Министерство высшего и среднего специального образования РСФСР

Куйбышевский ордена Трудового Красного Знамени авиационный институт имени академика С.П.Королева

АЭРОДИНАМИЧЕСКИЕ ПРОФИЛИ

Утверждено редакционным советом института в качестве методических указаний к курсовому и дипломному проектированию

Куйбышев 1983

V連 629.7.015.3: 533.69.01

В данных указаниях приводятся геометрические и аэродинамические характеристики двадцати реальных и гипотетических профилей, которые можно использовать только при курсовом и дипломном проектировании студентами дневной и вечерней форм обучения.

Составитель - В.Г.Шахов

Рецензенты: В.Л. Балакин, М.И. Вильчек

Выбор аэродинамического профиля крыла — важная и ответственная задача. От него зависят многие летные характеристики летательного аппарата — такие, как величина ввлетно-посадочной скорости; скороподъемность летательного аппарата; безопасность полета (сваливание, бафтинг) и т.д.

Вся история развития авиации связана с работами по созданию новых аэродинамических профилей крыла. Особенно интенсивно такие работы велись в 30-40-е гг. как у нас в стране, так и за рубежом, и закончились созданием известных серий профилей ЦАГИ, NACA, Clark и др. Аэродинамические характеристики этих профилей были всесторонне исследованы и сведены в атласы.

В послевоенное время в связи с развитием реактивной авиации были изучены аэродинамические характеристики таких профилей при больших скоростях полета, а также разработаны специальные профили для летательных аппаратов с большими скоростями полета. Но поскольку в отличие от первого этапа разработки аэродинамических профилей широко доступных атласов с аэродинамическими характеристиками профилей второго этапа практически нет, нами была предпринята попытка на основе опубликованных материалов оценить аэродинамические характеристики таких профилей при больших скоростях полета и реконструировать их геометрическую форму (в данных указаниях они имеют условное название КАГД с шифром из четырех цифр; первые две цифры указывают координату максимального прогиба средней линии профиля в процентах хорды, а вторые две – относительную толщину профиля в процентах хорды).

В настоящее время в связи с развитием численных методов решения аэродинамических задач и успехами в области аэродинамического эксперимента начались работы по созданию новых профилей. Среди них

можно отметить такой профиль, как GA(W) - I, предназначенный для замены старых профилей NACA серий 23 и 44. Лобовое сопротивленче профиля GA(W) - I на крейсерском режиме примерно такое же, как у заменяемых профилей, но для повышения безопасности полета при отказе двигателя его аэродинамическое качество на режиме набора высоты увеличено на 50%, максимальная подъемная сила крыла без закрылков увеличена на 30%, обеспечен более "плавный" срыв.

Наконец, были созданы так называемые суперкритические профили, которые характеризуются тем, что волновой кризис на них возникает при больших числах Маха полета, а величина максимального коэффициента волнового сопротивления при нулевой подъемной силе $C_{ecabornox}$ значительно меньше, чем у прежних профилей. Такие характеристики достигаются путем целенаправленного изменения геометрии профиля (рис.I). Сверхкритический профиль имеет более затупленный носок(I), "плоскую" верхнюю поверхность (2), затупленную заднюю кромку (3),

Рис. 1. Особенности формы и распределения коэффициента давления для суперкритических профилей утолщенную переднюю часть профиля (4) и участок с вогнутой поверхностью (5). Подобное изменение геометрии профиля приводит к перестройке хордовой диаграммы коэффициента давления

О . Появляется контролируемый пик разрежения (6), за которым располагается участок частично изэнтропического сжатия (7),что приводит к более слабому скачку уплотнения, сильно смещенному назад (8). Затупление задней кромки ослабляет обратный градиент давления (9). Утолщение передней части профиля приводит к появлению контролируемой об-

ласты максимума скорости на нижней поверхности (10). Участок с вогнутой поверхностью вызывает увеличение нагружения хвостовой части профиля (11).

Для первых периодов разработки аэродинамических профилей характерно использование преимущественно той или иной серии профилей, свойства которых были хорошо известны. В настоящее время очень часто профиль создается специально для конкретного летательного аппарата, хотя и путем модернизации существующих. В результате исчезает необходимость создавать атласы новых профилей.

Однако для учебных целей желательно как и прежде иметь некоторый запас аэродинамических профилей того или иного класса.

В настоящих методических указаниях приводятся оценочные сведения для некоторых гипотетических суперкритических профилей, полученные из различных опубликованных материалов. Такие профили имеют обозначение С с шестизначным шифром. Первые две цифры указывают число Маха полета, на которое рассчитан данный профиль (это число Маха умножено на IOO), вторые две цифры – величину коэффициента подъемной силы полета (для удобства эта величина умножена на IO), последние две цифры – относительную толщину профиля в процентах. Так, профиль С-820309 означает суперкритический профиль, рассчитанный на число Маха полета, равное 0,82, величина $C_{y\alpha}$ полета составляет 0,3, а относительная толщина профиля $\overline{C} = 9\%$.

Все сведения приводятся в Приложении в виде таблиц и графиков. Геометрические и аэродинамические характеристики профилей CA(W) - 7даны в табл. ПІ и П2 и на рис. ПІ и П2; профилей *NACA* серии 23 с относительной толщиной 9, I2 и I5% в табл. П3 и на рис. П3-П7; профилей *NACA* типов 222I, 24I2 и 44I2 в табл. П4 и на рис. П8-ПI3; симметричных профилей *NACA* с относительной толщиной 6, 9 и I2% в табл. П5 и на рис. ПI4-ПI7; профилей *CCazk УH* с относительной толщиной I2 и I5% в табл. П6 и на рис. П18-П23; гипотетических суперкритических профилей C в табл. П7 и на рис. П24-П30; гипотетических симметричных профилей КАГА с относительной толщиной 9 и I2% в табл. П8 и на рис. П3I-П34; гипотетических профилей КАГА серии 50 с относительной толщиной 9, I2 и I5% в табл. П9 и на рис. П35-П39.

Так как большая часть приводимых в пособии аэродинамических характеристик носит оценочный характер, то ИХ МОЖНО ПРИМЕНЯТЬ ТОЛЬКО В УЧЕБНЫХ ЦЕЛЯХ (при курсовом и дипломном проектировании).

Аэродинамические характеристики профилей серии С были оценены совместно с В.М.Турапиным. Автор находит возможным привести их в данных методических указаниях (рис. ПЗО).

Принятые обозначения

Сто - коэффициент продольного момента при нулевой подъемной скле; Схабо~ - коэффициент волновсто сопротивления профили

при нулевой подъемной силе; Суссо – коэффициент подъемной силы профиля; Сусток – максимальное значение коэффициента подъемной силы профиля; Сусток – максимальное значение коэффициента подъемной силы крыла; Сусток – коэффициент произволной подъемной силы профиля по углу атаки; \tilde{c} , \mathcal{H} – относительная толщина профиля в процентах или долях хорды; М – число Маха полета; M_{KP} – критическое число Маха профиля, \tilde{x} , \mathcal{H} – продольная координата в процентах хорды; \tilde{x}_F – относительная координата фокуса профиля в долях хорды; \tilde{y}_{K} , \mathcal{H} – координаты верхнего и нижнего обводов профиля в процентах хорды; R_e – число Рейнольдса полета, подсчитанное по скорости полета и хорде крыла; \mathcal{A} , *проб*угол атаки нулевой подъемной силы профиля; \mathcal{X} – относительное удлинение крыла.

Приложение

Таблица ПІ

1000	dunara ubc	What On			
To, %	<i>¥</i> 8, %	JH, %	Ī. %	J8, %	JH, 10
0,0	0,00	0,00	30,0	10,16	- 6,45
0,5	2,04	- I,38	40,0	IO,49	-> 6,49
I,25	3,07	- 2,05	50,0	10,26	- 6,IO
2,5	4,17	- 2,69	60,0,	9,37	- 5,08
5,0	5,59	- 3,58	70,0	7,63	- 3,40
7,5	6,55	- 4,2I	80,0	5,29	- 1,60
10,0	7,30	- 4,70	90,0	2,64	- 0,36
15,0	8,40	- 5,43	95,0	I,29	- 0,26
20,0	9,20	- 5,93	97,5	0,6I	- 0,40
25.0	9.77	- 6,27	0.001	0,07	- 0,80

CALMD-1

Координовы профиля

Рис. ПІ. Геометрия профиля GA(W)-1

Таблица П2

Азродинамические характеристики профиля GA(W)-1

M	do, rpad	Cyan	Cmo	ã,	
0,10,28	-4	5,73	-0,010	0,290	

Рис. П2.Зависимость максимального значения коэффициента подъемной силы С_{истако}профиля СЯ(м)-1 от числа Рейнольдса полета Re

Таблица ПЗ

Координаты профилей серии NACA-23

	NACA-	23009	NACA- 2	23012	NACA-2	3015
X, /0	ye, %	JK, 10	Je, %	JH, To	J8. %	Ju : %
0,0	0,00	0,00	0,00	0,00	U,00	0,00
I,25	2,04	-0,91	2,67	-1,23	3,34	-I,54
2,5	2,83	-1,19	3,6I	-I,7I	4,44	-2,25
5,0	3,93	-I,44	4,9I	-2,26	5,89	-3,04
7,5	4,70	-I,63	5,80	-2,6I	6,90	-3,6I
IO,0	5,25	-1,79	6,43	-2,92	7,64	-4,09
15,0	5,85	-2,17	7,19	-3,50	8,52	-4,84
20,0	6,05	-2,55	7,50	-3,97	8,92	-5,4I
25,0	6,II	-2,80	7,60	-4,28	9,08	-5,78
30,0	6,05	-2,96	7,55	-4,46	9,05	-5,96
40,0	5,69	-3,03	7,14	-4,48	8,59	-5,92
50.0	5,09	-2,86	6,4I	-4,I7	7,74	-5,50
60,0	4,32	-2,53	5,47	-3,67	6,6I	-4,8I
70,0	3,42	-2,08	4,36	-3,00	5,25	-3,9I
80,0	2,4I	-I,5I	3,08	-2,16	3,73	-2,83
90,0	I,3I	-0,86	I,68	-1,23	2,04	-I,59
95,0	0,72	-0,50	0,92	-0,70	1,12	-0,90
40,0	0,10	-0,IO	0,13	-0,13	0,16	-0,16

NACA-23009 NACA-23012 NACA-23015

Рис. ПЗ Геометрия профилей серии NACA-23

ö

Рис. Пб. Зависимость угла атеки нулевой подъем-ной силы «... профилей серии «АСА-23 от числа Maxa nonera M

,

1/2 3-1574

Рис. II7. Зависимость относительной координаты фокуса Эрги коэффициента продольного момента при нулевой подъемной силе Сто профилей серии NACA-23 от числа Маха полета М

Таблица П4

Координаты профилей NACA серий 2221,2412 и 4412

- 0/	NACA-2221		NACA-	2412	NACA-	4412
X, 10	JE, %	JH, %	98, %	JH, 70	JB, %	JH, 10
0,0	0.00	0,00	0,00	0,00	0,00	0,00
0,5	3,II	-I,40	-	_		
I,25	4.40	-2,50	2,15	-I,65	2,44	-I,43
2,5	5,75	-3,55	2,99	-2,27	3,39	-I,95
5,0	7,62 -	-4,90	4,13	-3,0I	4,73	-2,49
7,5	9,00	-5,80	4,96	-3,46	5,76	-2,74
IO,0	9,92	-6,50	5,63	-3,75	6,59	-2,86
I5,0	11,22	'-7,46	6,6I	-4,IO	7,89	-2,88
20,0	12,00	-8,04	7,26	-4,23	8,80	-2,74
25,0	12,45	-8,34	7,67	-4,22	9,4I	-2,50
30,0	I2,47	-8,53	7,88	-4,12	9,76	-2,26
40,0	12,60	-8,22	7,80	-3,80	9,80	-I,80
50,0	IO,98	-7,52	7,24	-3,34	9,19	-I,4O
60,0	9,50	-6,49	6,36	-2,76	8,14	-I,00
70,0	7,62	-5,22	5,18	-2,14	6,69	-0,65
80,0	5,45	-3,70	3,75	-I,50	4,89	-0,39
90,0	3,02	-2,00	2,08	-0,82	2,71	-0,22
95,0	I,62	-I,I5	I,I4	-0,48	I,47	-0,16
100,0	0,22	-0,22	0,13	-0,13	0,13	-0,13

Рис. НІО.Зависимость максимального значения коэффициента подьемной сиды Сустск прямоугольного крыла с относительных удинением $\hat{A} = 5$ и профилями *МАСЧ-2419 с. NACH-44*12от числа Реймольдса полета при числах Маха полета <u>M=0.149...0.153</u>

Рис. ПІ2.Зависимость угла атаки нулевой подъемной силы со профилей *NACA-2221, NACA-2412* и *NACA-4442* от числа Маха полета М

Рис. 115. Зависимость относительной координати фокуса \mathcal{Z}_{F} и коэфициента продольного момента при нулевой подъемной силе Сто, профилей МАСА-222, МАСА-2412 и МАСА-44412 от числа Маха нолета

Таблица П5

Координаты профилей серии ИАСА-ОО

Ī %	NACA - 0006	NACA-0009	NACA - 0012
	<u> </u>	y, %	y, %
0,0	0.0	0,00-	0,00
1,25	0,95	I,42	I,89
2,5	1,31	1,97	2,62
5,0	I,78	2,67	3,56
7,5	2,10	3,15	4,20
IO,0	2,34	3,51	4,68
15,0	2,67	4,0I	5,35
20,0	2,87	4,3I	5,74
25,0	2,97	4,46	5,94
30,0	3,00	4,50	6,00
40,0	2,90	4,35	5,80
50,0	2,65	3,97	5,29
60,0	2,28	3,42	4,56
70,0	I,83	2,75	3,66
80,0	I,3I	1,97	2,62
90,0	0,72	I,09	1,45
95,0	0,40	0,61	18,0
100,0	0,06	0,10	0,13

13

Р и с.ПІ5.Зависимость максимального значения коэффициента подъемной силы *Суд то* к примоугольного крыла с относительным удлинением $\lambda = 5$ и профилями серии *NACA-ОО* от числа Маха полета М

Рис. III6. Вависимость коэффициента производной подъемной силы по угулу атаки Судо профилей серии *МАСА-ОО* от числа Маха полета М

Рис.П17.Зависимость относительной координаты фокуса \widetilde{x}_{F} профилей серии *ИАСА-ОО* от числа полета M

Таблица Пб

Координаты профилей серии Сватк УН

	Clark	YH-12	Clark YH	1-15
10,10	J8, %	JN, 10	Je, %	JH, 10
0,00	0,00	0,00	0,00	0,00
1,25	2,09	-I,5I	2,61	-I,89
2,50	3,10	-I,99	3,87	-2,49
5,0	4,58	-2,51	5,73	-3,14
7,5	5,62	-2,8I	7,03	-3,5I
10,0	6,42	-3,03	8,03	-3,78
15,0	7,57	-3,24	9,46	-4,06
20,0	8,33	-3,24	IO,4I	-4,06
25,0	8,73	-3,20	ante	
30,0	8,86	-3,14	II,06	-3,94
40,0	8,65	-2,99	IO,80	-3,75
50,0	7,93	-2,84	9,90	-3,55
60,0	6,73	-2,69	8,40	-3,36
70,0	5,08	-2,42	6,20	-3,03
80,0	3,38	-I,98	4,23	-2,48
90,0	I,72	-1,21	2,15	-I,52
95,0	0,90	-0,69	1,12	-0,85
100,00	6,07	-0,07	0,09	-0,09

Clark YH-12 Clark 4H-15

Р и с.ПІ8.Геометрия профилей серии Clark УН

Рис. П19. Зависимость максимального значения коэффицента подъемной силы *Суото* прямоугольного крыла с относительным удлинением 2 =5 и профилем *Сотк Ун-12* от числа Рейнольдса полета при числах Маха полета M=0,156...0,175

Р и с. П2О. Зависимость максимального значения коэффициента подъемной силы Сустак примоугольного крыла с относительным удлинением 2 =5 и профилем *Clark ин-15* от числа Маха полета М

Рис.П21.Зависимость коэффициента производной подъемной силы по углу атаки со профилей серии *Clork ун* от числа Маха полета М

Рис. П23. Зависимость относительной координаты фокуса ЭС, и коэффициента продольного момента при нулевой подъемной силе С то процилей серий Ссагк УН от числа Маха полета М

Таблица П?

Координаты супериритических профилей серии С

- 0.	C-820	309	C-790212		C-770315	
2, %	Je, 10	JH, 10	J8, %	JH, 10	y8,%	JH, 10
0,0	0,16	0,16	I,67	I,67	0,00	0,80
0,5	I,IĮ	-0,82	2,40	0,35	I,48	-I,33
1,25	1,57	-1,32	3,48	-0,36	2,24	-2,00
2,5	2,08	-I,74	4,09	-I,I3	3,12	-2,78
5,0	2,70	-2,34	4,87	-2,16	4,36	-3,82
7,5	3,09	-3,01	5,34	-2,86	5,30	-4,49
IO,0	3,37	-3,3I	5,69	-3,37	6,04	-4,95
15,0	3,81	-3,69	6,20	-4,07	7,03	-5,54
20,0	4,13	-3,93	6,56	-4,5I	7,62	-5,86
25,0	4,37	-4,06	6,8I	-4,80	8,06	-5,98
30,0	4,55	-4,IO	6,98	-4,98	8,39	-5,99
40,0	4,77	-4,02	7,12	-5,05	8,89	~5,4I
50,0	4,84	-3,64	7,02	-4,74	8,93	-4,19
60,0	4,80	-2,39	6,66	-3,94	8,80	-2,39
70,C	4,62	-0 - 53	5,77	-2,52	8,35	-0,29
80,0	4,31	I,36	4, I 4	-0,76	7,27	I.73
90,0	3,64	2,29	2,24	0,31	5,42	2,68
95,0	2,93	2,II	I,50	0,43	4,07	2,52
97,5	2,45	I,79	I,23	0,42	3,14	2,28
100,0	I,77	81,1	0,61	0,35	I,99	I,9 0

C-820309

F и с. П.24. Геометрия сунериритических профилей серип С

Р и с. П25. Зависимость критического числа Маха $M_{\kappa\rho}$ от коэффициента подъемной силы $C_{\mu\alpha} \sim$ суперкритических профилей серии С

Рис.П26. Зависимость коэффициента волнового сопротивления при нулевой подъемной силе Слобо суперкритических профилей фрии Сот числа маха полета М

2

0.4

0,3

0,2

0.1

0 "

1,2

1.3

Сиатах суперкри-Р и с. 1/28.3ависимость козфициента производной подъемной силы по углу атаки С_{ид тах} суперкри-тических профилей серим С от Числа Маха полета I

2

0.15 0,12

Ū=0,09

Cyam

Р и с.Л127.Зависимость максимального значения коэффициента подъемной силы Сысток прямо-угольного крыла с относительным удлинением \mathcal{X} =5 а суперкритическими профилями серии С от числа Маха полета М

Cya max

Рис. ПЗО. Зависимость относительной координаты фокуса жу и коорфициента продольного момента при нулевой подъемной силе суперкритических профилей серий Сто от числа Маха полета М

Таблица П8

Координаты профилей КАГД-ООО9 и КАГД-ООІ2

- 0.	КАГД-0009	КАГД-0012		КАГД-0009	КАГД-0012
x, %	Ÿ, %	<u> 9,%</u>	<i>c, 1</i> ,	J, %	<i>Ÿ</i> , %
0	0,00	0,00	40,0	4,45	5,93
I,25	I,34	1,79	50,0	4,44	5,91
2,5	I,80	2,41	60,0	4,19	5,58
5,0	2,39	3,19	70,0	3,65	4,87
7,5	2,78	3,70	80,0	2,82	3,76
IO,0I	3,07	4,IŬ	90,0	1,65	2,19
15,0	3,52	4,69	95,0	0,92	I,22
20,0	3,83	5,IO	0,001	0,09	0.12
30,0	4,25	5,66			

KAPI -0009

KALA-0012

Рис. ПЗІ. Геометрия профилей серии КАГД-ОО

Рис. П32. Зависимость максимального значения коэффициента подъемной силы прямоугольного крыла с относительным удлинением \mathcal{A} =5 и профилями серии КАГД-ОО от числа Маха полета М

Рис. П33. Зависимость коэффициента производной подъемной силы по углу атаки Сусь профилей серии КАГД-ОО от числа Маха полета М

Рис. П34. Зависимость относительной координаты фокуса Ф., профилей серим КАГД-ОО от числа Маха полета М

Таблица П9

Координаты профилей серии КАГД-50

an 01	КАГД-5009		КАГЛ-50	KAFI-5012		015
SC, 10	Ÿ€, %	JN, 10	48,%	JH, 10	9 8,%	ŪN, 10
0,0	0,35	0,35	0,35	0,35	0,35	0,35
I,25	2,00	-I,05	2,55	-I,52	3,10	-I,98
2,5	2,50	-I,35	3,22	-I,9I	3,94	-2,48
5,0	3,35	-I,8I	4,36	-2,52	5,36	-3,24
7,5	3,97	-2,03	5,19	-2,8I	6,40	-3,60
10,0	4,43	-2,25	5,80	-3,IO	7,17	-3,96
15,0	5,15	-2,45	6,77	-3,37	8,39	-4,28
20,0	5,68	-2,51	7,48	-3,44	9,28	-4,37
25,0	6,07	-2,53	8,01	-3,46	9,94	-4,39
30,0	6,33	-2,52	8,36	-3,44	10,39	-4,36
40,0	6,6I	-2,39	8,74	-3,26	IO,88	-4,12
50,0	6,50	-2,15	8,6I	-2,92	IO,72	-3,70
60,0	5,89	-I,85	7,8I	-2,51	9,72	-3,18
70,0	4,92	-1,52	6,53	-2,06	8,13	-2,60
80,0	3,56	<u>-1,14</u>	4,72	-1,54	5,89	-1,95
90,0	I,87	-0,69	2,48	-0,93	3,09	-1,17
95,0	0,92	-0,4I	I,17	-0,55	1,52	-0,69
IOO ,0	0,00	-0,00	0,00	-0,00	0,00	-0,00

Р и с.П35. Геометрия профилей серии КАГД-50

Р и с.П.36.Зависимость максимального значения коэффициента подъемной силы Сусток, прямоугольного крыла с относительным удлинением $\lambda = 5$ и профилями серии КАГД-50 от числа Маха полета М

Р и с.1137. Зависимость коэфициента производной подъемной силы по углу атаки Сидо профилей серии КАГД-50 от числа Маха полета М

Рис.П38. Зависимость угла атаки нулевой подъемной силы «Со профилей серии КАГД-50 от числа Маха полета М

N V

Рис. П39. Зависимость относительной координаты фокуса $\overline{\mathcal{D}}_r$ и козффициелта продольного момента при нулевой подъемной силе C_{mo} профилей серии КАГД-50 от числа Маха полета М

Составитель - Валентин Гаврилович Шахов

АЭРОДИНАМИЧЕСКИЕ ПРОФИЛИ

Редактор Е.Д. Антонова Техн.редактор Н.М. Каленюк Корректор Н.С.Куприянова

Подписано в печать 16.01.84. Формат 60х84 1/16. Бумага оберточная белая. Оперативная печать. Усл.п.л.1,65. Уч.-изд.л.1,6. Т. 500 экз. Заказ 1754 Бесплатно.

Куйбышевским ордена Трудового Красного Знамени авиационный институт имени академика С.П.Королева г. Куйбышев, ул. Молодогвардеиская, 151.

Областная тип.им. В.П.Мяги,г. Кумоышев,ул.венцека,60.