть не менее **0,5 мм**.

Стандартный ряд толщин листов из алюминиевых сплавов, мм:

0,5; 0,6; 0,7; 0,8; 0,9; 1,0; 1,2; 1,5; 1,6; 1,8; 1,9; 2,0; 2,5; 3,0; и так далее через *0,5* мм до *10,5 мм*.

Для *стрингеров* обычно используются следующие профили (рис. B1 a):

- 1. ПР 100- уголкового сечения, равнополочные (ГОСТ 13737-90);
- 2. *ПР 101* и *ПР 111* уголкового сечения, не равнополочные (ГОСТ 13738 91);
- 3. ПР 102 уголкового сечения, бульбообразные (ГОСТ 13617-82);
- 4. ПР 106 равнополочного швеллерного сечения (ГОСТ 13623-90);
- 5. ПР 217 отбортованного швеллерного сечения (ГОСТ 13624-90);
- 6. *ПР 105* зетовые (ГОСТ 13620-90);
- 7. *ПР 104* фасонные зетовые (ГОСТ 13619-81);
- 8. *ПР 109, ПР 113* и *ПР 315* тавровые (ГОСТ 13622-91);
- 9. ПР 307 трапециевидные отбортованные (ГОСТ 17576-81).

Рис. В1. Рекомендуемые типы профилей силового каркаса

Для поясов лонжеронов применяют уголковые и тавровые профили. Пояса мощных лонжеронов изготавливают фрезерованием (рис. В1 в).

ПРИЛОЖЕНИЕ Г

Стандартные прессованные профили из алюминиевых и магниевых сплавов Таблица Г1. Профили прессованные бульбообразные уголкового сечения из алюминия и алюминиевых сплавов (сортамент)

Таблица Г2. Профили прессованные прямоугольные равнополочного

уголкового сечения из алюминиевых и магниевых сплавов (сортамент)

и Испол в уче	Выборк из ГОСТ 137 и ГОСТ 137 иьзовать т ебном проце	а 737-90 37-80 олько ессе		$ \begin{array}{c} $							
		Коорді	инаты центр	ра тяжести	Х ₀ =У ₀ , мм						
Площадь		0	Момент	X ₀ =У ₀ ,	ение профиля						
сечения F, см ²	н, мм	5, ММ	инерции I _x =I _y , см ⁴	MM	по чертежам	по ГОСТу					
0,234	12	1,0	0,032	3,314	ПР 100-1	410003					
0,294	15	1,0	0,063	4,061	ПР 100-2	410011					
0,353	15	1,2	0,075	4,115	ПР 100-51	410012					
0,398	20	1,0	0,155	5,273	ПР 100-54	410035					
0,434	15	1,5	0,090	4,237	ПР 100-3	410013					
0,492	16	1,6	0,118	4,560	ПР 100-26	410022					
0,524	18	1,5	0,160	4,985	ПР 100-53	410025					
0,564	15	2,0	0,114	4,422	ПР 100-4	410018					
0,584	20	1,5	0,223	5,484	ПР 100-6	410038					
0,684	18	2,0	0,204	5,172	ПР 100-5	410026					
0,726	16	2,4	0,162	4,788	ПР 100-27	410023					
0,734	25	1,5	0,445	6,732	ПР 100-8	410049					
0,764	20	2,0	0,284	5,672	ПР 100-7	410040					
0,820	15	3,0	0,154	4,760	ПР 100-52	410021					
0,861	19	2.4	0,280	5,557	ПР 100-29	410030					
0,884	30	1,5	0,781	7,980	ПР 100-57	410075					
0,964	25	2,0	0,573	6,921	ПР 100-9	410053					
1,125	19	3,2	0,351	5,827	ПР 100-30	410032					
1,190	25	2,5	0,694 7,107 ПР 100-19 410058								
1,304	30	2,0	-	-	ПР 100-10	410078					
1,441	30	2,5	1,224	8,324	ПР 100-36	410080					
1,494	32	2,4	1,457	8,770	ПР 100-37	410089					

Окончание табл. Г2

Площадь		S 144	Момент		Обознач	Обозначение профиля			
сечения г, см ²	T I, IVIIVI	З , ММ	инерции I _x =I _v , см ⁴	$\Lambda_0 - \mathcal{Y}_0$, IVIIVI	по чертежам	по ГОСТу			
1,509	25	3,2	0,850	7,325	ПР 100-34	410062			
1,564	40	2,0	2,462	10,670	ПР 100-60	410112			
1,720	30	3,0	1,439	8,507	ПР 100-11	410081			
1,773	38	2,4	2,481	10,305	ПР 100-40	410102			
1,857	25	4,0	1,012	7,596	ПР 100-35	410065			
1,945	40	2,5	3,019	10,841	ПР 100-61	410113			
2,131	32	3,5	2,010	9,178	ПР 100-39	410091			
2,242	25	5,0	1,190	7,959	ПР 100-56	410068			
2,319	40	3,0	3,549	11,007	ПР 100-12	410117			
2,694	40	3,5	4,075	11,188	ПР 100-42	410119			
2,919	50	3,0	7,099	13,506	ПР 100-62	410136			
3,057	40	4,0	4,549	11,343	ПР 100-13	410121			
3,457	45	4,0	6,592	12,593	ПР 100-14	410128			
3,728	32	6,5	3,234	10,222	ПР 100-59	410093			
3,857	50	4,0	9,170	13,842	ПР 100-16	410137			
4,276	45	5,0	7,957	12,929	ПР 100-15	410133			
4,776	50	5,0	11,107	14,179	ПР 100-17	410144			
5,655	50	6,0	12,907	14,544	ПР 100-22	410148			
5,776	60	5,0	19,704	16,678	ПР 100-18	410160			
6,110	50	6,5	13,782	14,701	ПР 100-63	410151			
6,855	60	6,0	23,012	17,046	ПР 100-23	410162			

Таблица Г3. Профили прессованные прямоугольные неравнополочного уголкового сечения из алюминиевых и магниевых сплавов (сортамент)

из Г и ГС Использован	8-91 80 в уче	бном	$\mathbf{I} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{z} $							
Площадь се-	е-				Мом инер	иент оции	Коорд цен тяж	ината нтра ести	Обозна проф	ачение риля
	Н, мм	S, MM	В, мм	S ₁ , мм	I _x , см ⁴	I _y , см ⁴	Х ₀ , мм	У ₀ , мм	по чертежам	по ГОСТу
0,333	15	1,0	13	1,5	0,065	0,056	3,983	3,779	ПР111-11	410513
0,378	20	1,0	18	1,0	0,150	0,115	4,549	5,526	ПР101-30	410553
0,441	16	1,6	13	1,6	0,109	0,064	3,463	4,944	ПР101-13	410517
0,467	25	1,0	15	1,5	0,288	0,098	3,860	5,800	ПР111-1	410587
0,469	20	1,5	15	1,2	0,193	0,083	3,339	6,591	ПР101-50	410545
0,517	25	1,5	15	1,0	0,341	0,076	2.712	9,179	ПР101-3	410589
0,533	25	1,2	20	1,2	0,340	0,195	4,829	7,288	ПР101-32	410600
0,575	20	1,5	15	2,0	0,214	0,120	4,234	5,677	ПР111-13	410548
0,589	25	1,5	15	1,5	0,379	0,104	3,333	8,219	ПР111-30	410590
0,600	20	2,0	15	1,5	0,244	0,101	3,430	6,861	ПР101-11	410549
0,745	25	2,0	18	1,5	0,479	0,182	3,905	8,652	ПР101-31	410594
0,745	32	1,5	19	1,5	0,803	0,219	4,077	10,535	ПР101-35	410686
0,820	30	1,5	25	1,5	0,742	0,471	6,127	8,568	ПР101-34	410659
0,825	30	1,5	20	2,0	0,734	0,306	5,195	8,609	ПР111-5	410644
0,839	38	1,5	19	1,5	1,288	0,228	3,711	13,114	ПР101-38	410760
0,845	30	2,0	18	1,5	0,797	0,190	3,547	10,801	ПР101-6	410639
0,846	25	1,5	20	2,5	0,457	0,336	6,163	6,228	ПР111-2	410602
0,943	25	2,5	18	2,0	0,597	0,229	4,193	8,563	ПР101-4	410596
0,958	25	2,0	20	2,5	0,557	0,355	5,656	7,090	ПР111-3	410604
1,044	38	2,0	16	2,0	1,575	0,176	3,125	14,034	ПР101-37	410757
1,111	30	2,5	20	2,0	1,020	0,316	4,324	10,381	ПР101-21	410650
1,136	25	3,0	18	2,5	0,701	0,273	4,458	8,605	ПР101-5	410597
1,173	32	2,4	19	2,4	1,224	0,326	4,397	10,829	ПР101-15	410689
1,161	25	2,5	20	3,0	0,667	0,414,	5,723	7,389	ПР111-4	410607
1,286	30	2,5	20	3,0	1,121	0,437	5,289	9,331	ПР111-6	410652
1,286	30	3,0	18	2,5	1,170	0,286	4,113	10,790	ПР101-7	410640
1,374	40	2,0	20	3,0	2,199	0,473	4,976	12,329	ПР111-15	410794
1,393	25	2,0	20	5,0	0,593	0,548	7,291	6,054	ПР111-31	410605

Окончание табл. ГЗ

					Координата					
Площадь се-		Разме	ер пол	ОК	Момент	инерции	центра	ината тяжести	прос	ачение риля
чения F, см²	Н, мм	S, мм	В, мм	S ₁ , мм	I _x , см ⁴	I _y , см ⁴	Х ₀ , мм	У ₀ , мм	по черте- жам	по ГОСТу
1,420	30	3,0	20	3,0	1,259	0,445	5,056	9,988	ПР101-14	410654
1,429	45	2,0	28	2,0	3,040	0,933	6,067	14,487	ПР101-43	410878
1,461	30	3,0	25	2,5	1,311	0,752	6,180	9,647	ПР101-22	410661
1,461	38	2,4	25	2,4	2,165	0,756	5,805	12,250	ПР101-16	410763
1,499	32	2,0	19	5,0	1,230	0,538	6,397	8,282	ПР111-33	410688
1,516	32	2,5	26	3,0	1,464	0,948	7,239	9,112	ПР111-34	410695
1,802	27	4,0	22	4,0	-	-	-	-	ПР101-33	410619
1,886	35	3,5	22	3,5	2,287	0,694	5,491	11,901	ПР101-36	410721
1,903	31	2,5	25	5,0	1,403	1,166	8,495	7,767	ПР111-32	410678
1,951	55	2,5	25	2,5	6,226	0,856	4,835	19,686	ПР101-45	411015
2,020	38	3,0	32	3,0	-	-	-	-	ПР101-40	410770
2,101	40	3,0	25	4,0	3,233	1,132	6,678	12,236	ПР111-7	410806
2,201	50	3,0	20	4,0	5,599	0,624	4,554	17,610	ПР111-17	410936
2,251	40	4,0	25	3,0	3,665	0,941	5,488	14,539	ПР101-8	410809
2,281	40	2,5	28	5,0	3,076	1,756	8,938	10,188	ПР111-35	410814
2,352	50	3,0	20	5,0	5,808	0,740	5,062	16,695	ПР111-18	410937
2,401	40	4,0	30	3,0	3,906	1,616	6,853	13,724	ПР101-23	410824
2,581	52	2,5	28	5,0	6,512	1,914	8,044	14,350	ПР111-37	410986
2,601	50	3,0	30	4,0	6,429	2,043	7,665	15,209	ПР111-8	410945
2,801	50	4,0	30	3,0	7,247	1,702	6,160	18,160	ПР101-9	410948
2,884	38	6,0	25	3,0	4,190	0,953	5,517	15,362	ПР101-39	410765
2,999	63	3,5	25	3,5	-	-	-	-	ПР101-48	411108
3,017	54	4,0	25	4,0	8,997	1,251	5,444	19,779	ПР101-44	411010
3,258	38	5,0	32	5,0	4,382	2,814	9,039	12,008	ПР101-41	410772
3,285	50	5,0	30	3,0	8,391	1,714	5,935	19,227	ПР101-12	410952
3,320	90	2,5	45	2,5	28,978	5,227	8,417	30,826	ПР101-49	411292
3,349	56	3,5	42	3,5	10,620	5,159	10,170	17,058	ПР101-46	411044
3,922	53	3,5	35	6,5	9,685	4,701	10,898	14,266	ПР111-38	411002
4,127	38	6,5	32	6,5	5,358	3,420	9,558	12,526	ПР101-42	410773
4,241	48	4,0	30	9,0	7,628	3,643	10,159	13,140	ПР111-16	410917
4,321	50	4,0	30	9,0,	8,611	3,696	10,008	13,795	ПР111-19	410950
4,432	65	4,0	40	5,0	18,668	6,128	10,045	20,018	ПР111-9	411126
4,591	90	3,5	25	6,5	38,447	2,084	5,581	31,936	ПР111-39	411287
4,682	65	5,0	40	4,0	20,478	5,329	8,449	23,027	ПР101-10	411127
4,793	75	4,5	35	4,5	28,172	4,047	7,241	27,108	ПР101-18	411193
5,027	75	5,0	30	5,0	29,000	2,766	6,192	28,451	ПР101-17	411190
5,786	57	6,5	38	6,5	18,275	6,420	9,896	19,269	ПР101-47	411045
6,027	75	5,0	50	5,0	34,638	12,485	11,757	24,145	ПР101-19	411204
6,922	50	4,0	45	12,0	9,766	14,073	17,945	11,447	ПР111-20	410972
7,542	50	8,0	38	12,0	15,210	9,312	12,757	15,883	ПР111-36	410965
7,760	112	5,0	29	9,0	99,510	4,430	6,538	41,489	ПР111-40	411367
8,345	75	7,0	50	7,0	46,478	16,467	12,452	24,746	ПР101-20	411207

Таблица Г4. Профили прессованные прямоугольные равнополочного

швеллерного сечения из алюминиевых и магниевых сплавов (сортамент)

Выб Исполь	орка и и ГОС зоват п	з ГОСТ СТ-136: ь толь роцесс	Г 1362: 23-80 ько в уч е	3-90 небном		X N N		X0 SA B	S X
	ц Ц	D	c			начение			
г, см ²	п, мм	D, ММ	З, ММ	і _х , см ⁴	ту, См ⁴	∧0, MM	т _о , мм		риля Г
CIM				Civi	Civi			чертежам	по ГОСТу
0,797	15,0	25,0	1,5	0,170	0,770	12,5	4,600	ПР106-1	440079
0,872	15,0	30,0	1,5	0,180	1,185	15,0	4,230	ПР106-3	440081
0,962	18,0	30,0	1,5	0,302	1,368	15,0	5,370	ПР106-4	440108
1,337	20,0	30,0	2,0	0,522	1,886	15,0	6,380	ПР106-20	440128
1,438	25,0	32,0	1,8	0,915	2,446	16,0	8,170	ПР106-31	440180
1,457	18,0	40,0	2,0	0,421	3,418	20,0	4,930	ПР106-5	440112
1,527	20,0	25,0	2,5	0,584	1,454	12,5	6,960	ПР106-2	440126
1,737	25,0	40,0	2,0	1,062	4,421	20,0	7,570	ПР106-21	440184
1,777	20,0	35,0	2,5	0,656	3,248	17,5	6,150	ПР106-33	440130
1,802	18,0	40,0	2,5	0,505	4,117	20,0	5,100	ПР106-6	440113
1,952	25,0	32,0	2,5	1,148	3,128	16,0	8,260	ПР106-32	440181
2,138	18,0	40,0	3,0	0,581	4,761	20,0	5,270	ПР106-7	440114
2,188	30,0	50,0	2,0	1,893	8,842	25,0	8,742	ПР106-22	440247
2,559	25,0	40,0	3,0	1,504	6,201	20,0	7,920	ПР106-8	440185
2,979	32,0	40,0	3,0	3,062	7,668	20,0	10,870	ПР106-34	440277
3,250	25,0	25,0	5,0	1,892	2,693	12,5	10,180	ПР106-30	440178
3,309	30,0	55,0	3,0	2,804	15,283	27,5	8,810	ПР106-11	440253
3,348	20,0	50,0	4,0	1,049	11,153	25,0	5,810	ПР1 06-9	440134
3,459	25,0	70,0	3,0	1,785	23,677	35,0	6,240	ПР106-14	440206
3,639	40,0	45,0	3,0	5,961	12,319	22,5	13,740	ПР106-35	440327
4,080	30,0	50,0	4,0	3,439	15,396	25,0	9,480	ПР106-10	440251
4,149	25,0	60,0	4,0	2,145	20,706	30,0	7,040	ПР106-12	440201
4,856	25,0	55,0	5,0	2,429	19,756	27,5	7,590	ПР106-19	440196
4,948	30,0	70,0	4,0	3,825	34,565	35,0	8,270	ПР106-15	440261
6,148	40,0	80,0	4,0	9,109	59,310	40,0	11,320	ПР106-17	440335
6,451	35,0	80,0	4,5	6,742	59,126	40,0	9,600	ПР106-38	440300
7,069	40,0	70,0	5,0	10,493	51,978	35,0	12,300	ПР106-16	440332
7,857	45,0	75,0	5,0	15,029	67,425	37,5	13,900	ПР106-37	440359

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Исполь	ыборка и Г зоват	а из Г ОСТ ь тол це	ОСТ 13622 пько е ссе	13622- 2-79 3 учебн	.91 ном про-		τ					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F,cm ²	Н, мм	В, мм	S, MM	S ₁ , MM	I _x , см ⁴	l _y , см ⁴	Х ₀ , мм	У ₀ , мм	по чертежам	по ГОСТу		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,405	15	25	1	1	0,072	0,128	12,50	3,09	ПР113-1	420040		
0.826 20 30 2 1,5 0,301 0,325 15,00 5,14 ПР109-1 420069 0.890 25 35 1,5 1,5 0,487 0,530 17,50 5,66 ПР113-3 420125 0.999 35 32 1,5 1,52 0,447 0,530 17,50 5,66 ПР113-20 420262 1,040 30 40 1,5 1,5 0,844 0,792 20,00 6,87 ПР113-4 420202 1,047 20 30 1,5 2 0,732 19,00 6,76 ПР109-6 420187 1,054 29 38 1,6 1,6 0,800 0,732 19,00 6,76 ПР109-2 420135 1,291 25 35 2,5 2 0,732 0,705 17,50 6,48 ПР113-16 420138 1,449 35 40 2 1,414 1,057 20,00 8,43 ПР109-3 420	0,740	20	30	1,5	1,5	0,247	0,333	15,00	4,47	ПР113-2	420068		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,826	20	30	2	1,5	0,301	0,325	15,00	5,14	ПР109-1	420069		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,890	25	35	1,5	1,5	0,487	0,530	17,50	5,66	ПР113-3	420125		
1.04030401,51,50,8440,79220,006,87ПР113-44202021,04720301,520,2750,91519,003,60ПР315-14200751,05429381,61,60,8000,73219,006,76ПР109-64201871,08225481,51,50,5341,38324,004,83ПР113-154201351,29125352,520,7320,70517,506,48ПР109-24201261,4693540221,6851,05220,008,78ПР113-164201381,6643040321,4411,05720,008,43ПР109-34202041,85125502,52,50,8512,60825,005,08ПР113-174201401,86045402,22,23,7801,17820,0012,52ПР109-44202682,472243853,51,2121,63619,006,87ПР109-44202682,471264034,51,0812,40620,005,67ПР315-34201502,7123535442,9421,40617,509,90ПР113-144202642,99129583,53,51,8105,70529,006,13ПР113-184201923,1802870<	0.999	35	32	1.5	1.5	1.232	0.410	16.00	9,56	ПР113-20	420262		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,040	30	40	1,5	1,5	0,844	0,792	20,00	6,87	ПР113-4	420202		
1.05429381,61,60,8000,73219,006,76 Π P109-64201871.08225481,51,50,5341,38324,004,83 Π P113-154201351.29125352,520,7320,70517,506,48 Π P109-24201261.4693540221,6851,05220,008,78 Π P113-164202661.4982550220,7002,08625,004,88 Π P119-34202041.85125502,52,50,8512,60825,005,08 Π P113-174201401.86045402,22,23,7801,17820,0012,52 Π P109-34202682.462243853,51,2121,63619,006,87 Π P109-44202682.462243853,51,2121,63619,006,87 Π P109-104201122.471264034,51,0812,40620,005,67 Π P315-34201592.4794045333,6422,24022,5010,33 Π P113-164203202.56825662,530,9097,19133,004,20 Π P315-24201502.7123535442,9421,40617,509,90 Π P113-114202642.991<	1.047	20	30	1.5	2	0.275	0.915	19.00	3.60	ПР315-1	420075		
1,08225481,51,50,5341,38324,004,83 $\PiP113-15$ 4201351,29125352,520,7320,70517,506,48 $\PiP109-2$ 4201261,4693540221,6851,05220,008,78 $\PiP113-5$ 4202661,4982550220,7002,08625,004,88 $\PiP113-16$ 4201381,6643040321,4411,05720,008,43 $\PiP109-3$ 4202041,85125502,52,50,8512,60825,005,08 $\PiP113-17$ 4201401,86045402,22,23,7801,17820,0012,52 $\PiP113-21$ 4203642,345354042,52,8191,33220,0010,76 $\PiP109-4$ 4202682,462243853,51,2121,63619,006,87 $\PiP109-10$ 4201122,471264034,51,0812,40620,005,67 $\PiP315-3$ 4201592,4794045333,6422,24022,5010,33 $\PiP113-6$ 4203202,56825662,530,9097,19133,004,20 $\PiP315-2$ 4201502,7123535442,9421,40617,509,90 $\PiP113-18$ 4201923,180 <td>1.054</td> <td>29</td> <td>38</td> <td>1.6</td> <td>1.6</td> <td>0.800</td> <td>0.732</td> <td>19.00</td> <td>6.76</td> <td>ПР109-6</td> <td>420187</td>	1.054	29	38	1.6	1.6	0.800	0.732	19.00	6.76	ПР109-6	420187		
1,291 25 35 2,5 2 0,732 0,705 17,50 6,48 ПР109-2 420126 1,469 35 40 2 2 1,685 1,052 20,00 8,78 ПР113-5 420266 1,498 25 50 2 2 0,700 2,086 25,00 4,88 ПР113-16 420138 1,664 30 40 3 2 1,441 1,057 20,00 8,43 ПР109-3 420204 1,851 25 50 2,5 2,5 0,851 2,608 25,00 5,08 ПР113-17 420140 1,860 45 40 2,2 2,2 3,780 1,178 20,00 12,52 ПР109-4 420268 2,462 24 38 5 3,5 1,212 1,636 19,00 6,87 ПР109-10 420112 2,471 26 40 3 4,5 1,081 2,406 20,00 5,67 ПР315-3 420159 2,479 40 45 3 3 3,	1 082	25	48	15	15	0 534	1 383	24 00	4 83	ПР113-15	420135		
1,469 35 40 2 1,685 1,052 20,00 8,78 ПР113-5 420266 1,498 25 50 2 2 0,700 2,086 25,00 4,88 ПР113-16 420138 1,664 30 40 3 2 1,441 1,057 20,00 8,43 ПР109-3 420204 1,851 25 50 2,5 2,5 0,851 2,608 25,00 5,08 ПР113-17 420140 1,860 45 40 2,2 2,2 3,780 1,178 20,00 12,52 ПР109-4 420268 2,345 35 40 4 2,5 2,819 1,332 20,00 10,76 ПР109-4 420268 2,462 24 38 5 3,5 1,212 1,636 19,00 6,87 ПР109-10 420112 2,471 26 40 3 4,5 1,081 2,406 20,00 5,67 ПР315-3 420159 2,479 40 45 3 3 3,642 <	1.291	25	35	2.5	2	0.732	0.705	17.50	6.48	ПР109-2	420126		
1,498 25 50 2 2 0,700 2,086 25,00 4,88 ПР113-16 420138 1,664 30 40 3 2 1,441 1,057 20,00 8,43 ПР109-3 420204 1,851 25 50 2,5 2,5 0,851 2,608 25,00 5,08 ПР113-17 420140 1,860 45 40 2,2 2,2 3,780 1,178 20,00 12,52 ПР113-21 420364 2,345 35 40 4 2,5 2,819 1,332 20,00 10,76 ПР109-44 420268 2,462 24 38 5 3,5 1,212 1,636 19,00 6,87 ПР109-10 420112 2,471 26 40 3 4,5 1,081 2,406 20,00 5,67 ПР315-3 420159 2,479 40 45 3 3 3,642 2,240 22,50 10,33 ПР113-14 420264 2,991 29 58 3,5 3,5	1,469	35	40	2	2	1.685	1.052	20.00	8.78	ПР113-5	420266		
1,664 30 40 3 2 1,441 1,057 20,00 8,43 ПР109-3 420204 1,851 25 50 2,5 2,5 0,851 2,608 25,00 5,08 ПР109-3 420204 1,860 45 40 2,2 2,2 3,780 1,178 20,00 12,52 ПР113-17 420364 2,345 35 40 4 2,5 2,819 1,332 20,00 10,76 ПР109-4 420268 2,462 24 38 5 3,5 1,212 1,636 19,00 6,87 ПР109-10 420112 2,471 26 40 3 4,5 1,081 2,406 20,00 5,67 ПР315-3 420159 2,479 40 45 3 3 3,642 2,240 22,50 10,33 ПР113-14 420264 2,568 25 66 2,5 3 0,909 7,191 33,00 4,20 ПР315-2 420150 2,712 35 35 4 4 <t< td=""><td>1,498</td><td>25</td><td>50</td><td>2</td><td>2</td><td>0.700</td><td>2.086</td><td>25.00</td><td>4.88</td><td>ПР113-16</td><td>420138</td></t<>	1,498	25	50	2	2	0.700	2.086	25.00	4.88	ПР113-16	420138		
1,851 25 50 2,5 2,5 0,851 2,608 25,00 5,08 ПР113-17 420140 1,861 25 50 2,5 2,2 3,780 1,178 20,00 12,52 ПР113-17 420364 2,345 35 40 4 2,5 2,819 1,332 20,00 10,76 ПР109-4 420268 2,462 24 38 5 3,5 1,212 1,636 19,00 6,87 ПР109-10 420112 2,471 26 40 3 4,5 1,081 2,406 20,00 5,67 ПР315-3 420159 2,479 40 45 3 3 3,642 2,240 22,50 10,33 ПР113-16 420320 2,568 25 66 2,5 3 0,909 7,191 33,00 4,20 ПР315-2 420150 2,712 35 35 4 2,942 1,406 17,50 9,90 ПР113-11 420264 2,991 29 58 3,5 3,5 1,810 <td>1 664</td> <td>30</td> <td>40</td> <td>3</td> <td>2</td> <td>1 441</td> <td>1 057</td> <td>20.00</td> <td>8 43</td> <td>ПР109-3</td> <td>420204</td>	1 664	30	40	3	2	1 441	1 057	20.00	8 43	ПР109-3	420204		
1,860 45 40 2,2 2,2 3,780 1,178 20,00 12,52 ПР113-21 420364 2,345 35 40 4 2,5 2,819 1,332 20,00 10,76 ПР109-4 420268 2,462 24 38 5 3,5 1,212 1,636 19,00 6,87 ПР109-10 420112 2,471 26 40 3 4,5 1,081 2,406 20,00 5,67 ПР315-3 420159 2,479 40 45 3 3 3,642 2,240 22,50 10,33 ПР113-6 420320 2,568 25 66 2,5 3 0,909 7,191 33,00 4,20 ПР315-2 420150 2,712 35 35 4 4 2,942 1,406 17,50 9,90 ПР113-11 420264 2,991 29 58 3,5 3,5 1,810 5,705 29,00 6,13 ПР113-18 420192 3,180 28 70 5 2,5	1.851	25	50	2.5	2.5	0.851	2.608	25.00	5.08	ПР113-17	420140		
2,345 35 40 4 2,5 2,819 1,332 20,00 10,76 ПР109-4 420268 2,462 24 38 5 3,5 1,212 1,636 19,00 6,87 ПР109-10 420112 2,471 26 40 3 4,5 1,081 2,406 20,00 5,67 ПР109-10 420112 2,479 40 45 3 3 3,642 2,240 22,50 10,33 ПР113-6 420320 2,568 25 66 2,5 3 0,909 7,191 33,00 4,20 ПР315-2 420150 2,712 35 35 4 4 2,942 1,406 17,50 9,90 ПР113-11 420264 2,991 29 58 3,5 3,5 1,810 5,705 29,00 6,13 ПР109-11 420182 3,274 40 45 4 4,652 2,978 22,50 10,65 ПР113-7 420323 3,393 50 56 3,5 3 8,302	1,860	45	40	2.2	2.2	3,780	1,178	20.00	12.52	ПР113-21	420364		
2,462 24 38 5 3,5 1,212 1,636 19,00 6,87 ПР109-10 420112 2,471 26 40 3 4,5 1,081 2,406 20,00 5,67 ПР109-10 420112 2,479 40 45 3 3 3,642 2,240 22,50 10,33 ПР113-6 420320 2,568 25 66 2,5 3 0,909 7,191 33,00 4,20 ПР13-6 420320 2,712 35 35 4 4 2,942 1,406 17,50 9,90 ПР113-11 420264 2,991 29 58 3,5 3,5 1,810 5,705 29,00 6,13 ПР109-11 420182 3,180 28 70 5 2,5 2,164 7,197 35,00 6,99 ПР109-11 420182 3,274 40 45 4 4,652 2,978 22,50 10,65 ПР109-12 420407 3,972 30 45 4 6,5 2,137	2.345	35	40	4	2.5	2.819	1.332	20.00	10.76	ПР109-4	420268		
2,471 26 40 3 4,5 1,081 2,406 20,00 5,67 ПР315-3 420159 2,479 40 45 3 3 3,642 2,240 22,50 10,33 ПР113-6 420320 2,568 25 66 2,5 3 0,909 7,191 33,00 4,20 ПР315-2 420150 2,712 35 35 4 4 2,942 1,406 17,50 9,90 ПР113-11 420264 2,991 29 58 3,5 3,5 1,810 5,705 29,00 6,13 ПР113-18 420192 3,180 28 70 5 2,5 2,164 7,197 35,00 6,99 ПР109-11 420323 3,393 50 56 3,5 3 8,302 4,412 28,00 13,66 ПР109-12 420407 3,972 30 45 4 6,5 2,137 4,959 22,50 6,92 ПР315-4 420209 4,138 74 50 3 4	2 462	24	38	5	3.5	1 212	1 636	19.00	6.87	ПР109-10	420112		
2,479 40 45 3 3 3,642 2,240 22,50 10,33 ПР113-6 420320 2,568 25 66 2,5 3 0,909 7,191 33,00 4,20 ПР315-2 420150 2,712 35 35 4 4 2,942 1,406 17,50 9,90 ПР113-11 420264 2,991 29 58 3,5 3,5 1,810 5,705 29,00 6,13 ПР113-18 420192 3,180 28 70 5 2,5 2,164 7,197 35,00 6,99 ПР109-11 420182 3,274 40 45 4 4,652 2,978 22,50 10,65 ПР109-12 420407 3,972 30 45 4 6,5 2,137 4,959 22,50 6,92 ПР315-4 420209 4,138 74 50 3 4 22,727 4,184 25,00 20,80 ПР315-10 420540 4,257 75 41 3 5 23,453	2 471	26	40	3	4.5	1 081	2 406	20.00	5 67	ПР315-3	420159		
2,568 25 66 2,5 3 0,909 7,191 33,00 4,20 ПР315-2 420150 2,712 35 35 4 4 2,942 1,406 17,50 9,90 ПР113-11 420264 2,991 29 58 3,5 3,5 1,810 5,705 29,00 6,13 ПР113-18 420192 3,180 28 70 5 2,5 2,164 7,197 35,00 6,99 ПР109-11 420323 3,274 40 45 4 4,652 2,978 22,50 10,65 ПР109-12 420407 3,393 50 56 3,5 3 8,302 4,412 28,00 13,66 ПР109-12 420407 3,972 30 45 4 6,5 2,137 4,959 22,50 6,92 ПР315-4 420209 4,138 74 50 3 4 22,727 4,184 25,00 20,80 ПР315-10 420540 4,257 75 41 3 5 23,453	2.479	40	45	3	3	3.642	2.240	22.50	10.33	ПР113-6	420320		
2,712 35 35 4 4 2,942 1,406 17,50 9,90 ПР113-11 420264 2,991 29 58 3,5 3,5 1,810 5,705 29,00 6,13 ПР113-18 420192 3,180 28 70 5 2,5 2,164 7,197 35,00 6,99 ПР109-11 420323 3,274 40 45 4 4,652 2,978 22,50 10,65 ПР109-12 420407 3,393 50 56 3,5 3 8,302 4,412 28,00 13,66 ПР109-12 420407 3,972 30 45 4 6,5 2,137 4,959 22,50 6,92 ПР315-4 420209 4,138 74 50 3 4 22,727 4,184 25,00 20,80 ПР315-10 420540 4,257 75 41 3 5 23,453 2,896 20,50 21,08 ПР315-11 420544 4,491 40 50 3,5 6,5 4,658	2.568	25	66	2.5	3	0.909	7,191	33.00	4.20	ПР315-2	420150		
2,991 29 58 3,5 1,810 5,705 29,00 6,13 ПР113-18 420192 3,180 28 70 5 2,5 2,164 7,197 35,00 6,99 ПР109-11 420182 3,274 40 45 4 4 4,652 2,978 22,50 10,65 ПР109-11 420323 3,393 50 56 3,5 3 8,302 4,412 28,00 13,66 ПР109-12 420407 3,972 30 45 4 6,5 2,137 4,959 22,50 6,92 ПР315-4 420209 4,138 74 50 3 4 22,727 4,184 25,00 20,80 ПР315-10 420540 4,257 75 41 3 5 23,453 2,896 20,50 21,08 ПР315-11 420544 4,491 40 50 3,5 6,5 4,658 6,788 25,00 8,53 ПР315-5 420325 4,752 89 44 3,5 4 39,944	2 712	35	35	4	4	2 942	1 406	17 50	9.90	ПР113-11	420264		
1,001 100 0,00 1,010 1,010 100,00 100 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 100 110	2 991	29	58	35	35	1 810	5 705	29.00	6 13	ПР113-18	420192		
3,274 40 45 4 4,652 2,978 22,50 10,65 ПР113-7 420323 3,393 50 56 3,5 3 8,302 4,412 28,00 13,66 ПР109-12 420407 3,972 30 45 4 6,5 2,137 4,959 22,50 6,92 ПР315-4 420209 4,138 74 50 3 4 22,727 4,184 25,00 20,80 ПР315-10 420540 4,257 75 41 3 5 23,453 2,896 20,50 21,08 ПР315-11 420544 4,491 40 50 3,5 6,5 4,658 6,788 25,00 8,53 ПР315-5 420325 4,752 89 44 3,5 4 39,944 2,870 22,00 29,86 ПР315-13 420589 4,801 41 76 3,5 4,5 5,378 16,453 38,00 7,77 ПР315-6 420349	3 180	28	70	5	2.5	2 164	7 197	35.00	6.99	ПР109-11	420182		
3,393 50 56 3,5 3 8,302 4,412 28,00 13,66 ПР109-12 420407 3,972 30 45 4 6,5 2,137 4,959 22,50 6,92 ПР315-4 420209 4,138 74 50 3 4 22,727 4,184 25,00 20,80 ПР315-10 420540 4,257 75 41 3 5 23,453 2,896 20,50 21,08 ПР315-11 420544 4,491 40 50 3,5 6,5 4,658 6,788 25,00 8,53 ПР315-5 420325 4,752 89 44 3,5 4 39,944 2,870 22,00 29,86 ПР315-13 420589 4,801 41 76 3,5 4,5 5,378 16,453 38,00 7,77 ПР315-6 420349	3 274	40	45	4	4	4 652	2 978	22 50	10.65	ПР113-7	420323		
3,972 30 45 4 6,5 2,137 4,959 22,50 6,92 ПР315-4 420209 4,138 74 50 3 4 22,727 4,184 25,00 20,80 ПР315-10 420540 4,257 75 41 3 5 23,453 2,896 20,50 21,08 ПР315-11 420544 4,491 40 50 3,5 6,5 4,658 6,788 25,00 8,53 ПР315-5 420325 4,752 89 44 3,5 4 39,944 2,870 22,00 29,86 ПР315-13 420589 4,801 41 76 3,5 4,5 5,378 16,453 38,00 7,77 ПР315-6 420349	3,393	50	56	35	3	8.302	4 4 1 2	28.00	13.66	ПР109-12	420407		
4,138 74 50 3 4 22,727 4,184 25,00 20,80 ПР315-10 420540 4,257 75 41 3 5 23,453 2,896 20,50 21,08 ПР315-11 420544 4,491 40 50 3,5 6,5 4,658 6,788 25,00 8,53 ПР315-5 420325 4,752 89 44 3,5 4 39,944 2,870 22,00 29,86 ПР315-13 420589 4,801 41 76 3,5 4,5 5,378 16,453 38,00 7,77 ПР315-6 420349	3 972	30	45	4	6.5	2 137	4 959	22,50	6.92	ПР315-4	420209		
4,257 75 41 3 5 23,453 2,896 20,50 21,08 ПР315-11 420544 4,491 40 50 3,5 6,5 4,658 6,788 25,00 8,53 ПР315-5 420325 4,752 89 44 3,5 4 39,944 2,870 22,00 29,86 ПР315-13 420589 4,801 41 76 3,5 4,5 5,378 16,453 38,00 7,77 ПР315-6 420349	4 138	74	50	3	4	22 727	4 184	25.00	20.80	ПР315-10	420540		
4,491 40 50 3,5 6,5 4,658 6,788 25,00 8,53 ПР315-5 420325 4,752 89 44 3,5 4 39,944 2,870 22,00 29,86 ПР315-13 420589 4,801 41 76 3,5 4,5 5,378 16,453 38,00 7,77 ПР315-6 420349	4.257	75	41	3	5	23.453	<u>3 2 896 20 50 21 08 ПР315-11 420544</u>						
4,752 89 44 3,5 4 39,944 2,870 22,00 29,86 ПР315-13 420589 4,801 41 76 3,5 4,5 5,378 16,453 38,00 7,77 ПР315-6 420349	4 4 9 1	40	50	3.5	6.5	4,658	2 = -,200 = 20,00 = 20,00 = 1000 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 1000						
4,801 41 76 3,5 4,5 5,378 16,453 38,00 7,77 ΠΡ315-6 420349 4,801 402 50 4 50 50 50 10 420349	4,752	89	44	3.5	4	39 944	2.870	22 00	29.86	ПР315-13	420589		
	4,801	41	76	3.5	4.5	5.378	16 453	38.00	7 77	ПР315-6	420349		
4.978 102 50 3 4 54.809 4.190 25.00 32.14 TP315-14 420624	4,978	102	50	3	4	54 809	4,190	25.00	32 14	ПР315-14	420624		
5 119 50 76 3 5 4 5 9 619 16 487 38 00 10 09 IP315-8 420413	5 1 1 9	50	76	3.5	4 5	9 6 1 9	16 487	38.00	10.09	ПР315-8	420413		

Таблица Г5. Профили прессованные прямоугольные равнополочного таврового сечения из алюминиевых и магниевых сплавов (сортамент)

Окончание табл. Г5

$E c w^2$	H,	В,	S,	S ₁ ,			X ₀ ,	У ₀ ,	Обозна проф	ачение риля
Γ, ΟΝΙ	MM	M	ММ	MM	1 _X , CIVI	iy, Civi	ММ	ММ	ПО чертежам	по ГОСТу
									ертелам	
6,235	42	76	3,5	6,5	5,857	23,794	38,00	7,46	ПР315-7	420356
6,404	80	65	4	5	39,448	11,501	32,50	21,32	ПР315-12	420564
9,624	70	68	6,5	8	41,699	21,138	34,00	18,74	ПР315-9	420530

Таблица Гб. Профили прессованные прямоугольные фасонного зетового сечения из алюминия и алюминиевых сплавов (сортамент)

Выборка из ГОСТ 13619-81 Использовать только в учебном процессе						ом				y s s	
F,cm ²	Н, мм	В, мм	S, MM	h, мм	d, мм	Ι _x , CM ⁴	I _y ,см ⁴	Х ₀ , мм	У ₀ , ММ	Обозначен по	ние профиля по ГОСТу
0,427	16	13	1,0	2	0,8	0,181	0,160	12,500	8,0	ПР 104-10	450361
0,534	16	13	1,3	2	0,8	0,218	0,185	12,350	8,0	ПР 104-6	450362
0,952	20	15	1,5	6	2,5	0,560	0,673	14,250	10,0	ПР 104-1	450363
1,227	25	20	1,5	7	2,5	1,193	1,612	19,250	12,5	ПР 104-2	450364
1,432	25	20	1,8	7	3,0	1,362	1,788	19,100	12,5	ПР 104-3	450366
1,554	25	20	2,0	7	3,0	1,463	1,842	19,000	12,5	ПР 104-4	450367
1,854	30	25	2,0	7	3,0	2,669	3,381	24,000	15,0	ПР 104-5	450369
2,214	35	30	2,0	8	3,0	4,450	6,007	29,000	17,5	ПР 104-11	450371

Таблица Г7. Профили прессованные прямоугольные равнополочного зетового сечения из алюминиевых и магниевых сплавов (сортамент)

Вы Испол	Выборка из ГОСТ 13620-90 и ГОСТ-13620-80 Использовать только в учебном процессе					H	X o A		S1 X B	
F, см ²	Н, мм	В, мм	S, MM	S ₁ , MM	I _x , см ⁴	I _y , см ⁴	Х ₀ , мм	У ₀ , мм	Обоз про по чертежам	начение офиля по ГОСТу
0,588	20,0	15,0	1,2	1,2	0,384	0,237	14,40	10,00	ПР105-15	450006
0,722	20,0	15,0	1,5	1,5	0,458	0,288	14,25	10,00	ПР105-16	450007
0,887	25,0	18,0	1,5	1,5	0,896	0,508	17,25	12,50	ПР105-10	450012
1,052	25,0	18,0	2,0	1,5	1,083	0,673	17,25	12,50	ПР105-1	450013
1,327	25,0	18,0	2,5	2,0	1,295	0,804	17,00	12,50	ПР105-2	450014
1,357	40,0	20,0	2,0	1,5	3,513	0,937	19,25	20,00	ПР105-11	450037
1,557	40,0	25,0	2,0	1,5	4,235	1,878	24,25	20,00	ПР105-3	450038
1,618	25,0	20,0	3,0	2,0	1,595	1,337	19,00	12,50	ПР105-8	450016
1,777	30,0	25,0	2,5	2,0	2,658	2,272	24,00	15,00	ПР105-9	450021
2,102	50,0	19,0	2,5	2,5	7,391	0,939	17,75	25,00	ПР105-19	450049
2,218	40,0	25,0	3,0	2,0	5,870	2,709	24,00	20,00	ПР105-4	450040
2,266	25,0	23,0	3,5	3,5	2,065	2,244	21,25	12,50	ПР105-17	450017
2,763	34,0	25,0	3,5	3,5	4,768	2,944	23,25	17,00	ПР105-18	450026
3,028	40,0	25,0	4,0	3,0	7,432	3,377	23,50	20,00	ПР105-5	450043
5,206	50,0	35,0	5,0	4,0	20,189	11,722	33,00	25,00	ПР105-6	450060
6,253	50,0	35,0	6,0	5,0	23,068	13,401	32,50	25,00	ПР105-7	450061

Выборка из ГОСТ 17576-81. Использовать только в учебном процессе								Sr Xo		C C	x S				
F	ц	B	۸	0			_					X X	V.	Обозна проф	ачение риля
Г, CM ²	MM	ы, MM	А, ММ	С, ММ	S, MM	S ₁ , ММ	S ₂ , MM	CM ⁴	CM ⁴	∧ ₀ , ММ	т _о , ММ	по черте- жам	по ГОСТу		
2,009	17,0	66,0	20,0	18,0	2,5	2,0	3,0	0,835	6,530	7,049	33,0	ПР 307-1	540789		
2,163	25,0	68,0	25,0	17,5	2,5	1,5	2,5	2,107	7,490	11,198	34,0	ПР 307-3	540794		
2,576	17,0	92,0	20,0	27,0	2,5	2,0	3,0	1,001	16,716	6,203	46,0	ПР 307-2	540790		
2,789	33,0	73,0	18,0	18,5	3,0	1,8	3,0	4,206	10,763	13,613	36,5	ПР 307-4	540806		
3,704	40,0	80,0	20,0	20,0	3,5	2,0	4,0	8,389	16,732	17,120	40,0	ПР 307-6	540818		
4,195	44,0	103,0	26,0	17,0	2,5	2,5	4,0	10,821	30,376	22,530	51,5	ПР 307-7	540823		
4,323	35,0	84,0	20,0	22,0	3,5	2,5	6,0	7,363	19,482	15,858	42,0	ПР 307-5	540812		
6,073	56,0	110,0	26,0	19,0	3,0	3,0	6,0	24,799	46,777	29,148	55,0	ПР 307-8	540831		
7,491	70,0	120,0	25,0	18,5	3,2	3,2	7,5	45,452	67,650	36,605	60,0	ПР 307-9	540837		

Таблица Г8. Профили прессованные косоугольные трапециевидного отбортованного сечения из алюминия и алюминиевых сплавов (сортамент)

Таблица Г9. Профили прессованные прямоугольные отбортованного швеллерного сечения из алюминиевых и магниевых сплавов (сортамент)

	Выбс Иса в	рка и и ГОС польз учеб	з ГО(СТ 13 юват ном п	СТ 13 624-8 њ тој роцес	624-9 0 пько ссе	90		ц Х У		b Xa		31 y	
2	н	в	B₄	h	9	S ,	Sa	1	4	X		Обозначени	е профиля
F,cм [∠]	мм	, ММ	и м	MM	З, ММ	ы. мм	<u>з</u> 2, мм	ly, см⁴	Ix, cm⁴	<u>м</u> м	У ₀ , мм	ПО	ПО
	101101	IVIIVI	IVIIVI	101101	101101	IVIIVI				IVIIVI		чертежам	ГОСТу
2,207	29,0	60,0	30,0	16,5	1,5	3,0	1,5	2,853	4,770	30,0	16,45	ПР 217-3	441146
2,394	35,0	52,0	23,0	16,5	2,0	2,0	2,0	4,074	3,840	26,0	16,12	ΠP 217-4	441156
2,777	14,0	68,0	34,0	20,0	3,0	3,0	3,0	0,718	9,626	34,0	6,62	ΠP 217-1	441132
2,957	17,0	68,0	34,0	20,0	3,0	3,0	3,0	1,182	10,060	34,0	8,07	ПР 217-2	441138

приложение д

Расчет силовых элементов крыла на устойчивость

1 Обшивка

Работа обшивки на устойчивость зависит от работы её отдельных участков. Участок обшивки шириной b_{cmp} и длиною a (a - расстояние между нервюрами) рассматривается как плоская пластинка, которая опирается по всему контуру на стрингеры и нервюры (рис. Д.1). Критическое напряжение пластинки при сжатии в направлении стрингерного набора определяют по формуле

$$\sigma_{\kappa p.M}^{0} = \frac{0.9\kappa E}{\left(\frac{b_{cmp}}{\delta_{o\delta}}\right)^{2}},\tag{Д1}$$

где κ - коэффициент, учитывающий характер закрепления пластинки по контру. При $a \ge b_{cmp}$ коэффициент $\kappa = 4$.

Рис. Д1. Фрагменты панели крыла

Если критическое напряжение $\sigma_{\kappa_{p.M}}^0$ меньше предела пропорциональности $\sigma_{n\mu}$ материала общивки, то $\sigma_{\kappa_{p.of}} = \sigma_{\kappa_{p.M}}^0$.

Если $\sigma_{\kappa p.o \delta}^{0} > \sigma_{n u}$, то вводится поправка на пластичность материала:

$$\sigma_{\kappa p.o\delta} = \sigma^* - (\sigma^* - \sigma_{nu}) \sqrt{\frac{\sigma_{nu}}{\sigma^0_{\kappa p.M}}}.$$
(Д2)

3десь $\sigma^* = 1, 2\sigma_{0,2}$.

2 Стрингер

2.1 Расчет на местную потерю устойчивости

Критическое напряжение местной потери устойчивости для *i*-той полки стрингера (рис. Д1), рассматриваемой как пластинка шириной b_i и толщиной δ_i , определяется по формуле:

$$\sigma^{0}_{\kappa p.M} = \frac{0.9\kappa E}{\left(\frac{b_{i}}{\delta_{i}}\right)^{2}},\tag{Д3}$$

где $\kappa = 0,46$ - коэффициент для полок стрингера, имеющих один свободный край вдоль длинной стороны;

 $\kappa = 4$ - коэффициент для полок, имеющих опоры по всему периметру. Если $\sigma_{\kappa_{p.M}}^0 \leq \sigma_{nu}$, то $\sigma_{\kappa_{p.M}} = \sigma_{\kappa_{p.M}}^0$.

Если
$$\sigma_{\kappa p.M}^0 > \sigma_{nu}$$
, то $\sigma_{\kappa p.M} = \sigma^* - (\sigma^* - \sigma_{nu}) \sqrt{\frac{\sigma_{nu}}{\sigma_{\kappa p.M}^0}}.$ (Д4)

Здесь $\sigma^* = 1, 2\sigma_{0,2}$.

Если свободная полка имеет утолщение на краю (бульбу), то значение критического напряжения стрингера рассчитывается для полки без бульбы (например прессованный профиль типа *ПР 102*).

2.2 Расчет на общую потерю устойчивости

Критические напряжения общей потери устойчивости стрингера определяются по формуле

$$\sigma^0_{\kappa p.o \delta u_i} = \frac{m\pi^2 E I_x}{a^2 F} \tag{Д5}$$

Здесь m - коэффициент, зависящий от характера закрепления стрингера по концам (принято в крыле закрепление стрингера по концам принимать в виде так называемой *приторцовки*, для которой m = 2);

F, I_x - площадь и момент инерции поперечного сечения стрингера относительно оси x, проходящей через центр тяжести стрингера и параллельной обшивке (в приближенном проектировочном расчете);

а – расстояние между нервюрами.

Более точное значение критического напряжения можно получить, если учитывать совместную работу стрингера с общивкой, шириной

$$b_{np} = b_{cmp} \sqrt{\frac{\sigma_{\kappa p.ob}}{\sigma_{\kappa p.cmp}}}.$$
 (Д6)

Однако такой расчет выполняют обычно в поверочном расчете. Если $\sigma_{\kappa p.o \delta u \mu}^{0} \leq \sigma_{n \mu}$, то $\sigma_{\kappa p.o \delta u \mu} = \sigma_{\kappa p.o \delta u \mu}^{0}$.

Если
$$\sigma_{\kappa p.o \delta u_{i}}^{0} > \sigma_{n u}$$
, то $\sigma_{\kappa p.o \delta u_{i}} = \sigma^{*} - (\sigma^{*} - \sigma_{n u}) \sqrt{\frac{\sigma_{n u}}{\sigma_{\kappa p.o \delta u_{i}}^{0}}}$.

Критическое напряжение потери устойчивости стрингера равно минимальному из двух напряжений

 $\sigma_{\kappa p \ cmp} = min\{\sigma_{\kappa p \ M}; \ \sigma_{\kappa p \ o \delta u}\}.$

3 Пояс лонжерона

Общая форма потери устойчивости поясов лонжеронов не происходит, так как искривлению их продольной оси препятствует в одной плоскости обшивка, а в другой, перпендикулярной, – стенка самого лонжерона.

Пояса лонжеронов рассчитывают на *местную* потерю устойчивости по формулам (ДЗ) и (Д4) при наличии в них *тонких* полок (например, пояса, изготовленные из прессованных профилей).

Рис. Д2. Составные части лонжерона

Мощные пояса лонжеронов, имеющие фрезерованное сечение, не теряют устойчивости при сжатии.

ПРИЛОЖЕНИЕ Е

Основные понятия электронных таблиц Excel

(Студенты, хорошо знающие правила *Excel*, этот пункт могут опустить).

Рекомендуется расчеты производить с помощью электронных таблиц Excel. Это позволяет значительно облегчить перебор различных вариантов сечений, облегчается исправление допущенных ошибок, в особенности, если они допущены в начале расчета, облегчается построение графиков.

Excel относится к классу программ, называемых электронными таблицами. Особенность электронных таблиц заключается в возможности применения формул для описания связи между значениями различных ячеек. Расчет по заданным формулам выполняется автоматически. Изменение содержимого какой-либо ячейки приводит к пересчету значений всех ячеек, которые с ней связаны формульными отношениями и, тем самым, к обновлению всей таблицы в соответствии с изменившимися данными.

Рабочий лист состоит из строк и столбцов (см. рис. Е1). Столбцы озаглавлены прописными латинскими буквами и, далее, двухбуквенными комбинациями. Строки последовательно нумеруются цифрами, начиная с единицы.

На пересечении столбцов и строк образуются ячейки таблицы. Они являются минимальными элементами для хранения данных. Обозначение отдельной ячейки сочетает в себе номера столбца и строки (в этом порядке), на пересечении которых она расположена, например: А1 или D34. Обозначение ячейки (ее номер) выполняет функцию ее адреса. Адреса ячеек используются при записи формул, определяющих взаимосвязь между значениями, расположенными в разных ячейках. Одна из ячеек всегда является активной и выделяется рамкой активной ячейки.

Эта рамка в программе Excel играет роль курсора. Операции ввода и редактирования всегда производятся в активной ячейке. Переместить рамку активной ячейки можно с помощью курсорных клавиш или указателя мыши.

Активная ячейка Строк						1		Мастер ди	иаграмм	
		/ [
🗶 Microsoft Excel Файл Правка Вид Водавка Формат Сервис Данные <u>О</u> кно <u>С</u> правка										
	🗅 😅 🕞 🚭 🗟 🦞 🖌 🖻 💋 🖙 - 🍓 Σ 🐅 🗍 🛍 😨 😤 Arial Cyr								• 10 •	
N	1a6.20		- 230							
	A	В	С		E	F	G	Н	I	
1	GO	ЛАБОРА	торная	PÀĢÒ,TA № 20						
2										
3					Номер ступени нагружени					
4	N				0	1	2	3	4	
5	Номер	Номер	Номер	Место установ-			Г	іроцент н	агрузки	
6	датчика	блока	канала	ки датчика	0	25	50	75	100	
7	1	0	8	На стрингере	970	975	981	984	990	
8	2	0	9	На стрингере	850	856	863	869	874	
9	3	0	10	На стрингере	935	930	926	919	915	
10	4	0	11	На обшивке	771	781	792	801	810	
11	5	0	12	На обшивке	1102	1107	1114	1120	1126	
12	6	0	13	Розетка 1-а	996	981	966	951	935	
			14	Розетка 1-в	811	831	850	872	891	
13	7	U U	17	1.000111011.0						
13 14	7	0	15	Розетка 1-45	634	642	651	658	667	
13 14 15	7 8	0	15	Розетка 1-45 70000	634 <i>Е</i> - нормал	642 тыный моду.	651 ль упругос	658 ти, МПа	667	
13 14 15 16	7 8	0	15	Розетка 1-45 70000 2,07	634 <i>Е</i> - нормал <i>К</i> - коэффи	642 тыный моду. яциент тензо	651 ль упругос учувствите.	658 ти, МПа льноститен	667 ізорезистор	
13 14 15 16 17	7 8	0	15	Розетка 1-45 70000 2,07 0,00012222	634 <i>Е</i> - нормал <i>К</i> - коэффи С - цена д	642 тыный моду. ициент тензо еления, 1/О	651 ль упругос очувствите. м	658 ти , МПа льности тен	667 ізорезистор	

Рис. Е1 Окно EXCEL

Отдельная ячейка может содержать данные, относящиеся к одному из трех типов:

текст, число или формула, — а также оставаться пустой. Тип данных, размещаемых в ячейке, определяется автоматически при вводе. Если эти данные можно интерпретировать как число, программа Excel так и делает. В противном случае данные рассматриваются как текст. Текстовые данные по умолчанию выравниваются по левому краю ячейки, а числа — по правому.

Если щелкнуть дважды на текущей ячейке, старое содержимое ячейки не удаляется и появляется возможность его редактирования. Вводимые данные в любом случае отображаются как в ячейке, так и в строке формул.

Чтобы завершить ввод, сохранив введенные данные, используют клавишу Enter. Чтобы отменить внесенные изменения и восстановить прежнее значение ячейки, используют кнопку *Отмена* в строке формул или клавишу Esc. Для очистки текущей ячейки проще всего использовать клавишу Delete.

Формулы в EXCEL набираются в строке формул. Ввод формулы всегда начинается с символа «=» (знака равенства). Формула может содержать числовые константы, ссылки на ячейки и функции Excel, соединенные знаками математических операций. Скобки позволяют изменять стандартный порядок выполнения действий. Если ячейка содержит формулу, то в рабочем листе отображается текущий результат вычисления этой формулы. Если сделать ячейку текущей, то сама формула отображается в строке формул.

По умолчанию, ссылки на ячейки в формулах рассматриваются как относительные. Это означает, что при копировании формулы адреса в ссылках автоматически изменяются в соответствии с относительным расположением исходной ячейки и создаваемой копии.

Пусть, например, в ячейке B2 имеется ссылка на ячейку A3. В относительном представлении можно сказать, что ссылка указывает на ячейку, которая располагается на один столбец левее и на одну строку ниже данной. Если формула будет скопирована в другую ячейку, то такое относительное указание ссылки сохранится. Например, при копировании формулы в ячейку B3 ссылка будет продолжать указывать на ячейку, располагающуюся левее и ниже, в данном случае на ячейку A4.

При абсолютной адресации адреса ссылок при копировании не изменяются, так что ячейка, на которую указывает ссылка, рассматривается как не табличная. Для изменения способа адресации при редактировании формулы надо выделить ссылку на ячейку и нажать клавишу F4. Элементы номера ячейки, использующие абсолютную адресацию, предваряются символом \$. Например, при последовательных нажатиях клавиши F4 номер ячейки A1 будет записываться как A1, \$A\$1, A\$1 и \$A1. В двух последних случаях один из компонентов номера ячейки рассматривается как абсолютный, а другой — как относительный.

Эпюры в EXCEL создаются с помощью мастера диаграмм (см. рис. E1). Следует выбирать тип диаграммы – «точечная», на которой значения величин соединяются отрезками.

ПРИЛОЖЕНИЕ Ж

Стандартная атмосфера

Значения плотности ρ , скорости звука **a** и ориентировочной максимальной скорости ветра **U** на различных высотах

Геометрическая	Плотность р,	Скорость звука	Скорость ветра
высота h , м	κε/M ³	а , м/с	U , м/с
0	1,22500	340,294	4
500	1,16727	338,370	9
1000	1,11166	336,435	12,5
2000	1,00655	332,532	15
3000	0,909254	328,584	18,5
4000	0,819347	324,589	24
5000	0,736429	320,545	29
6000	0,660111	316,452	36
7000	0,590018	312,306	44
8000	0,525786	308,105	52
9000	0,467063	303,848	60
10000	0,413510	299,532	75
11000	0,364801	295,154	65
12000	0,311973	295,069	60
13000	0,266595	295,069	52
14000	0,227855	295,069	48
15000	0,194755	295,069	40
16000	0,166470	295,069	37
17000	0,142301	295,069	34
18000	0,121647	295,069	32
19000	0,103995	295,069	30
20000	0,0889097	295,069	28
22000	0,0645096	296,377	26
24000	0,0469377	297,720	22
26000	0,0342565	299,056	24
28000	0,0250762	300,386	26
30000	0,0184101	301,709	28
35000	0,00846334	308,299	40
40000	0,00399566	317,189	45
50000	0,00102687	329,799	54

(Выборка из ГОСТ 4401 -73. Применять только в учебном процессе)

приложение 3

Операции с приближенными числами

Все значения физических величин, используемые в инженерных расчетах, являются **приближенными**, полученными с той или иной степенью точности. Всякое приближенное число должно записываться в форме, позволяющей судить о его точности.

Если указывается абсолютная погрешность числа, то его записывают в следующем виде: $27,04 \pm 0,01$. При точности $\pm 0,01$ число 19,0412 должно быть записано как $19,04 \pm 0,01$. При этом разряды числа, которые не обеспечиваются точностью измерений, должны быть отброшены.

Если при написании числа погрешность не указана, то следует считать, что погрешность составляет единицу последнего указанного разряда. Число 93 следует рассматривать как 93 ± 1 , а число 0,0364 -как $0,0364 \pm 0,0001$. В связи с этим приобретают значение и нули, указанные после запятой. Числа 37 и 37,0 отнюдь не идентичны: первое означает 37 ± 1 , а второе означает $37 \pm 0,1$. В последнем случае нуль является значащей цифрой.

При операциях с числами различной величины удобно использовать понятие не абсолютной, а **относительной погрешности**, определяемой количеством верных значащих цифр в числе. Для этого следует представить все числа в показательной форме, указав такое количество разрядов, которое соответствует точности рассматриваемой величины. Приведем примеры записи различных чисел в показательной форме: $1,467 = 1,467 \cdot 10^{0}$; $5290 = 5,290 \cdot 10^{3}$; $0,007495 = 7,495 \cdot 10^{-3}$.

В такой записи удержанию второй цифры числа соответствует абсолютная погрешность в \pm 0,1. А относительная погрешность будет зависеть от величины первой цифры числа (возможные величины от 1 до 9) и составит от 1% до 10 %. Удержание трех значащих цифр (второго разряда после запятой) приводит к погрешности в пределах от 0,1% до 1%.

Совершая различные действия над приближенными числами, надо помнить, что точность результата не может быть больше точности наименее точного из чисел, участвующих в вычислениях. Проводя вычисления на микрокалькуляторе, нет необходимости округлять все числа до разряда наименее точного числа, но, получив результат, это округление совершенно необходимо сделать. Без округления полученный результат будет содержать ложную информацию о точности искомой величины.

ПРИМЕР. Вычислить критическое напряжение местной потери устойчивости пластины

$$\sigma_{\kappa p.M}^{0} = \frac{0.9\kappa E}{\left(\frac{b_{cmp}}{\delta_{o\delta}}\right)^{2}} = \frac{0.9 \cdot 4 \cdot 7 \cdot 10^{7}}{\left(\frac{120}{1.5}\right)^{2}} = 39,38 \ M\Pi a.$$

В этой формуле коэффициенты 0,9 и к = 4 заданы математически точно. Физическая величина - модуль упругости материала пластины содержит две точные значащие цифры (они подчеркнуты) $E = 7.0 \cdot 10^7$ Па, ширина пластины $b_{cmp} = 120$ мм и толщина обшивки $\delta_{o\delta} = \underline{1,5}$ мм содержат соответственно три и две значащие цифры. Следовательно, результат содержит не более двух верных цифр.

В проектировочном расчете крыла многие вопросы решаются приближенно. Поэтому погрешность вычислений в один процент (удержание примерно двух трёх значащих цифр числа) считается вполне допустимой. Однако, поскольку в процессе последовательных вычислений проектировочного расчета ошибка округлений накапливается, то рекомендуется в результатах расчета **удерживать всегда не более четырех значащих цифр**. Кроме того, следует использовать множительные приставки международной системы единиц СИ. В приведенном примере вместо результата 3,938 ·10⁷ Па записано более кратко 39,38 *МПа*.

Соблюдение указанных рекомендаций позволит студентам избежать лишней работы по набору больших чисел на микрокалькуляторах, при этом уменьшится вероятность допущения ошибки при наборе чисел, а результаты расчетов получат лучшую обозримость, и не будут содержать ложной информации.

СПИСОК ЛИТЕРАТУРЫ

1. Зацепина, М.В. *Расчет на прочность нестреловидного крыла:* учеб. пособие / М.В. Зацепина. - Куйбышев: КуАИ, 1977.- 51 с.

2. Тарасов, Ю.Л. *Расчет на прочность элементов конструкции самолета:* учеб. пособие /. Ю.Л. Тарасов. - 3-е изд., перераб. - Самара: Самар. гос. аэрокосм. унт, 2000.- 112 с.

3. Лавров, Б.А. *Нагрузки, действующие на самолет:* учеб. пособие / Б.А. Лавров. - Куйбышев: КуАИ, 1977. - 41 с.

4. Зайцев, В.Н. Конструкция и прочность самолетов: учеб. пособие / В.Н. Зайцев, В.Л. Рудаков.- Киев: Высш. школа, 1978.- 488 с.

5. Мехеда, В.А. Справочные материалы к проектировочным и прочностным расчетам в курсовом и дипломном проектировании: метод. указания /В.А. Мехеда. - Самара: СГАУ, 1995. - 19 с.

6. Стандарт организации СГАУ 02068410-004-2007: Общие требования к учебным текстовым документам

Учебное издание

ПОДБОР СЕЧЕНИЙ СИЛОВЫХ ЭЛЕМЕНТОВ НЕСТРЕЛОВИДНОГО КРЫЛА

Методические указания

Составитель Мехеда Виллий Андреевич

Редактор А.В. Ярославцева Доверстка А.В. Ярославцева

Подписано в печать 26.09.08. Формат 60 х 84 ¹/₁₆. Бумага офсетная. Печать офсетная. Усл. печ. л. 3,0 Тираж 100 экз. Заказ . Арт. С – 48/2008

Самарский государственный аэрокосмический университет. 443086, Самара, Московское шоссе, 34.

Изд-во Самарского государственного аэрокосмического университета. 443086, Самара, Московское шоссе, 34.

ДЛЯ ЗАМЕТОК