ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЁВА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ЭНЕРГЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЁВА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ЭНЕРГЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ

Утверждено Редакционно-издательским советом университета в качестве практикума по общей химии

С А М А Р А Издательство СГАУ 2011 УДК СГАУ: 5(075)+54(075)

ББК 24

Составитель Н.А. Расщепкина

Рецензент д-р техн. наук, проф. Г.В. С м и р н о в

Энергетика химических реакций: практикум по общей химии / сост. *Н.А. Расщепкина*. — Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2011. — 32 с.: ил.

Практикум включает теоретические основы эксперимента и выполнения домашнего задания, охватывающие раздел общей химии — энергетика химических процессов, а также указания по проведению лабораторной работы, примеры решения задач и задачи разного уровня сложности для самостоятельного решения.

Предназначен для студентов 1-го курса всех специальностей очного и очно-заочного обучения. Подготовлен на кафедре «Химия».

СОДЕРЖАНИЕ

Предисловие	4
1. Тепловой эффект химических реакций	5
1.1. Теоретические основы эксперимента	5
1.2. Лабораторная работа «Тепловой эффект химической реакции»	6
2. Термодинамические расчёты	. 10
3. Задания для самостоятельной работы	. 18
4. Результаты обучения	. 25
5. Стандартные ΔH^0_{298} , энтропии S^0_{298} некоторых веществ при 298 К (25°С)	. 26
Библиографический список	. 29

ПРЕДИСЛОВИЕ

Общая химия изучает наиболее общие законы и концепции химии, включая термодинамику и кинетику химических реакций, теорию химической связи и др. Науку о взаимных превращениях различных видов энергии называют термодинамикой. Для решения вопросов получения энергии, определения принципиальной возможности прохождения процессов изучают энергетику химических реакций.

Практикум включает теоретические основы эксперимента и выполнения домашнего задания, охватывающие раздел общей химии — энергетика химических процессов, а также указания по проведению лабораторной работы. Её выполнение требует количественных измерений, их обработки. Лабораторные задания составлены вариативно. Выбор конкретных заданий для выполнения может проводиться и преподавателем, и студентами. Лабораторные задания должны выполняться небольшими группами студентов (2-5 человек). Выполняя лабораторные работы, студенты знакомятся с устройством оборудования, овладевают методами и приёмами химического исследования, обсуждения результатов и получения выводов.

Для лучшего понимания и закрепления материала изучаемого раздела общей химии работа в химической лаборатории должна сопровождаться решением задач. Поэтому практикум содержит примеры решения задач и задачи разного уровня сложности для самостоятельного решения. Это даёт возможность студенту выбрать задания, учитывая свои интересы и стремление развивать свои способности к творческому мышлению и самостоятельной работе. Средством выявления уровня самооценки студентов, а одновременно и способом её развития являются, с нашей точки зрения, задания, в которых студентам предлагается составить материалы для проверки изученных тем.

1. ТЕПЛОВОЙ ЭФФЕКТ ХИМИЧЕСКИХ РЕАКЦИЙ

1.1. Теоретические основы эксперимента

При химических реакциях происходят глубокие качественные изменения в системе, рвутся связи в исходных веществах и возникают новые связи в конечных продуктах. Эти изменения сопровождаются поглощением или выделением энергии. В изобарно-изотермических условиях (P=const, T=const) изменение энтальпии ΔH (или можно просто — энтальпия процесса) численно равно тепловому эффекту реакции, т.е. количеству теплоты, которое выделяется или поглощается при протекании данной реакции. Экзотермическая реакция сопровождается выделением теплоты, при этом ΔH <0, эндотермическая реакция сопровождается поглощением теплоты, при этом ΔH >0.

Тепловой эффект химической реакции экспериментально определяют в специальных приборах, называемых калориметрами. Экспериментальное определение тепловых эффектов называют калориметрией. Калориметр представляет собой теплоизолированный сосуд, в котором может проводиться та или иная реакция. Выделяемая в результате реакции теплота передаётся водному раствору, вызывая повышение температуры. Для экспериментального определения теплового эффекта реакции нужно провести реакцию с известным количеством вещества и измерить, сколько при этом выделится теплоты. Для измерения теплоты реакцию нужно провести в среде с известной массой и с известной теплоёмкостью в условиях, которые позволяют измерить разность температуры среды до и после реакции.

Тепловой эффект ДН можно рассчитать по формуле

$$\Delta H = \frac{\Delta t cm}{v},\tag{1.1}$$

где Δt – разность температур раствора до и после реакции, К;

c – теплоёмкость раствора, Дж/г·К;

m — масса раствора, г;

 ν – количество вещества, вступившего в реакцию, моль.

1.2. Лабораторная работа «Тепловой эффект химической реакции»

Цель работы: определение теплового эффекта химической реакции.

Оборудование

Компьютер с измерительным блоком (рис. 1). Датчик температуры 100°С (рис. 2). Магнитная мешалка, мерная посуда, штатив химический, калориметр.

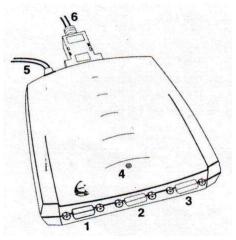


Рис. 1. Измерительный блок:

1, 2 – разъёмы для подключения датчиков (№ 1 и № 2 соответственно);

3 – управляющий разъём; 4 – индикаторная лампочка;

5 - кабель; 6 - СОМ-кабель

Назначение и устройство измерительного блока

Измерительный блок (рис. 1) предназначен для оцифровки сигналов с датчиков и передачи их в компьютер, а также для питания датчиков и управления ими. Блок имеет кабель питания 5, разъём для подсоединения к компьютеру через кабель 6, два рабочих разъёма для подключения датчиков 1 и 2, управляющий разъём 3. На каждый рабочий разъём можно подключить один датчик.

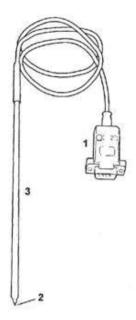


Рис. 2. Датчик температуры 100°C: 1 – разъём; 2 – терморезистор; 3 – корпус

Назначение и устройство датчика температуры

Датчик температуры (рис. 2) предназначен для измерения температуры в диапазоне от 0 до 100°С. Он представляет собой терморезистор 2, впаянный в кончик стеклянной трубки 3. Сопротивление терморезистора (а значит, падение напряжения на нём) зависит от температуры. Программа пересчитывает падение напряжения в температуру по заданной градуировочной зависимости.

Характеристика датчика

Датчик чувствует изменение температуры в 0,1°C.

Меры предосторожности

Терморезистор находится на самом кончике датчика. Он отделён от раствора очень тонким слоем стекла. Небольшая масса стекла прогревается быстро, поэтому датчик способен регистрировать весьма быст-

рые изменения температуры. Однако трубка, из которой сделан датчик, хрупкая, поэтому следует предохранять её (особенно кончик) от ударов и боковых нагрузок.

Подготовка к работе

Подключите датчик температуры к разъёму 1 (рис. 1) измерительного блока. Откройте программу «L-химия-практикум», подведите курсор мыши на экранную кнопку "выбор работы" и щёлкните левой кнопкой мыши. Подведите курсор мыши на "+" слева от названия "Датчики: Температура 0-100°С (длинный датчик): ручной ввод абсциссы". Щёлкните левой кнопкой мыши и войдите в окно измерения.

Ход работы

Задание 1

В соответствии с вариантом задания (табл. 1.) отмерьте мерной колбой как можно более точно и аккуратно раствор кислоты и налейте его в калориметр. Поставьте калориметр на магнитную мешалку и погрузите в него датчик температуры так, чтобы он не касался дна калориметра. Налейте в мерный стаканчик раствор щёлочи (гидроксида калия или натрия). Раствор поставьте рядом с установкой на несколько минут, чтобы температура раствора сравнялась с комнатной. Включите мешалку. Нажмите (щёлкните левой кнопкой мыши) на экранную кнопку "Пуск" и запустите процесс измерения. Когда показания датчика температуры установятся, запишите результаты в таблицу, в которой два столбца: первый – номер измерения (1 – до смешивания реактивов, 2 – после), второй – температура при этом. В первый столбец запишите значение абсциссы "1", во второй – значение температуры. В калориметр с кислотой влейте раствор основания. Как только температура перестанет расти, запишите результаты в таблицу, указав значение абсциссы "2". Остановите измерение нажатием экранной кнопки "Стоп". Датчик температуры извлеките из раствора и ополосните дистиллированной водой. Калориметр помойте.

Таблица 1. Варианты задания

№ п/п	Кислота	Концен- трация раствора, моль/л	Объём раствора, мл	Основание	Концен- трация раствора, моль/л	Объём раствора, мл
1	HCl	0.1	250	NaOH	5	10
2	HC1	0.1	250	KOH	5	10
3	HNO_3	0.1	250	NaOH	5	10
4	HNO_3	0.1	250	KOH	5	10
5	HC1	4	50	NaOH	4	50
6	HC1	4	50	KOH	4	50
7	HNO_3	4	50	NaOH	4	50
8	HNO_3	4	50	KOH	4	50

Задание 2

Повторите эксперимент, описанный в задании 1, воспользовавшись другими концентрациями растворов тех же веществ. Сделайте вывод о влиянии концентрации на величину теплового эффекта и объясните причину этого явления, если вы его обнаружите.

Отчёт

При оформлении отчёта напишите цель работы и уравнение изучаемой реакции, а также:

- 1) приведите начальную и конечную температуру и рассчитайте изменение температуры (Δt , $^{\circ}$ C);
- 2) вычислите тепловой эффект реакции для количеств веществ, использованных в опыте, по формуле $\Delta H = \Delta t Cm$, где m масса раствора, г; C удельная теплоёмкость раствора, Дж/г. Считайте, что в эксперименте нагревается только раствор, плотность которого приблизительно равна 1 г/мл. Теплоёмкость раствора можно приближённо считать равной теплоёмкости воды ($C_{\rm H2O} = 4.2~{\rm Дж/r\cdot K}$).
- 3) пересчитайте величину теплового эффекта реакции на 1 моль того вещества (кислоты или щёлочи), которое было взято в недостатке, используя формулу 1.1;

- 4) сравните результаты, полученные на занятии студентами вашей группы, и сформулируйте вывод;
- 5) рассчитайте тепловой эффект процесса диссоциации воды $H_2O \rightleftharpoons H^+ + OH^- \text{ по формуле } -RT \ln K_T = \Delta H^0 T\Delta S^0 \text{ , если}$ $K_{283} = 0.29 \cdot 10^{-14} \text{ и } K_{303} = 1.47 \cdot 10^{-14} \text{ .}$

Сравните значения энтальпии диссоциации и реакции нейтрализации. Сформулируйте вывод.

2. ТЕРМОДИНАМИЧЕСКИЕ РАСЧЁТЫ

Науку о взаимных превращениях различных видов энергии называют термодинамикой. Термодинамика устанавливает законы этих превращений, а также направление самопроизвольного течения различных процессов в данных условиях. В настоящее время основным источником энергии на Земле является химическая энергия топлива (дрова, уголь, нефть, природный газ и продукты их переработки). Вопросы получения энергии, принципиальной возможности прохождения процессов выходят на первое место при современном состоянии науки и технологии. Для решения этих вопросов изучают энергетику систем.

Системой называется совокупность находящихся во взаимодействии веществ или частиц, мысленно или фактически обособленная от окружающей среды. Энергетическое состояние системы при прохождении в ней химической реакции изменяется.

Состояние и свойства системы можно характеризовать термодинамическими параметрами (температура T, давление P, объём V, масса m и др.) и характеристическими функциями: внутренняя энергия U, энтальпия H = U + PV, энтропия S и энергия Гиббса G. Значения характеристических функций определяются состоянием системы и не зависят от способа (пути) достижения данного состояния системы. Для вычисления значений характеристических функций необходимо знать следующее.

- 1. Изменение энтальпии ΔH (или можно просто энтальпия процесса) численно равно тепловому эффекту процесса, т.е. количеству теплоты, которое выделяется или поглощается при протекании данного процесса в изобарно-изотермических условиях (P=const, T=const).
- 2. Экзотермический процесс сопровождается выделением теплоты, при этом ΔH <0, эндотермический процесс сопровождается поглощением теплоты, при этом ΔH >0.
- 3. Энтальпией образования химического соединения называется изменение энтальпии в реакции образования 1 моля этого соединения из простых веществ, устойчивых при данных условиях.
- 4. В справочных таблицах (см. табл. 2) приводятся стандартные энтальпии образования веществ, т.е. энтальпии образования веществ для стандартных условий температуры 25°C (298 К) и давления 100 кПа. Их обозначают $\Delta H_{298,\mathrm{A}}^0$ (для любого вещества A) и измеряют в кДж/моль. Температуру в индексе обычно опускают и указывают её только для тех случаев, когда она отличается от 298 К (ΔH_{A}^0).
- 5. Стандартные энтальпии образования простых веществ принимают равными нулю, если их агрегатное состояние и модификации устойчивы при стандартных условиях.
- 6. Закон Гесса: энтальпия химической реакции не зависит от пути её протекания, а зависит лишь от природы и физического состояния исходных веществ и продуктов реакции. Энтальпия химической реакции для стандартных условий обозначается ΔH^0 (стандартная энтальпия химической реакции) и измеряется в кДж. В термохимическом уравнении обязательно должно быть указано состояние вещества ("т" твёрдое, "к" кристаллическое, "ж" жидкость, "ам" аморфное, "р-р" растворённое, "г" газ), ибо тепловой эффект реакции от него зависит. Пример термохимического уравнения:

$$2H_{2(\Gamma)} + O_{2(\Gamma)} = 2H_2O_{(ж)}$$
 $\Delta H^0 = -572$ кДж.

7. Стандартная энтальпия химической реакции ΔH^0 равна сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ (следствие из закона Γ есса):

$$\Delta H^0 = \sum \Delta H^0_{\text{прод}} - \sum \Delta H^0_{\text{ucx}}.$$

Если реакция протекает по уравнению

$$mA + nB = pC + qD, (2.1)$$

то
$$\Delta H^0 = p\Delta H_C^0 + q\Delta H_D^0 - m\Delta H_A^0 - n\Delta H_B^0$$
, кДж. (2.2)

8. Важнейшей характеристикой топлива является теплота сгорания. Теплотой сгорания вещества называют тепловой эффект реакции окисления кислородом элементов, входящих в состав этого вещества до образования высших оксидов. Теплоту сгорания обычно относят к стандартному состоянию вещества (100 кПа), одному молю топлива и называют стандартной теплотой сгорания ($\Delta H_{\rm cr}^0$). Расчёт теплоты сгорания, как любого теплового эффекта, проводится с использованием следствия из закона Гесса (2.2). В технических расчётах используют удельную теплоту сгорания $Q_{\rm r}$, которая равна количеству теплоты, выделяющейся при сгорании 1 кг жидкого или твёрдого вещества и 1 м³ газообразного вещества

$$Q_{x} = -\Delta H_{cr}^{0} 1000 / M, \ \kappa Дж / кг$$
 (2.3)

или

$$Q_{\text{T}} = -\Delta H_{\text{cr}}^0 1000 / 22, 4, кДж / м^3,$$

где M – масса моля вещества; 22,4 – объём моля газа. Чем выше теплота сгорания топлива, тем больше ценность этого топлива.

9. Продукты горения топлив могут содержать оксиды углерода, азота, серы, воду, углеводороды, в частности бенз(а)пирен $C_{20}H_{12}$, обладающий канцерогенными свойствами, твёрдые вещества (зола, сажа и др.). Количество и состав продуктов горения зависят от состава исходного топлива и условий горения. В настоящее время принимаемые меры по снижению токсичных выбросов в атмосферу или их нейтрализации недостаточно эффективны. К числу глобальных последствий загрязнения атмосферы продуктами сгорания топлив относятся: изменение климата Земли, разрушение озонового слоя, кислотные дожди. Эти проблемы обсуждаются на сайтах http://www.ecolife.ru/zhurnal/arti-

cles; http://ru.wikipedia.org/. Наиболее кардинальным решением проблемы защиты атмосферы является разработка новых методов преобразования энергии и новых машин, обеспечивающих безвредные выбросы, а также применение менее вредных веществ. В качестве носителя энергии может быть использован водород, который окисляется по реакции

$$H_{2(\Gamma)} + 0.5O_{2(\Gamma)} = H_2O_{(K)}$$
 $\Delta H^0 = -285.8 \text{ кДж/моль.}$

Применение водорода значительно снизит уровень загрязнения атмосферы, так как при его окислении образуется безвредный продукт — вода. Удельная теплота сгорания ($Q_{\rm T}$) водорода, вычисленная по формуле (2.3), равна 142 900 кДж/кг. Следовательно, водород является ценным топливом. В настоящее время ведутся широкие исследования будущих энергетических систем, в которых передача и распределение энергии будут осуществляться с помощью водорода (http://ru.wikipedia.org/; http://www.h2club.mirea.ru/modules/news/article; http://web.nornik.ru/hydrogen energy).

10. Энтропия S измеряется в Дж/К и является мерой беспорядочности или хаотичности системы. Чем более хаотична система, тем больше её энтропия.

$$S$$
 газа $> S$ жидкости $> S$ кристаллов (2.4)

Стандартные значения энтропии простых и сложных веществ (выражены в Дж/моль·К) приведены в термодинамических таблицах S_{298}^0 (см. табл. 2).

11. Стандартное изменение энтропии для химической реакции ΔS^0 можно определить по формуле

$$\Delta S^0 = \sum \Delta S_{\text{mpon}}^0 - \sum \Delta S_{\text{nex}}^0, \qquad (2.5)$$

тогда для реакции (2.1):

$$\Delta S^0 = pS_C^0 + qS_D^0 - mS_A^0 - nS_B^0. \tag{2.6.}$$

12. Мерой возможности самопроизвольного протекания реакции при температуре T является стандартное изменение энергии Гиббса при протекании реакции ΔG_T^0 , которая измеряется в кДж.

Если $\Delta G_T^0 < 0$, то реакция может протекать самопроизвольно при данных условиях. Если $\Delta G_T^0 > 0$, то самопроизвольное протекание реакции при этих условиях невозможно. $\Delta G_T^0 = 0$ — это состояние равновесия.

13. Стандартное изменение энергии Гиббса при протекании реакции (или просто энергию Гиббса реакции) можно рассчитать по уравнению:

$$\Delta G_T^0 = \Delta H_T^0 - T \Delta S_T^0. \tag{2.7}$$

В приближённых расчётах зависимостью ΔH^0 и ΔS^0 от температуры можно пренебречь, т.е. считать, что $\Delta H^0_T \approx \Delta H^0_{298}$ и $\Delta S^0_T \approx \Delta S^0_{298}$.

14. Стандартное изменение энергии Гиббса химической реакции при заданной температуре связано с константой равновесия K_T этой реакции при той же температуре уравнением

$$\Delta G_T^0 = -RT \ln K_T. \tag{2.8}$$

Чем больше константа равновесия K_T , тем более полно протекает реакция при температуре T (выход продуктов реакции больше). Уравнение (2.7) с учётом (2.8) принимает вид

$$-RT \ln K_T = \Delta H^0 - T \Delta S^0. \tag{2.9}$$

15. Примеры расчётов ΔH^0 , ΔS^0 , ΔG_T^0 , K_T приведены ниже.

Пример 1. В смеси, состоящей из 22,4 л водорода и 1,12 л хлора, прошла реакция. Вычислите тепловой эффект этой реакции для стандартных условий.

Решение

Реакция между водородом и хлором идёт по уравнению

$$H_{2(\Gamma)} + Cl_{2(\Gamma)} = 2HCl_{(\Gamma)}$$
.

Считаем, что объёмы газов измерены при нормальных условиях и, следовательно, 1 моль газа занимает объём 22,4 л. Из условия задачи следует, что исходная смесь состояла из 1 моля (22,4 л) водорода и 0,05 молей хлора (1,12/22,4). Из уравнения реакции следует, что 1 моль

водорода реагирует с 1 молем хлора. Следовательно, хлор взят в недостатке. С 0,05 молями хлора прореагируют 0,05 молей водорода и образуется 0,1 моль хлороводорода в соответствии с уравнением реакции. В табл. 2 находим $\Delta H_{\rm HClo}^0 = -92,3$ кДж/моль.

Можно записать: 1 моль
$$HCl - (-92,3)$$
 кДж $0,1$ моль $-\Delta H^0$.

Ответ: $\Delta H^0 = -9,23 \text{ кДж.}$

Пример 2. При взаимодействии 6,35 г меди с кислородом выделяется 16,5 кДж/моль теплоты. Рассчитайте из этих данных стандартную энтальпию образования оксида меди (II).

Решение.

Напишем уравнение реакции $Cu + \frac{1}{2}O_2 = CuO$.

Найдём количество молей меди v, вступивших в реакцию:

$$M_{\text{Cu}} = 63,5$$
 г/моль; $v = m / M = 6,35 / 63,5 = 0,1$ моль.

Из уравнения реакции следует, что из 0,1 моля Cu получается 0,1 моль CuO.

Составим пропорцию: 0,1 моль CuO – (-16,5) кДж

1 моль CuO
$$-\Delta H_{\text{CuO}}^0$$
.

Откуда $\Delta H_{\text{CuO}}^0 = -165 \text{ кДж/моль.}$

Пример 3. Вычислите тепловой эффект реакции

$$Fe_2O_{3(\kappa)} + 3CO_{(r)} = 2Fe_{(r)} + 3CO_{2(\kappa)}$$

для стандартных условий. Эндо- или экзотермической является эта реакция?

Решение.

Согласно соотношению (2.2) напишем формулу для расчёта энтальпии этой реакции и подставим взятые в табл. 2 значения стандартных энтальпий образования веществ:

$$\Delta H^0 = 2\Delta H_{\text{Fe}}^0 + 3\Delta H_{\text{CO}_2}^0 - \Delta H_{\text{Fe}_2\text{O}_3}^0 - 3\Delta H_{\text{CO}}^0 =$$

$$= 2 \cdot 0 + 3 \cdot (-393,5) - (-821,3) - 3 \cdot (-110,5) = -27,71.$$

Таким образом, выделяется 27,71 кДж тепла. Реакция является экзотермической.

Пример 4. Возможно ли протекание реакции

$$CaCO_{3(\kappa)} = CaO_{(\kappa)} + CO_{2(\Gamma)}$$

при 25 и 1500°С? Найдите приближённое значение температуры, при которой $\Delta G_T^0 = 0$. Зависимостями ΔH^0 и ΔS^0 от температуры пренебречь. Рассчитайте константу равновесия реакции для трёх указанных температур.

Решение.

 ΔG_T^0 реакции можно определить по формуле (2.7):

$$\Delta G_T^0 = \Delta H_T^0 - T \Delta S_T^0.$$

Для температуры 25°C = 298 K имеем $\Delta G_{298}^0 = \Delta H_{298}^0 - 298\Delta S_{298}^0$.

Вычислим ΔS_{298}^0 , ΔH_{298}^0 по формулам (2.2) и (2.6):

$$\begin{split} \Delta H_{298}^0 &= \Delta H_{\text{CaO}}^0 + \Delta H_{\text{CO}_2}^0 - \Delta H_{\text{CaCO}_3}^0 = \\ &= -635, 1 + (-393, 5) - (-1206, 8) = 176, 2 \text{ кДж;} \\ \Delta S_{298}^0 &= S_{\text{CaO}}^0 + S_{\text{CO}_2}^0 - S_{\text{CaCO}_3}^0 = 38, 1 + 213, 7 - 91, 7 = 160, 1 \text{ Дж/K}. \end{split}$$

Далее $\Delta G_{298}^0 = 178, 2 - 298 \cdot 0,1601 = 130,5 \text{ кДж} > 0.$ Значит, при 25°C протекание реакции невозможно.

Для температуры 1500°C = 1773 К имеем

$$\Delta G_{1773}^0 = \Delta H_{1773}^0 - 1773 \Delta S_{1773}^0.$$

По условию задачи можно считать, что $\Delta H_{1773}^0 \approx \Delta H_{298}^0$ и

$$\Delta S_{1773}^0 \approx \Delta S_{298}^0.$$

Тогда
$$\Delta G_{1773}^0 = \Delta H_{298}^0 - 1773 \Delta S_{298}^0 =$$

= 178, 2 - 1773 · 0,1601 = -105,66 кДж < 0.

Значит, при 1500°C протекание реакции возможно.

Температуру, при которой $\Delta G_T^0 = 0$, находим по формуле (2.7):

$$0 = \Delta H_T^0 - T \Delta S_T^0$$
; $T = \frac{\Delta H_T^0}{\Delta S_T^0} = \frac{\Delta H_{298}^0}{\Delta S_{298}^0} = \frac{178.2 \text{ кДж}}{0.1601 \text{ кДж} / \text{K}} = 1113 \text{ K} = 840 ^{\circ}\text{C}.$

Константу равновесия реакции для этих трёх температур найдём на основании формулы (2.9):

$$\ln K_T = \frac{-\Delta G_T^0}{RT},$$

$$\ln K_{298} = \frac{-\Delta G_{298}^0}{R298} = -\frac{130500}{8,314 \cdot 298} = -52,7,$$

$$K_{298} = e^{-52,7} = 1,3 \cdot 10^{-23},$$

$$\ln K_{1113} = \frac{-\Delta G_{1113}^0}{R1113} = 0; K_{1113} = e^0 = 1,$$

$$\ln K_{1773} = \frac{-\Delta G_{1773}^0}{R298} = -\frac{-105660}{8,314 \cdot 1773} = 7,17,$$

$$K_{1773} = e^{7,17} = 1,3 \cdot 10^3.$$

Таким образом, чем меньше значение ΔG_T^0 , тем более полно протекает реакция и тем больше константа равновесия.

Пример 5. Вычислите удельную теплоту сгорания ацетиленового топлива для стандартных условий (воду в продуктах считать жидкой).

$$C_2H_{2(\Gamma)} + 2,5O_{2(\Gamma)} = H_2O_{(x)} + 2CO_{2(\Gamma)}.$$

Решение.

Согласно соотношению (2.2) напишем формулу для расчёта энтальпии этой реакции и подставим взятые в табл. 2 значения стандартных энтальпий образования веществ:

$$\Delta H^0 = \Delta H_{\text{H}_2\text{O}}^0 + 2\Delta H_{\text{CO}_2}^0 - \Delta H_{\text{C}_2\text{H}_2}^0 - 2,5\Delta H_{\text{O}_2}^0 =$$

$$= -285,8 + 2 \cdot (-393,5) - (+226,8) - 2,5 \cdot 0 = -1299,6.$$

Таким образом, выделяется 1299,6 кДж тепла. Реакция является экзотермической. Подставим полученное значение стандартной энтальпии реакции горения ацетиленового топлива (стандартной теплоты сгорания) в формулу (2.3) для расчёта удельной теплоты сгорания, считая массу моля ацетилена равной 0,026 кг/моль, получим:

$$Q_T = \frac{1299, 6 \cdot 1000}{0,026} = 49984, 6.$$

Таким образом, удельная теплота сгорания ацетиленового топлива равна 49 984,6 кДж/кг.

Пример 6. Если автомобиль мощностью 40кВт, работающий на бензине (условного состава C_8H_{18}) с КПД 20%, заменить на электромобиль, работающий на топливных элементах с тем же топливом, но с КПД 40%, то насколько литров снизится объём (при н. у.) выбрасываемого электромобилем CO_2 на расстоянии 120 км при его движении со скоростью 60 км/ч?

Решение.

Время, за которое машины пройдут 120 км, равно двум часам. Соответственно теоретическая потребность в энергии составляет $40~\mathrm{kBt} \cdot 2~\mathrm{u} = 80~\mathrm{kBt} \cdot \mathrm{u}$ или $288~\mathrm{MДж}$.

Реакцию горения топлива указанного состава можно представить уравнением $C_8H_{18}+12{,}5O_2=8CO_2+9H_2O_{(\Gamma)}$.

Энтальпия реакции ΔH^0 , рассчитанная по соотношению 2.2 (см. пример 3), составляет -5065 кДж/моль.

Соответственно мольный расход топлива автомобилем $N_{\rm A}$ и электромобилем $N_{\rm B}$ составят:

$$N_{\rm A} = 288/(0.2\cdot5,065) = 284,3$$
 моль и $N_{\rm B} = 288/(0.4\cdot5,065) = 142,15$ моль. Следовательно, $\Delta N = 142,15$ моль.

В соответствии с уравнением реакции на один моль C_8H_{18} приходится 8 моль CO_2 . Моль газа при н. у. занимает объём 22,4 л, поэтому уменьшение объёма выбросов CO_2 (ΔV) составит:

$$\Delta V = 142,15.8.22,4 = 25473 \text{ л.}$$

3. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

1. Вычислите количество теплоты, которая выделяется при окислении 16 г серы, если стандартная энтальпия образования оксида серы (IV) равна -297 кДж/моль.

- 2. Вычислите количество теплоты, выделяемой при окислении 6 г графита, если стандартная энтальпия образования оксида углерода (IV) равна -393,5 кДж/моль.
- 3. Вычислите количество теплоты, выделяемой при окислении 2,7 г алюминия?
- 4. Вычислите количество теплоты, выделяемой при окислении 5,2 г хрома, если стандартная энтальпия образования оксида хрома (III) равна -1141,0 кДж/моль.
- 5. Вычислите количество теплоты, выделяемой при окислении 2,4 г магния.
- 6. При соединении 2,4 г титана с хлором выделилось 37,9 кДж тепла. Рассчитайте стандартную энтальпию образования хлорида титана (IV).
- 7. При соединении 2,1 г железа с серой выделилось 3,77 кДж тепла. Рассчитайте стандартную энтальпию образования сульфида железа (II).
- 8. При восстановлении 12,7 г оксида меди (II) графитом с образованием оксида углерода (II) поглощается 8,24 кДж тепла. Рассчитайте стандартную энтальпию образования оксида меди (II).
- 9. При соединении 1,2 г магния с хлором выделилось 3,25 кДж тепла. Рассчитайте стандартную энтальпию образования хлорида магния.
- 10. При образовании 19,2 г йодоводорода поглощается 4,0 кДж тепла. Рассчитайте стандартную энтальпию образования йодоводорода.
 - 11. Сколько тепла выделится при сгорании 10 г водорода?
- 12. При окислении 12,4 г фосфора выделилось 306 кДж теплоты. Рассчитайте стандартную энтальпию образования оксида фосфора (V).
 - 13. Сколько тепла выделится при окислении 5,6 г кальция?
- 14. При соединении 131 г цинка с хлором выделилось 832 кДж тепла. Рассчитайте стандартную энтальпию образования хлорида цинка.
- 15. При восстановлении 7,5 г оксида никеля (II) графитом с образованием оксида углерода (II) поглощается 12,92 кДж тепла. Рассчитайте стандартную энтальпию образования оксида никеля (II).

- 16. Сколько тепла выделится при окислении 96 г титана, если стандартная энтальпия образования оксида титана (IV) равна -944,8 кДж/моль?
- 17. При образовании 13,4 г хлорида меди (II) из меди и хлора выделяется 22,2 кДж теплоты. Чему равна стандартная энтальпия образования хлорида меди (II)?
 - 18. Сколько тепла выделится при окислении 11,8 г никеля?
- 19. Сколько тепла выделится при окислении 110 г бора, если стандартная энтальпия образования оксида бора равна -1270,4 кДж/моль?
- 20. В смеси, состоящей из 22,4 л азота и 6,72 л водорода (объёмы измерены при н. у.), прошла реакция. Каков тепловой эффект этой реакции в стандартных условиях?
- 21. При взаимодействии 1 моля водорода и 1 моля фтора выделилось 536 кДж тепла. Чему равна стандартная энтальпия образования фтороводорода?
- 22. При образовании 1 л газообразного бромоводорода выделяется 1,58 кДж тепла. Используя эти данные, рассчитайте стандартную энтальпию образования бромоводорода.
- 23. Стандартная энтальпия образования сульфида меди (II) равна -48,6 кДж/моль. Сколько тепла выделится при образовании 955 г сульфида меди (II) при тех же условиях?
 - 24. Сколько тепла выделится при окислении 18,4 г вольфрама?
- 25. При окислении 112 г оксида железа (II) выделяется 533 кДж тепла. Используя эти данные, рассчитайте стандартную энтальпию образования оксида железа (II).
- 26. Сколько тепла выделится при окислении 11,2 г железа до оксида железа (III)?
- 27. Вычислите удельную теплоту сгорания газообразного или жидкого топлива для стандартных условий (воду в продуктах считать жидкой): 1) C_3H_8 ; 2) CH_4 ; 3) B_2H_6 ; 4) C_2H_6 ; 5) C_2H_4 ; 6) C_6H_6 ; 7) C_4H_{10} ;

- 8) C_6H_{14} ; 9) C_7H_{16} ; 10) C_8H_{18} ; 11) $CH_3OH_{(ж)}$; 12) $C_2H_5OH_{(ж)}$. Сделайте вывод о практической ценности топлив.
- 28. Вычислите тепловые эффекты химических реакций при стандартных условиях. Определите тип реакции (эндо- или экзотермическая реакция).

No	Том
варианта	Термохимическое уравнение
1	$4NH_{3(r)} + 5O_{2(r)} = 6H_2O_{(r)} + 4NO_{(r)}$
2	$CaO_{(\kappa)} + 3C_{(\Gamma pa\phi u\tau)} = CaC_{2(\kappa)} + CO_{(\Gamma)}$
3	$4HCl_{(r)} + O_{2(r)} = 2H_2O_{(r)} + 2Cl_{2(r)}$
4	$Cr_2O_{3(\kappa)} + 2Al_{(\kappa)} = 2Cr_{(\kappa)} + Al_2O_{3(\kappa)}$
5	$CaCO_{3(\kappa)} = CaO_{(\kappa)} + CO_{2(\Gamma)}$
6	$Fe_3O_{4(\kappa)} + H_{2(r)} = 3FeO_{(\kappa)} + H_2O_{(r)}$
7	$Ca(OH)_{2(\kappa)} + CO_{2(r)} = CaCO_{3(\kappa)} + H_2O_{(r)}$
8	$2CO_{(r)} + SO_{2(r)} = S_{(\kappa)} + 2CO_{2(r)}$
9	$2H_2S_{(r)} + 3O_{2(r)} = 2H_2O_{(r)} + 2SO_{2(r)}$
10	$4NH_{3(r)} + 3O_{2(r)} = 2N_{2(r)} + 6H_2O_{(r)}$
11	$WO_{3(\kappa)} + 3Ca_{(\kappa)} = W_{(\kappa)} + 3CaO_{(\kappa)}$
12	$Fe_2O_{3(\kappa)} + 3H_{2(\Gamma)} = 2Fe_{(\kappa)} + 3H_2O_{(\Gamma)}$
13	$H_{2(r)} + CO_{2(r)} = H_2O_{(r)} + CO_{(r)}$
14	$Fe_2O_{3(\kappa)} + 3H_{2(r)} = 2Fe_{(r)} + 3H_2O_{(x)}$
15	$CO_{(r)} + 3H_{2(r)} = CH_{4(r)} + H_2O_{(r)}$
16	$4CO_{(r)} + 2SO_{2(r)} = 2S_{(\kappa)} + 4CO_{2(r)}$
17	$3MgO_{(\kappa)} + 2Al_{(\kappa)} = 3Mg_{(\kappa)} + Al_2O_{3(\kappa)}$
18	$N_2H_{4(x)} + 2H_2O_{2(x)} = N_{2(r)} + 4H_2O_{(x)}$
19	$Fe_3O_{4(\kappa)} + CO_{(r)} = 3FeO_{(\kappa)} + CO_{2(r)}$
20	$2H_2S_{(r)} + CO_{2(r)} = 2H_2O_{(r)} + CS_{2(r)}$
21	$4H_2S_{(r)} + 2SO_{2(r)} = 6S_{(\kappa)} + 4H_2O_{(r)}$

№ варианта	Термохимическое уравнение
22	$CH_{4(r)} + 2H_2S_{(r)} = CS_{2(r)} + 4H_{2(r)}$
23	$Fe_2O_{3(\kappa)} + 3C_{(rp)} = 2Fe_{(\kappa)} + 3CO_{(r)}$
24	$2HI_{(r)} = H_{2(r)} + I_{2(r)}$
25	$Cr_2O_{3(\kappa)} + 3H_{2(r)} = 2Cr_{(\kappa)} + 3H_2O_{(x)}$
26	$CH_3OH_{(xt)} + {}^3/_2O_{2(r)} = 2H_2O_{(xt)} + CO_{2(r)}$

29. Определите возможность протекания реакции при стандартных условиях. Если реакция возможна, то рассчитайте константу её равновесия. Как нужно изменить температуру проведения реакции, чтобы увеличить выход продуктов реакции. Дайте обоснованный ответ.

№ варианта	Термохимическое уравнение
1	$ZnO_{(\kappa)} + CO_{(\Gamma)} = Zn_{(\kappa)} + CO_{2(\Gamma)}$
2	$2NO_{(r)} + O_{2(r)} = 2NO_{2(r)}$
3	$2CO_{2(r)} = 2CO_{(r)} + O_{2(r)}$
4	$2CO_{(r)} + 2NO_{(r)} = 2CO_{2(r)} + N_{2(r)}$
5	$FeO_{(\kappa)} + CO_{(\Gamma)} = CO_{2(\Gamma)} + Fe_{(\kappa)}$
6	$CO_{(r)} + 2H_{2(r)} = CH_3OH_{(x)}$
7	$NH_{3(r)} + HCl_{(r)} = NH_4Cl_{(r)}$
8	$H_{2(r)} + CO_{2(r)} = CO_{(r)} + H_2O_{(x)}$
9	$CO_{2(r)} + 4H_{2(r)} = CH_{4(r)} + 2H_2O_{(x)}$
10	$2H_2S_{(r)} + 3O_{2(r)} = 2H_2O_{(x)} + 2SO_{2(r)}$
11	$2Al_{(\kappa)} + 3FeO_{(\kappa)} = 3Fe_{(\kappa)} + Al_2O_{3(\kappa)}$
12	$4HCl_{(r)} + O_{2(r)} = 2H_2O_{(x)} + 2Cl_{2(r)}$
13	$Fe_2O_{3(\kappa)} + 3H_{2(r)} = 2Fe_{(r)} + 3H_2O_{(r)}$
14	$CO_{(r)} + 3H_{2(r)} = CH_{4(r)} + H_2O_{(r)}$
15	$Fe_2O_{3(\kappa)} + 3C_{(rpa\phi\mu r)} = 2Fe_{(r)} + 3CO_{(r)}$

№ варианта	Термохимическое уравнение
16	$4NH_{3(r)} + 5O_{2(r)} = 6H_2O_{(r)} + 4NO_{(r)}$
17	$8Al_{(\kappa)} + 3Fe_3O_{4(\kappa)} = 9Fe_{(\kappa)} + 4Al_2O_{3(\kappa)}$
18	$Fe_2O_{3(\kappa)} + 3CO_{(r)} = 2Fe_{(\kappa)} + 3CO_{2(r)}$
19	$PbO_{2(\kappa)} + Pb_{(\kappa)} = 2PbO_{(\kappa)}$
20	$2Ca_{(\kappa)} + CO_{2(r)} = 2CaO_{(\kappa)} + C_{(rp)}$
21	$C_2H_5OH_{(x)} + 3.5O_{2(r)} = 2CO_{2(r)} + 3H_2O_{(x)}$
22	$4NH_{3(r)} + 3O_{2(r)} = 2N_{2(r)} + 6H_2O_{(x)}$
23	$2Ca_3(PO_4)_{2(\kappa)} + 6SiO_{2(\kappa)} + 5C_{(rp)} = 6CaSiO_{3(\kappa)} + 4P_{(\kappa pachbiň)} + 5CO_{2(r)}$
24	$4CO_{(r)} + 2SO_{2(r)} = 2S_{(\kappa)} + 4CO_{2(r)}$
25	$WO_{3(\kappa)} + 3C_{(rp)} = W_{(\kappa)} + 3CO_{(r)}$
26	$WO_{3(\kappa)} + 3Ca_{(\kappa)} = W_{(\kappa)} + 3CaO_{(\kappa)}$

- 30. Одним из способов решения проблемы «парникового» эффекта является снижение выбросов углекислого газа. Если заменить тепловую станцию, работающую на метане с КПД 40%, на электрохимическую электростанцию с КПД 60%, то насколько снизится выброс углекислого газа на 1 МДж вырабатываемой энергии?
- 31. На сколько литров снизится выброс CO_2 (н. у.) за 140 км пути из транспортного средства мощностью 80 кВт, работающего на метане и двигающегося со скоростью 70 км/ч, при замене автомобиля с КПД 20% на электромобиль с топливными элементами с КПД 40%?
- 32. На сколько литров снизится выброс CO_2 (н. у.) за 140 км пути из транспортного средства мощностью 80 кВт, работающего на метаноле и двигающегося со скоростью 70 км/ч, при замене автомобиля с КПД 20% на электромобиль с топливными элементами с КПД 40%?
- 33. На сколько м 3 /сутки (н. у.) снизится выброс углекислого газа от электростанции мощностью 100 МВт, работающей на метане, при замене тепловой станции с КПД 40% на электрохимическую станцию с КПД 60%?
 - 34. Возможно ли самопроизвольное протекание реакции $4NO_{(\Gamma)} + CH_{4(\Gamma)} = 2N_{2(\Gamma)} + CO_{2(\Gamma)} + 2H_2O_{(\Gamma)}$

в нейтрализаторе автомобиля при 350 К? Как будет влиять повышение температуры на положение равновесия этой реакции?

- 35. Возможна ли самопроизвольная реакция в нейтрализаторе автомобиля между СО и H_2 О при 350 К с образованием нетоксичных веществ при стандартных состояниях всех веществ? Какие факторы будут влиять на увеличение выхода продуктов этой реакции?
- 36. Используя реакцию $4\text{Fe}(\text{OH})_{2(\kappa)} + \text{O}_{2(\Gamma)} + 2\text{H}_2\text{O}_{(ж)} = 4\text{Fe}(\text{OH})_{3(\kappa)}$, определите наиболее характерную степень окисления железа в гидроксидах при 298 К.
- 37. На основании термодинамических данных обсудите устойчивость оксидов и сульфидов цинка, кадмия и ртути.
- 38. Определите область температуры, в которой возможен самопроизвольный процесс $H_2S_{(r)}+Cl_{2(r)}=2HCl_{(r)}+S_{(\kappa)}.$
- 39. Устойчив ли алюминий в атмосфере углекислого газа при 600°C, если возможными продуктами реакции являются оксид алюминия и оксид углерода (II)?
- 40. В какую сторону будет протекать процесс $2NO_{2(r)} = 2NO_{(r)} + O_{2(r)}$ при 500 K?
- 41. Какой из двух процессов разложения нитрата аммония более вероятен и как зависит от условий:

$$\begin{split} NH_4NO_{3(\kappa)} &= N_2O_{(r)} + 2H_2O_{(r)} \\ NH_4NO_{3(\kappa)} &= N_{2(r)} + {}^1\!/{}_2O_{2(r)} + 2H_2O_{(r)}? \end{split}$$

- 41. Составьте такие вопросы или задания, чтобы можно было показать жизненный контекст изученного материала.
- 42. Составьте такие вопросы или задания, чтобы можно было передать идеи изученного материала.
 - 43. Составьте один вопрос лёгкий, а другой трудный.
- 44. Составьте такие вопросы или задания, чтобы на них трудно было ответить.

- 45. Составьте контрольную работу, в которой проверялось бы усвоение темы «Тепловой эффект химических реакций».
- 46. Студентам предложили контрольную работу в трёх вариантах, но задания внезапно исчезли. Остались только сведения о том, что: *1 вариант* проверял умение определять возможность протекания реакции при стандартных условиях; *2 вариант* содержал необычные задания на тему: «Термодинамические расчёты»; *3 вариант* включал трудные задания на тему: «Термодинамические расчёты». Составьте хотя бы один вариант задания и выполните его.

4. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Студентам следует знать:

- 1. Определение понятий и научных терминов: теплота, работа, термодинамическая функция состояния системы; тепловой эффект химической реакции, стандартные состояния, энтальпия, энтропия, энергия Гиббса, внутренняя энергия, энергия образования вещества и энергия Гиббса образования вещества, стандартная энтальпия образования вещества, стандартная энтропия, константа равновесия.
 - 2. Первый, второй законы термодинамики и постулат Планка.
 - 3. Условие самопроизвольного протекания химической реакции.
 - 4. Условие термодинамического равновесия.

Студент должен уметь:

- 1. Рассчитать тепловой эффект, энтропию, энергию Гиббса, константу равновесия химической реакции для стандартных условий.
- 2. Рассчитать количество теплоты, которая выделяется или поглощается в реакции, по известной массе (объёму) одного из реагентов.
- 3. Определить возможность или невозможность протекания химической реакции и температуру, при которой устанавливается равновесие.
- 4. Оценить выход продуктов реакции, исходя из термодинамических функций при изменении температуры.

- 5. Измерить изменение температуры в ходе химической реакции.
- 6. Рассчитать тепловой эффект, константу равновесия химической реакции для стандартных условий по экспериментальным данным.

Студент должен овладеть методикой определения теплового эффекта химической реакции.

5. СТАНДАРТНЫЕ ΔH^0_{298} , ЭНТРОПИИ S^0_{298} НЕКОТОРЫХ ВЕЩЕСТВ ПРИ 298 К (25°C)

Таблица 2

Вещество	ΔH^0_{298} , кДж / моль	S^0_{298} , Дж / моль \cdot К
1	2	3
$\mathrm{Al}_{(\kappa)}$	0	28,31
$Al_2O_{3(\kappa)}$	-1675,0	50,94
B_2H_6	-31,40	232,9
С _(графит)	0	5,74
$\mathrm{CO}_{(\Gamma)}$	-110,5	197,4
$\mathrm{CO}_{2(\Gamma)}$	-393,51	213,6
$\mathrm{CS}_{2(\Gamma)}$	115,3	237,8
$C_2H_{2(r)}$	226,75	200,8
$C_2H_{4(r)}$	52,28	219,4
$\mathrm{CH}_{4(\Gamma)}$	-74,85	186,19
$C_2H_{6(r)}$	-84,67	229,49
$C_3H_{8(r)}$	-103,85	269,91
C ₄ H _{10(r)}	-126,15	310,12
$C_6H_{6(x)}$	+49,03	173,26
С ₆ Н _{14(ж)}	-198,82	296,02
С ₇ Н _{16(ж)}	-224,54	328,79
С ₈ Н _{18(ж)}	-249,95	360,79
C ₂ H ₅ OH _(ж)	-227,6	160,7
CH ₃ OH _(ж)	-238,7	126,7

Продолжение табл. 2

1	2	3
Ca _(κ)	0	41,62
$CaO_{(\kappa)}$	-635,1	39,7
CaC _{2(K)}	-62,7	70,3
Ca(OH) _{2(K)}	-986,2	83,4
CaSiO _{3(K)}	-1579,0	87,45
Са ₃ (PO ₄) _{2(к)}	-4125,0	240,9
CaCO _{3(ĸ)}	-1206,0	92,9
$\text{Cl}_{2(r)}$	0	223,0
$HCl_{(r)}$	-92,3	186,7
$\operatorname{Cr}_{(\kappa)}$	0	23,76
$Cr_2O_{3(\kappa)}$	1141,0	81,1
$Cu_{(\kappa)}$	0	33,3
$CuO_{(\kappa)}$	-165,3	42,64
$CuCl_{2(\kappa)}$	-205,9	113,0
Fe _(K)	0	27,15
$\mathrm{FeO}_{(\kappa)}$	-266,68	58,79
Fe ₂ O _{3(κ)}	-821,32	89,96
Fe ₃ O _{4(κ)}	-1120	145,5
Fe(OH) _{2(K)}	-569,02	79,90
Fe(OH) _{3(K)}	-824,25	96,23
$H_{2(\Gamma)}$	0	130,6
$H_2O_{(r)}$	-241,84	188,74
Н ₂ О _(ж)	-285,84	69,96
$H_2O_{2(m)}$	-187,36	105,86
$\mathrm{HI}_{(\Gamma)}$	25,94	206,33
$Mg_{(\kappa)}$	0	32,55
$\mathrm{MgO}_{(\kappa)}$	-601,24	26,94
$MgCO_{3(\kappa)}$	-1096,21	65,69

Окончание табл. 2

1	2	3
N _{2(K)}	0	191,5
$N_2O_{(r)}$	81,55	220,0
$NO_{(r)}$	90,37	210,62
$NO_{2(r)}$	33,89	240,45
NH _{3(r)}	-46,19	192,5
$N_2H_{4(\Gamma)}$	50,4	121,3
$NH_4Cl_{(r)}$	-315,39	94,56
$NH_4NO_{3(\Gamma)}$	-365,4	151
$\mathrm{Ni}_{(\kappa)}$	0	29,9
NiO _(κ)	-239,7	38,0
$\mathrm{O}_{2(\mathrm{r})}$	0	205,03
Р _(красный)	-18,41	22,8
$Pb_{(\kappa)}$	0	64,9
$PbO_{(\kappa)}$	-217,86	67,4
$\mathrm{PbO}_{2(\kappa)}$	-276,6	76,44
$S_{(\kappa)}$	0	31,88
$\mathrm{SO}_{2(r)}$	-296,9	248,1
$H_2S_{(r)}$	-20,15	205,64
$\mathrm{SiO}_{2(\kappa)}$	-859,3	42,09
$W_{(\kappa)}$	0	32,6
$WO_{3(\kappa)}$	-843,0	76,1
$Zn_{(\kappa)}$	0	41,59
$ZnO_{(\kappa)}$	-349,0	43,5
$Ti_{(\kappa)}$	0	30,6
$TiCl_{4(\Gamma)}$	-758,9	353,1
		•

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Коровин, Н.В. Общая химия / Н.В. Коровин. М.: Высшая школа, 1999. 559 с.
- 2. Глинка, Н.Л. Задачи и упражнения по общей химии / Н.Л. Глинка. М.: Интеграл-Пресс, 2001. 240 с.
- 3. Глинка, Н.Л. Общая химия / Н.Л. Глинка. М.: Интеграл-Пресс, $2000.-720\ c.$
- 4. Жилин, Д.М. Общая химия. Практикум L-микро / Д.М. Жилин. М.: МГИУ, 2006. 322 с.
- 5. Коровин, Н.В. Задачи и упражнения по общей химии / Н.В. Коровин. М.: Высшая школа, 2003. 254 с.
- 6. Фомичев, А.М. Энергетика химических процессов: задания для самостоятельной работы / А.М. Фомичев, Г.А. Алемаскина, В.А. Векслина; Самар. гос. аэрокосм. ун-т. Самара, 1999. 20 c.
- 7. Практикум по общей химии: методические указания к лабораторным работам / сост. [Н.А. Расщепкина и др.]. Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2007. 96 с.

Учебное излание

ЭНЕРГЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ

Практикум по общей химии

Составитель Расщенкина Наталья Афанасьевна

Редактор Т.С. Π е т р е н к о Доверстка Т.С. Π е т р е н к о

Подписано в печать 13.04.2011. Формат $60\times84~1/16$. Бумага офсетная. Печать офсетная. Печ. л. 2,0.

Тираж экз. Заказ . Арт. /2011.

Самарский государственный аэрокосмический университет им. академика С.П. Королёва. 443086, Самара, Московское шоссе, 34.

Изд-во Самарского государственного аэрокосмического университета им. академика С.П. Королёва. 443086, Самара, Московское шоссе, 34.