МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА

ДИАГНОСТИРОВАНИЕ ДВИГАТЕЛЯ АШ-62ИР

Методические указания к лабораторной работе

CAMAPA 2003

Составители: И.М. Макаровский, Н.Н. Игонин, Г.А. Новиков, Д.В. Каршин

УДК 621.431.75.004(075)

Диагностирование двигателя АШ-62ИР: Метод. указания к лаб. работе / Самар. гос. аэрокосм. ун-т; Сост. И.М. Макаровский, Н.Н. Игонин, Г.А. Новиков, Д.В. Каршин. Самара, 2003. 24 с.

Изложена методика диагностирования двигателя АШ-62ИР на самолете Ан-2 по параметрам наддува.

Работа рассчитана на шесть учебных часов и предназначена аля студентов 5-го курса специальности 130300. Подготовлена на кафедре ЭЛАИД.

Печатаются по решению редакционно - издательского совета Самарского государственного аэрокосмического университета имени академика С.П. Королева

Рецензент А. Н. Тихонов

СОДЕРЖАНИЕ

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ	4
ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ	4
І. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ	4
1.1.Общая характеристика двигателя	4
1.2. Методика диагностирования двигателя	
2. ПРАКТИЧЕСКАЯ ЧАСТЬ	15
2.1. Инструкция по работе с программой "STATGRAF"	16
2.2. Содержание отчета	2 1
2.3. Контрольные вопросы	21
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ

Ознакомление студентов с методикой диагностирования двигателя по давлению наддува (P_{κ}) в процессе запуска и опробования; закрепление знаний, полученных при прослушивании теоретических курсов по нормированию значений контролируемых параметров и формированию управляющих воздействий на процесс ТЭ по результатам диагностирования.

порядок выполнения работы

1. Изучить инструкцию по запуску и опробованию двигателя [2].

2. Ознакомиться с особенностями конструкции и методикой диагностирования двигателя.

3. Ответить на контрольные вопросы.

4. Провести запуск и опробование двигателя с оформлением "Протокола испытаний".

5. Провести диагностирование двигателя.

6. Оформить отчет по работе.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1. Обшая характеристика двигателя

Авиационный двигатель АШ-62ИР [1] имеет невыключаемый центробежный приводной нагнетатель, обеспечивающий повышение давления в 1,5...2 раза рабочей смеси, поступаюшей в цилиндры двигателя. За счет наддува цилиндров повышается его высотность, взлетная мощность и приемистость. Режим работы двигателя задается при этом частотой вращения коленчатого вала (путем изменения шага воздушного винта) и давлением наддува (путем прикрытия дроссельной заслонки карбюратора). Развиваемая на заданном режиме эффективная мощность зависит также от технического состояния двигателя и может контролироваться в полете только по косвенным признакам (скорости полета, скороподъемности самолета и т.д.). В процессе эксплуатации под воздействием комплекса неблагоприятных факторов (запыленности атмосферы, содержания химически активных соединений в топливе, масле и т.д.) в агрегатах и узлах двигателя происходят изменения структурных параметров (зазоров, шероховатости поверхностей деталей и т.д.), приводящие к ухудшению его эксплуатационных характеристик (эффективной мощности, удельного расхода топлива, масла и т.д.).

В силу случайного сочетания неблагоприятных факторов и их воздействия на состояние двигателя процесс накопления повреждений в конструкциях носит случайный характер, обусловленный особенностями эксплуатации и ТО. При этом двигатели с одной и той же наработкой могут иметь различные эксплуатационные характеристики. Не исключаются и случаи потери работоспособности (параметрического отказа). При этом двигатель, в силу недопустимого отклонения характеристик от расчетных, не способен выполнять заданные функции, что может привести к возникновению аварийных ситуаций в полете.

Важнейшим показателем работоспособности двигателя служит эффективная мощность *Ne*, значение которой на заданном режиме работы должно отвечать требованиям нормативно-технической документации. В силу этого определение технического состояния систем и, в частности, цилиндрово - поршневой группы (ЦПГ), оказывающей наиболее сильное влияние на *Ne*, является основной задачей диагностирования, решаемой в процессе запуска и опробования двигателя.

1.2. Методика диагностирования двигателя

Диагностирование двигателя в процессе запуска и опробования проводится с целью проверки работоспособности функциональных систем (зажигания, топливной, масляной и т.п.) и ЦПГ, а также поиска и устранения выявленных неисправностей (дефектов).

Проверку работоспособности систем проводят путем сопоставления текущих значений контролируемых параметров с их нормативными значениями (допусками на отклонение). Алгоритм проверки работоспособности представлен на рис. 1.

Если значения всех контролируемых параметров находятся в пределах установленных допусков, то двигатель признается работоспособным (годным к эксплуатации). Если же за границу допуска выходит хотя бы один параметр, двигатель считается неработоспособным (не годным к эксплуатации) и решается задача пойска и устранения неисправности (дефекта) неисправной системы. Сложность проверки работоспособности состоит в том, что контролируемые в процессе запуска и опробования параметры не позволяют однозначно определить техническое состояние двигателя. Приходится прибегать для этого к использованию косвенных признаков и, в частности, давления наддува P_K на номинальном режиме.

Выбор номинального режима для проверки работоспособности объясняется тем, что частота вращения коленчатого вала двигателя на этом режиме (2100 об/мин) ниже частоты настройки РПО (2200 об/мин) и лопасти воздущного винта остаются на установочном угле (17°), вне зависимости от значения Ne. Таким образом, на номинальном режиме каждому значению Ne соответствует определенное значение P_K , необходимое для установления заданных оборотов. При этом, чем выше значение P_K , тем хуже техническое состояние двигателя.

На значение P_K оказывают влияние все функциональные системы двигателя (зажигания, топливная, ЦПГ и другие), поэтому проверке работоспособности ЦПГ должна предшествовать проверка работоспособности и устрансние неисправностей (дефектов) других систем. Для проверки работоспособности двигателя проводят нормирование значения P_{K_i} т.е. определяют предельное $P_{K''}$,

допускаемое $P_{K'}$ и индивидуальное прогнозное $\hat{P}_{Ki}^{\mu\mu\mu}$ значения (рис. 2).

Значение P_{K} соответствует такому состоянию двигателя, при котором его дальнейшая эксплуатация невозможна из-за недопустимого снижения *Ne* и вероятности параметрического отказа, превышающей заданную P_{3AD} .

Значение P_{K} соответствует такому ужесточенному значению P_{K} , при котором обеспечивается сохранение работоспособности двигателя на предстоящий межконтрольный период τ .

Значение $\hat{P}_{Ki}^{\text{ияд}}$ определяет допустимое отклонение P_K проверяемого двигателя на момент текушей проверки t_i .

В силу влияния на результаты измерения P_K атмосферных условий и, в частности, атмосферного давления P_H проводят приведение измеренного значения параметра $P_{Ki}^{\text{изм}}$ к стандартному давлению (760 мм рт. ст.) по формуле

Рис. 1. Общий алгоритм ТД двигателя

Рис. 2. Структура и содержание работ по нормированию РК

$$P_{Ki}^{\text{инд}} = P_{Ki}^{\text{изм}} \cdot \frac{760}{P_{\mu}}.$$
 (1)

Приведения к стандартной температуре (288 К) при этом не требуется, так как температура воздуха практически не влияет на баланс располагаемой Ne и потребляемой N_{BB} мощностей, а следовательно и на значение $P_{K}^{изм}$.

Значение P_{K} определяют на основе данных о значениях P_{K} у отработавших ресурс двигателей. Для этого с использованием программы "Statgraf" определяют вид и параметры закона распределения значений P_{K} . Как правило, они распределяются по нормальному закону с параметрами \overline{P}_{K} и $\sigma_{P_{K}}$. Так как среди двигателей неизбежно присутствуют и неисправные, то значения P_{K} , находящиеся в пределах разброса $A_{P_{3an}}$ (рис, 3), соответствуют работоспособному, а выходящие за него - неработоспособному состоянию. В силу одностороннего допуска на P_{K} значение P_{K} ' рассчитывают по формуле

$$\overline{P}_{K}^{n} = \overline{P}_{K} + \sigma_{P_{K}} U_{P_{3AJI}} , \qquad (2)$$

где $U_{P_{3AJ}}$ - квантиль нормального распределения, соответствующий

$$P_{3a,\Pi}=0.95; (U_{P_{3a,\Pi}}=2).$$

Значение P_{K}' определяют на основе среднестатистической прогнозной модели изменения P_{K} с наработкой у всех наблюдаемых двигателей. Из имеющихся данных о значениях P_{K} отбирают те, которые соответствуют наработкам, близким к началу (t_{1}) и концу (t_{2}) эксплуатации двигателей (рис. 4). С использованием программы "Statgraf" определяют вид и параметры законов распределения значений P_{K} при наработках t_{1} и t_{2} . Как правило, значения $P_{K}(t_{1})$,

 $\sigma_{P_{\mathcal{K}}}(t_1), \ \overline{P}_{\mathcal{K}}(t_2), \ \sigma_{P_{\mathcal{K}}}(t_2).$

По полученным данным составляют моментные функции $P_K(t)$ и $\sigma_{P_K}(t)$, которые представляют собой среднестатистическую прогнозную модель двигателя по параметру P_K :

Рис. 4. Схема определения параметров моментных функций

$$\begin{cases} \overline{P}_{K_i} = \overline{P}_{K_0} + K_{P_K} \cdot t_i \\ \sigma_{P_{K_i}} = \sigma_{P_{K_0}} + K_{\sigma_{P_K}} \cdot t_i \end{cases}, \qquad (3)$$

где \overline{P}_{K_0} и $\sigma_{P_{K_0}}$ - начальные (расчетные) значения \overline{P}_K и σ_{P_K} ; K_{P_K} и $K_{\sigma p_K}$ - показатели роста значений P_K и σ_{P_K} с наработкой. Параметры моментных функций рассчитывают по формулам

$$K_{P_{K}} = \frac{\overline{P}_{K}(t_{2}) - \overline{P}_{K}(t_{1})}{t_{2} - t_{1}}; \quad K_{\sigma_{P_{K}}} = \frac{\sigma_{P_{K}}(t_{2}) - \sigma_{P_{K}}(t_{1})}{t_{2} - t_{1}};$$

$$\overline{P}_{K_{0}} = \frac{\overline{P}_{K}(t_{2}) \cdot t_{1} - \overline{P}_{K}(t_{1}) \cdot t_{2}}{t_{1} - t_{2}}; \quad \sigma_{P_{K_{0}}} = \frac{\sigma_{P_{K}}(t_{2}) \cdot t_{1} - \sigma_{P_{K}}(t_{1})t_{2}}{t_{1} - t_{2}}.$$
 (4)

На основе (3) и с учетом значений $P_{K'}$ и P_{3ad} =0,997 ($U_{P_{3ad}}$ =3) рассчитывают наработку до первой обязательной проверки по формуле (рис. 5)

$$T_{1} = \frac{P_{K}^{"} - \overline{P}_{K_{0}} - U_{P_{3aa}} \cdot \sigma_{P_{K_{0}}}}{K_{P_{K}} + U_{P_{3aa}} \cdot K_{\sigma_{P_{K}}}}$$
 (5)

На основе (3) с учетом $P_{K'}$ и $\tau = 100$ ч рассчитывают значение $P_{K'}$ по формуле

$$P'_{K} = \frac{P'_{K}(\sigma_{P_{K_{0}}} + K_{\sigma_{P_{K}}} \cdot T_{1}) - \tau(K_{\sigma_{P_{K}}} \cdot \sigma_{P_{K_{0}}} - P_{K_{0}} \cdot K_{\sigma_{P_{K}}})}{\sigma_{P_{K_{0}}} + K_{\sigma_{P_{K}}} \cdot T_{1} + K_{\sigma_{P_{K}}} \cdot \tau}$$
(6)

Значение $\hat{P}_{K}^{\text{инд}}$ определяют с учетом степени перемешивания реализаций P_{K} у наблюдаемых двигателей. Для этого вычисляют коэффициент корреляции $R(t_{1}; t_{2})$ по следующей формуле:

$$R(t_1;t_2) = \frac{\sum_{i=1}^{N} \left[(P_{K_1} - \overline{P}_{K_1}) \cdot (P_{K_2} - \overline{P}_{K_1}) \right]_i}{\sigma_1 \cdot \sigma_2 \cdot N} ,$$

где N-число наблюдаемых двигателей;

Рис. 6. Схема проверки работоспособности двигателя

12

 P_{K_1} ; P_{K_2} ; \overline{P}_{K_1} ; \overline{P}_{K_2} ; σ_1 ; σ_2 - текушие, средние и СКО при наработках t_1 и t_2 .

При условии $1 > R(t_1; t_2) \ge 0,7$ диагностирование по индивидуальной, а при $0,7 > R(t_1; t_2) > 0,3$ - по среднестатистической модели (3).

Индивидуальную прогнозную модель составляют на основе данных о значениях $P_K^{\text{инд}}$, полученных в ходе проверок двигателя с использованием программы "Statgraf",

$$\overline{P}_{K}^{\text{инд}}(t) = \overline{P}_{K_{0}}^{\text{инд}} + K_{P_{K}^{\text{инд}}} \cdot t , \qquad (7)$$

где $\overline{P}_{K_0}^{\text{инд}}$ - начальное (расчетное) значение $P_K^{\text{инд}}$;

 $K_{P_{K}^{\text{инд}}}$ - показатель роста $\overline{P}_{K}^{\text{инд}}$ с наработкой.

Разброс значений $P_K^{\mu H A}$ с наработкой не изменяется, так как он зависит в основном от погрешностей измерения P_K , т.е. $\sigma_{P_K^{\mu H A}} = \text{const}$.

С учетом (7) $P_{3a,a} = 0,95$ ($U_{P_{3a,a}} = 2$) и $\sigma_{P_K^{\text{инд}}}$ рассчитывают значение $\hat{P}_{Ki}^{\text{инд}}$ при наработке t_i по формуле

$$\hat{P}_{Ki}^{\mu\mu\mu} = \overline{P}_{Ki}^{\mu\mu\mu} + U_{P_{3a,\pi}} \cdot \sigma_{P_{K}^{\mu\mu\mu\mu}} .$$
(8)

Проверку работоспособности двигателя проводят путем сопоставления значения P_{Ki}^{uhd} с нормативными значениями \hat{P}_{Ki}^{uhd} , $P_{K'}$, $P_{K''}$ (рис. 6). Алгоритм проверки и формирования управляющих воздействий на процесс ТЭ двигателя представлен на рис. 7.

По результатам диагностирования двигателя (см. рис.1) составляют технический диагноз, содержащий заключение о его работоспособности (годности к эксплуатации) с указанием (при необходимости) неисправной системы, причин возникновения неисправностей (дефектов), а также управляющих воздействий на процесс ТЭ.

Рис. 7. Алгоритм ТД двигателя по давлению налдува

14

2. ПРАКТИЧЕСКАЯ ЧАСТЬ

При проведении диагностирования двигателя необходимо придерживаться следующей последовательности выполнения работ:

1. Произвести запуск и опробование двигателя согласно[2] и оформить протокол испытания (табл. 2).

2. Привести значения $P_K^{\mu_{3M}}$, замеренное при опробовании двигателя, к стандартным условиям по формуле (1).

3. По значениям P_K при наработке 1000 ч (P_K 1000, табл.1) рассчитать, используя подпрограмму "Distribution Fitting", значения \overline{P}_K

и б \overline{P}_{K} .

4. Рассчитать по формуле (2) предельное значение РК".

5. По значениям P_K при наработках $t_1=200$ ч и $t_2=800$ ч ($P_K 200$, $P_K 800$, табл.1), используя подпрограмму "Distribution Fitting", рассчитать значения $\overline{P}_K(t_1)$, $\sigma_{\overline{P}_K}(t_1)$ и $\overline{P}_K(t_2)$, $\sigma_{\overline{P}_K}(t_2)$.

6. По полученным значениям $\overline{P}_{K}(t_{i})$, $\sigma_{\overline{P}_{K}}(t_{i})$, используя подпрограмму "Simple Regression", рассчитать значения $\overline{P}_{K_{0}}$, $K_{\overline{P}_{K}}$, $\sigma_{\overline{P}_{K_{0}}}$, $K_{\sigma_{\overline{P}_{K}}}$ и получить уравнения моментных функций $P_{K}(t) =$ $= \overline{P}_{K_{0}} + K_{P_{K}} \cdot t$; $\sigma_{P_{K}} = \sigma_{P_{K_{0}}} + K_{\sigma_{F_{K}}} \cdot t$, являющиеся среднестатистической прогнозной моделью.

7. Рассчитать по формуле (5) наработку *T*₁ до первой обязательной проверки.

8. Оценить возможность использования индивидуальной прогнозной модели. Для этого по значениям P_K при наработках $t_1=200$ и $t_2=500$ ч (P_K200 , P_K500 , табл. 1), используя подпрограмму "Correlation Analysis", рассчитать коэффициент корреляции $R(t_1; t_2)$. Если $1 > R(t_1; t_2) \ge 0.7$, то индивидуальное прогнозирование возможно.

9. Получить у преподавателя № двигателя, диагностирование которого нужно провести.

10.По значениям P_K для заданного двигателя (см. табл.1), используя подпрограмму "Simple Regression", рассчитать значения $P_{K_0}^{\text{инд}}$, K_{P_K} , σ_{P_K} и получить уравнение индивидуальной прогнозной модели $P_K^{\text{инд}}(t) = P_{K_0}^{\text{инд}} + K_{P_K} \cdot t$.

11. Рассчитать по формуле (8) прогнозное значение $\hat{P}_{K_i}^{\text{инд}}$ при наработке t_i .

12. Произвести проверку работоспособности двигателя путем сопоставления приведенного к САУ замеренного при опробовании двигателя значения $P_{K_i}^{3aM}$ со значениями \hat{P}_{K}^{MHd} , P_{K}' и P_{K}'' (см. рис. 6). Если $P_{K_i}^{HHd} \leq \hat{P}_{K}^{HHd}$, то двигатель работоспособен.

Если нет, то сравнивают $\hat{P}_{K}^{\text{инд}}$ с $P_{K'}$. Если $\hat{P}_{K_{i}}^{\text{инд}} \leq P_{K'}$, то двигатель ставится под особый контроль с сокращенной периодичностью проверок.

Если нет, то сравнивают $\hat{P}_{K}^{\mu\mu\alpha}$ и $P_{K}^{\mu'}$. Если $\hat{P}_{K}^{\mu\mu\alpha} \leq P_{K}^{\mu'}$, то устанавливают и устраняют причину неисправности.

Если $\hat{P}_{K}^{\mu\mu\eta} > P_{K}''$, то двигатель снимается с эксплуатации (рис. 7).

13.Составить технический диагноз о работоспособности двигателя с указанием управляющих воздействий на процесс ТЭ.

2.1. Инструкция по работе с программой "STATGRAF"

1. Выбрать диск "F".

2. В появившемся каталоге установить курсор на "STATGRAF" и нажать клавишу "Enter".

3. В появившемся каталоге курсором выбрать файл "s`grafexe.exe" и нажать клавишу "Enter". Появится меню "STATGRAF".

4 В разделе PLOTTING AND DESCRIPTIVE STATISTICS выбрать подпрограмму Distribution Functions, нажать "Enter".

5. В появившемся на экране меню выбрать Distribution Fitting, нажать "Enter", на экране появится Data Vector

6. Нажать клавишу "F7" (ввод данных), выбрать массив ASH62 PK1000, нажать клавиши "Enter" и "F6", на экране появится результат статобработки:

Mean: ...математическое ожидание;

Standard deviation: среднеквадратическое отклонение (СКО) σ_{P_K} .

7. Нажать клавиши "Esc" и "F7", выбрать массив ASH62 PK200, нажать клавиши "Enter" и "F6", на экране появится результат статобработки:

Mean: ...математическое ожидание \overline{P}_{K_1} при наработке t_1 =200 ч; Standard deviation: среднеквадратическое отклонение (СКО)

 $\sigma_{\overline{P}_{\kappa_1}}$ при наработке $t_1=200$ ч.

8. Нажать клавиши "Esc" и "F7", выбрать массив ASH62 PK800, нажать клавиши "Enter" и "F6", на экране появится результат статобработки:

Mean: ..математическое ожидание \overline{P}_{K_2} при наработке t_1 =800 ч. Standard deviation: среднеквадратическое отклонение (СКО)

 $\sigma_{\overline{P}_{K_2}}$ при наработке $t_1 = 800$ ч;

Для расчета параметров среднестатистической прогнозной модели необходимо:

1. Трижды нажать клавищу "Esc", на экране появится меню "STATGRAF".

2. В разделе ANOUA AND REGRESSION ANALYSIS выбрать подпрограмму REGRESSION ANALYSIS, нажать клавишу "Enter". В появившемся на экране меню выбрать подпрограмму SIMPLE REGRESSION и нажать клавишу "Enter".

3. В строке Dependent variable ввести значения \overline{P}_{K_1} , \overline{P}_{K_2} .

Нажать клавишу 4, в строке Independent variable ввести значения аргумента t 200, 800 и нажать клавиши "Enter" и "F6".

На экране появится уравнение прямой у=а+вх,

а - Intercept: значение (Estimate) \overline{P}_{K_0} ,

в - Slope: значение $K_{P_{\mu}}$.

4. Нажать дважды клавишу "Esc".

5. Вместо значений \overline{P}_{K_1} , \overline{P}_{K_2} в строке Dependent variable ввести

значения $\sigma_{\overline{P}_{K_1}}$, $\sigma_{\overline{P}_{K_2}}$, оставив значения аргумента, нажать клавиши "Enter" и "F6".

На экране появится уравнение прямой у=а+вх,

а - Intercept: значение $\sigma_{\overline{P}_{K_0}}$,

в - Slope: значение $K_{\sigma_{\vec{P}_K}}$.

Для расчета коэффициента корреляции $R(t_1; t_2)$ необходимо: 1. Четыре раза нажать клавишу "Esc".

2. В разделе меню ADVANCED PROCEDURES выбрать подпрограмму Multivariable Methods и нажать клавишу "Enter".

3. Выбрать в появившемся меню подпрограмму Correlation Analysis и нажать клавишу "Enter",

На экране появится Data vectors of filename:

4. Нажать клавиши "F7", подвести курсор на AHS62PK200, нажать клавиши "Enter", ↓ и "F7". Подвести курсор на AHS62PK500, нажать "Enter" и "F6", на экране появится

	PK200	PK500	
PK200	1.0000	.9777 ↔ 3	начение коэффициента
	(27)	(27)	корреляции $R(t_1; t_2)$
	.0000	.0000	
PK500	.9777	1.0000	
	(27)	(27)	
	0000	0000	

Для расчета параметров индивидуальной прогнозной модели необходимо:

1. Выйти на меню "STATGRAF", четырежды нажав клавишу "Esc".

2. Выбрать в разделе ANOVA AND REGRESSION ANALYSIS подпрограмму Regression Analysis и нажать клавишу "Enter".

3. Выбрать в появившемся на экране меню подпрограмму Simple Regression и нажать "Enter" и "F7".

4. Выбрать массив ASH621RPK13 или любой другой по заданию преподавателя, нажать клавищи "Enter" и "↓".

5. Ввести в строку Indepedent variable значения наработки t_i из табл. 1, соответствующие выбранному массиву данных P_K , нажать клавиши "Enter" и "F6", на экране появится уравнение прямой y=a+bx,

а - Intercept: значение (Estimate) $\overline{P}_{K_0}^{\text{инд}}$,

в - Slope: значение $K \frac{инд}{P_K}$

Stnd. Error of Est - значение $\sigma_{\overline{P}_{K}}^{\text{инд}}$.

Для выхода 5 раз нажать клавишу "Esc" и "у".

Таблица 1

Данные замеров значений давления наддува двигателей АШ-62ИР приписного парка самолетов Ан-2

Нар	аботка, ч	0	100	200	300	400	500	600	700	800	900	1000
Обо	значение	P _K 0	P _K 100	P _K 200	P _K 300	P _K 400	P _K 500	P _K 600	P _K 700	P _K 800	P _K 900	Px1000
№д	вигателя	Давление наддува, мм. рт. ст.										
1			798	825	821	831	838	837	859	867	957	891
2			819	827	824	839	848	864	862	869	879	892
3			819	829	829	845	849	864	868	872	890	896
4		1	822	830	834	846	853	865	869	873	892	897
5		}	822	834	835	846	855	867	876	875	896	898
6	000	{	822	834	840	853	856	868	879	883	896	901
7			823	835	840	854	857	869	880	883	899	901
8			823	836	841	856	862	869	882	890	899	903
9			825	836	841	856	863	871	885	891	900	909
10			827	839	841	-857	863	875	886	896	905	912
11	1		828	839	843	858	863	877	886	898	905	913
12			828	840	844	858	864	879	888	898	906	913
13	PK13	818	830	843	845	860	864	881	889	900	908	
14	PK14	818	830	843	845	864	869	881	891	901	908	
15	PK15	819	832	843	845	865	870	881	892	902	910	1
16	PK16	822	832	843	847	867	872	882	892	903		
17	PK17	823	832	844	848	867	875	885	893	904		
18	PK18	826	833	844	850	868	877	887	895	906		
19	PK19	826	835	846	852	870	879	888	897			
20	PK20	826	838	848	855	870	884	889	899			
21	PK21	838	843	849	855	871	885	891	902			
22	PK22	832	845	851	857	873	887	894				
23	PK23	833	845	852	858	874	887	896				
24	PK24	835	847	852	859	878	887	901				
25	PK25	836	847	855	862	880	889					
26	РК26	838	849	856	873	882	889					
27	PK27	841	857	862	876	893	895					

Таблица 2

Протокол испытания двигателя АШ-62ИР

Наименование проверки	Режим работы двигателя, п, мин ⁻¹	Нормативное значенис параметра	Замерен- ное зна- чение параметра	Результат проверки
Проверка ра- боты на номи- нальном ре- жиме	2100	P_{K} - рассчитывается $P_{M} = 5 + 6$ кгс/см ² , $P_{6} = 0.25 \div 0.35$ кгс/см ² , $t_{M} = 50 \div 80$ °C, $t_{\Gamma,U} = 150 \div 215$ °C	$P_{K}, t_{M}, P_{M}, P_{6}, t_{\Gamma, U}$	Работо- способна (неработо- способна)
Проверка ра- боты системы зажигания	2000	Падение частоты вра- щения Δл ≤ 75 мин ⁻¹ при переключении на одно магнето на 1015 с	Δn	-//-
Проверка ме- ханизма уп- равления вин- том	1900	Частота вращения на большом шаге винта $n = 14501500$ мин ⁻¹	n	-//
Проверка совместной работы винта и РПО на рав- новесной час- тоте вращения	1900	л _р ≠ const при изме- ненин Р _К на величину ±5075 мм рт.ст.	np	
Проверка работы вы- сотного авто- корректора	1850	Начало падения час- тоты вращения при положении рычага высотного корректора 1520 мм до перед- него упора	Положе- нис рычага	-
Проверка работы сис- темы подог- рева карбю- ратора	1850	Повышение температуры смеси t _{см} и понижение частоты вращения на 150200 мин ⁻¹	t _{cm} , Δn	
Проверка работы двига- теля на взлет- ном режиме	2150 2200	Давление наддува <i>Р_K</i> =1050 мм рт.ст. <i>t_{Г.Ц}</i> =150215 °C	Р _К , t _{Г.Ц}	
Проверка работы дви- гателя на ма- лом газе	Рычаг газа на себя до упора	п _{м.г} =500÷600 мин ⁻¹ Р _м ≥2кгс/см ² , Р _в ≥0,2 кгс/см ²	п _{м.г} , Р _м , Р _б	

Наименование проверки	Режим работы двигателя, п мин ⁻¹	Нормативное значение параметра	Замерен- ное зна- чение параметра	Результат проверки			
Проверка приемистости двигателя	500 2100	Время перехода с 500 до 2100 мин ⁻¹ t _П =1,52 с	tπ				
Проверка двигателя на «тряску»	2 мин на 800 900 мин ⁻¹ , 2000 2100 мин ⁻¹	t _{г.ц} ≥150 °С, при переключении на одно магнето дви- гатель должен рабо- тать устойчиво и без тряски ∆л≤75 мин ⁻¹	t _{г.ц} , Дл				
Измерение давления наддува	2200мин ⁻¹ сниж. до 2100мин ⁻¹	$T_{M^{*}}65 \div 75 \ ^{\circ}C,$ t _{г.II} =180190 $^{\circ}C, P_{K} -$ рассчитывается	РК, t _м , t _{г.ц}				
Технический диагноз:							

2.2. Содержание отчета

1. Результаты запуска и опробования двигателя в виде "Протокола испытаний".

2. Методика диагностирования двигателя по давлению наддува P_{K} .

3. Результаты расчетов по нормированию значений Рк.

4. Результаты проверки работоспособности двигателя (технический диагноз).

2.3. Контрольные вопросы

1. Для чего проводят диагностирование двигателя?

2. Почему *Р*_K используют в качестве контролируемого параметра при проверке работоспособности двигателя?

3. Почему при проверках используют номинальный режим работы двигателя?

4. Зачем проводят приведение к САУ и нормирование значения *P_K*?

5. Как определяют значение $P_{K'}$?

6. Как составляют среднестатистическую и индивидуальную прогнозные модели двигателя?

7. Как определяют значения $T_1, P_{K'}, \hat{P}_{K_1}^{\mu_{H,2}}$?

8. Как проводят проверку работоспособности двигателя и какие управляющие воздействия на процесс ТЭ формируются по ее результатам?

Список использованных источников

1. Авиационный двигатель АШ-62ИР: Учеб. пособие/ Самар. гос. аэрокосм. ун-т; Сост.Б.А. Углов. Самара, 1992.

2. Запуск и опробование двигателей АШ-62ИР: Метод. указания к лаб. работе/Самар. гос. аэрокосм. ун-т; Сост. Н.Н. Игонин, Г.А. Новиков. Самара, 1993.

Учебное издание

ДИАГНОСТИРОВАНИЕ ДВИГАТЕЛЯ АШ-62ИР

Методические указания к лабораторной работе

Составители: Макаровский Игорь Мстиславович, Игонин Николай Николаевич, Новиков Герман Арсеньевич, Каршин Дмитрий Валентинович

Редактор Л.Я.Чегодаева Корректор Л.Я.Чегодаева Компьютерная верстка О.А.Ананьев

Подписано в печать06.03.2003 г. Формат 60х84 1/16. Бумага офсетная. Печать офсетная. Усл.печ.л. 1,4. Усл.кр.- отт. 1,4. Уч. – изд.л. 1,5. Тираж 100 экз. Заказ **2.5**. Арт.С-32/2003.

Самарский государственный аэрокосмический университет имени академика С.П. Королева. 443086, Самара, Московское шоссе, 34.

РИО Самарского государственного аэрокосмического университета. 443001, Самара, ул. Молодогвардейская, 151.