Министерство высшего и среднего специального образования $P \ C \ \Phi \ C \ P$

Куйоншевский ордена Трудового Красного Знамени авиационный институт имени академика С.П.Королева

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

У т в е р ж д е н о редакционно-издательским советом института в качестве методических указаний для студентов вечернего отделения

Составитель Л.Н.Прокофьев

УДК 517

Метод наименьших квадратов: Метод. указания/Сост. Л. Н. Прокофьев; Куйбышев. авиац. ин-т. Куйбышев, 1989.16 с.

Методические указания могут быть использованы при выполнении расчетно-графических работ по определению зависимости между величинами, исходя из данных эксперимента. В работе показано решение указанной задачи в матричных обозначениях. Наряду с кратко изложенной теорией в методических указаниях приведено достаточное число решенных типовых примеров. Данные указания предназначены студентам второго курса вечернего отделения при изучении раздела "Функции нескольких переменных" в курсе висшей математики.

Рецензенти: к.т.н., доц. В.Д.Логунов, к.т.н., доц. М.Г.Хацкель

МЕТОЛ НАИМЕНЬШИХ КВАДРАТОВ

Во многих экспериментальных работах необходимо исследовать, как изменение одной переменной влияет на другую. Пусть, наблюдая некоторое явление, мы произвели ряд измерений величин x и y и в результате получили таблицу

Пусть при этом на основании каких-либо соображений нам заранее известно, что зависимость между x и y имеет вид

$$y = \beta_0 + \beta_+ x, \tag{2}$$

но числовых значений коэффициентов \mathcal{S}_o и \mathcal{S}_1 мы не знаем. Если бы результаты измерений были абсолютно точны, то для определения \mathcal{S}_o и \mathcal{S}_1 было бы достаточно знать лишь две пары значений x и y, например x, и y, x2 и y2. Остальные неиспользованные пары удовлетворяли бы уравнению (2).

Однако результати наших измерений не точни и поэтому значения x и y из таблици (I), вообще говоря, не будут удовлетворять уравнению (2). Геометрически это означает, что точки (x_1, y_1) (x_2, y_2)... (x_n, y_n) как-то разбросани вблизи прямой (2), причем эта разбросанность носит случайный характер, связанный с многообразием причин, приводящих к погрешностям в измерениях.

Последнее обстоятельство заставляет отказаться от попыток найти точные значения коэффициентов β_o и β_i и ставит вопрос об отыскании оценок δ_o и δ_i для параметров β_o и β_i .

Множество точек (x_i , y_i) на координатной плоскости называется полем рассеяния.

На практике в качестве функции, описывающей зависимость между ${m x}$ и ${m y}$, выбирают функцию

$$\mathcal{Y} = f(x, \beta_0, \beta_1, \dots, \beta_2) \tag{3}$$

по характерному расположению точек (\mathcal{X}_{ι} , \mathcal{Y}_{ι}) на поле рассеяния, что-

бы она отображала особенности расположения этих точек на плоскости, в частности это может быть линейная функция (2).

Для оценки параметров β_{i} , $i = \overline{Q_{i}Z}$, функциональной зависимости (3), будем применять метод наименьших квадратов (МНК). Согласно этому методу оценки \mathcal{E}_{o} , \mathcal{E}_{1} . \mathcal{E}_{2} ..., \mathcal{E}_{2} для параметров аппроксимирующей функции (3) выбирают так, чтобы

$$Q = \sum_{i=1}^{n} \left[\mathcal{Y}_i - f(x_i, b_0, b_1, \dots, b_n) \right]^2 = \min$$

Такие оценки будем называть МНК-оценками. Дифференцируя $\mathcal Q$ \mathcal{B}_o . \mathcal{B}_1 \mathcal{B}_2 и приравнивая производные нулю, получим

$$\begin{cases} \sum_{i=1}^{n} \left[y_i - f(x_i; b_0, b_1, ..., b_r) \right] \left(\frac{\partial f}{\partial b_0} \right)_i = 0; \\ \sum_{i=1}^{n} \left[y_i - f(x_i; b_0, b_1, ..., b_r) \right] \left(\frac{\partial f}{\partial b_1} \right)_i = 0; \\ \sum_{i=1}^{n} \left[y_i - f(x_i; b_0, b_1, ..., b_r) \right] \left(\frac{\partial f}{\partial b_r} \right)_i = 0. \end{cases}$$

$$(4)$$

Здесь $\left(\frac{\partial f}{\partial \beta_{\kappa}}\right)_{i} = f_{\kappa_{\kappa_{\kappa_{\kappa}}}}(x_{i}; \beta_{0}, \beta_{1}, \beta_{2}, \dots, \beta_{r}), \quad \kappa = 0,1,2,\dots, \tau.$

Если, в частности, $y = \beta_0 + \beta_1 x$. то

Дифференцируя Q по \mathcal{B}_{o} и \mathcal{B}_{f} , получаем

$$\begin{cases} \sum_{i=1}^{n} [y_i - b_0 - b_1 x_i] = 0, \\ \sum_{i=1}^{n} [y_i - b_0 - b_1 x_i] x_i = 0. \end{cases}$$

$$\begin{cases} \delta_{o} n + \beta_{i} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i}; \\ \delta_{o} \sum_{i=1}^{n} x_{i} + \beta_{i} \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} x_{i} y_{i}. \end{cases}$$

$$(5)$$

Из последней системы находим во и в. . Задача решена.

Takum же способом можно найти оценки \mathcal{B}_o , $\mathcal{B}_{\mathcal{I}}$, $\mathcal{B}_{\mathcal{I}}$ для коэффициентов параболи $y = \beta_0 + \beta_1 x + \beta_2 x^2$. В этом случае:

$$f(x; b_0, b_1, b_2) = b_0 + b_1 x + b_2 x^2;$$

$$\frac{\partial f}{\partial b_0} = 1; \qquad \left(\frac{\partial f}{\partial b_0}\right)_i = 1;$$

$$\frac{\partial f}{\partial \theta_i} = x; \qquad \left(\frac{\partial f}{\partial \theta_i}\right)_i = x_i;
\frac{\partial f}{\partial \theta_2} = x^2; \qquad \left(\frac{\partial f}{\partial \theta_2}\right)_i = x_i^2.$$
(6)

После подстановки (6) в (4) в результате простых преобразований по-

$$\begin{cases} b_0 \sum_{i=1}^{n} x_i^2 + b_1 \sum_{i=1}^{n} x_i^3 + b_2 \sum_{i=1}^{n} x_i^4 = \sum_{i=1}^{n} x_i^2 y_i; \\ b_0 \sum_{i=1}^{n} x_i + b_1 \sum_{i=1}^{n} x_i^2 + b_2 \sum_{i=1}^{n} x_i^3 = \sum_{i=1}^{n} x_i y_i; \\ b_0 n + b_1 \sum_{i=1}^{n} x_i + b_2 \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i. \end{cases}$$
(7)

Таким же способом можно найти оценки параметров многих других кривых.

подбор кривой в матричных обозначениях

Пусть функция (3) линейна относительно параметров β_o . β_1 β_2 . пусть, в частности, она имеет вид (2).

Введем следующие обозначения: У — вектор наблюдений, X — матрица значений независимых переменных. В — вектор параметров, подлежащих оцениванию, т.е.

$$y = \begin{pmatrix} y_1 \\ y_2 \\ y_n \end{pmatrix}; \qquad x = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_n \end{pmatrix}; \qquad \beta = \begin{pmatrix} \beta_o \\ \beta_1 \end{pmatrix}.$$

Найдем произведение Х/3

$$X\beta = \begin{pmatrix} \beta_0 + \beta_1 X_1 \\ \beta_0 + \beta_1 X_2 \\ \beta_0 + \beta_1 X_2 \end{pmatrix}.$$

Матричное уравнение $y = x \beta$ равносильно совокупности уравнений

$$\mathcal{G}_{i} = \beta_{0} + \beta_{1} X_{1}$$

Un $\mathcal{G}_{i} = \beta_{0} + \beta_{1} X_{i}$, $i = \overline{I, n}$.

Если Y' есть транспонированная матрица-столбец Y . то ясно, что $Y_1^2 + Y_2^2 + \dots + Y_n^2 = Y'Y$

Ясно также, что

$$\chi'\chi = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \chi_1 & \chi_2 & \cdots & \chi_n \end{pmatrix} \begin{pmatrix} 1 & \chi_1 \\ 1 & \chi_2 \\ 1 & \chi_n \end{pmatrix} = \begin{pmatrix} n & \sum_{i=1}^n \chi_i \\ \sum_{i=1}^n \chi_i & \sum_{i=1}^n \chi_i^2 \end{pmatrix}$$

Кроме того.

$$X'Y = \begin{pmatrix} 1 & 1 & \dots & 1 \\ X_1 & X_2 & \dots & X_n \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n y_i \\ \sum_{i=1}^n X_i y_i \end{pmatrix}$$

Все это означает, что система уравнений (5) может быть записана так:

$$X'XB = X'Y, (8)$$

где $\beta' = (\beta_o, \beta_i)$

Решение этой системы дает МНК-оценки ℓ_o , ℓ_s параметров β_o , β_s

$$\mathcal{B} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \tag{9}$$

Будем считать при этом, что XX - неособенная матрица.

Применение матриц дает много преимуществ, главное из которых — общность. Как только задача записывается и разрешается в матричной форме, ее решение приложимо к любой задаче такого рода, независимо от того, сколько членов содержится в уравнении (3), линейном относительно искомых параметров.

Если ми хотим подобрать с помощью МНК любую модель, линейную относительно параметров, то вичисления необходимо проводить точно в такой же форме (в матричных обозначениях), как и при подборе прямой линии, содержащей лишь два параметра β_0 и β_4 .

Например, система (7) может быть записана в виде

где $b' = (b_0, b_1, b_2)$;

$$X = \begin{pmatrix} 1 & X_1 & X_1^2 \\ 1 & X_2 & X_2^2 \\ \hline 1 & X_n & \overline{X_n^2} \end{pmatrix}; \quad Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}.$$

Тогда по-прежнему $\mathcal{E} = (X'X)^{-1}X'Y$.

Сложность вычислений с увеличением числа параметров резко возрастает, поэтому задачи с большим числом параметров решаются на ЭВМ.

Вид системи (8) и формула (9) для ее решения не изменяется, если взяты более сложные линейные модели, в которых число независимых переменных (факторов), влиякщих на значение функции (отклика), две и более.

ПРИМЕРЫ

Пример І

Подобрать с помощью МНК аппроксимирующий полином для следующих данных

Решение

Расположение точек на поле рассеяния подсказывает, что между X и Y имеет место приближенная линейная зависимость $Y = A_0 + A_1 X$.

Вычисления, которые нужно произвести, расположим по следующей схеме:

i	Χů	Xi	X_i^2	y:	Xi Yi
1	1	X,	Xi	41	X.y.
2	1	X2	XZ	y ₂	X2 Y2
3	1	X ₃	X32	3/3	X3 43
4	1	Χų	ΧŽ	$\mathcal{Y}_{_{\boldsymbol{Y}}}$	Xv yv
5	1	X5	χ_5^2	¥5	X5 Y5
Σ		7			

После заполнения указанной таблицы исходными данными и результатами их обработки получим следукщую таблицу:

i	X,°	Xi'	Xi	yi	Xi Yi
I	I	0	0	-2	0
2	I	I	I	- 6	-6,0
3	I	2	4	-10,5	-21,0
4	I	3	9	-I4.5	-43, 5
5	I	4	16	-19,0	-76.0
Σ	5	10	30	-52,0	-146,5

Тогда система уравнений (5) для определения θ_o и θ_t примет вид $\begin{cases} 5\theta_o + 10\theta_t = -52,0 \\ 10\theta_o + 30\theta_t = -146,5 \end{cases}$

Решая эту систему, найдем $b_o = -1.9$, $b_f = -4.25$. Следовательно, искомая зависимость между X и Y выражается формулой Y = -1.9 - 4.25 X.

Пример 2

В результате измерения зависимых величин x и y получени следующее данные

Определеть вед зависимости между величинами X и y и найти МНКоценки параметров эмпирической формули.

Решение

В прямоугольной декартовой системе координат построим точки \mathcal{M}_i с координатами (χ_i , χ_i). Они незначительно уклоняются от точек дуги некоторой параболы. Следовательно, можно предположить, что завесемость между X и y выражается формулой

По результатам измерений и обработки величин χ и y составим следующую таблицу:

<u>i</u>	Xi	X.	Xi	X_{i}^{3}	X.4	¥:	xi yi	xi yi
I	I	I	I	I	I	0,5	0,5	0,5
2	I	2	4	8	16	0,5	I	2
3	I	3	9	27	81	I	3	9
4	I	4	16	64	256	2	8	32
5	I	5	26	125	625	3	I 5	75
6	I	6	36	216	1296	5	30	180
7	I	7	49	343	2401	8	56	392
Σ	7	28	140	784	4676	20	II3,5	690,5

В соответствии с этой таблицей система уравнений (7) примет вид

$$\begin{cases} 76_0 + 286_1 + 1408_2 = 20; \\ 286_0 + 1408_1 + 7848_2 = 113,5; \\ 1408_0 + 7848_1 + 46768_2 = 690.5. \end{cases}$$

Решая эту систему, получим

$$b_0 = -1.234$$
; $b_1 = 0.796$; $b_2 = 0.046$.

Следовательно, искомий полином будет

$$y = -1.234 + 0.796X + 0.046X^2$$
.

Пример 3

Результати эксперимента представлени в таблице.

i	X.	X ₂	ay .
I	0.	0	10
2	0	I	17
3	0	2	20
4	I	0	I4
5	2	0	18
6	I	I	24
7	2 -	2	40
8	0	- I	3
9	-I	- I	І з

Здесь число независимых переменных (факторов) $\mathcal{K}=2$. Количество опитов (измерений) $\mathcal{N}=9$. Пусть моделью, описывающей зависимость между \mathcal{K} и \mathcal{Y} служит полином первой степени $\mathcal{Y}=\beta_0+\beta_1\mathcal{X}+\beta_2\mathcal{X}^2$.

Найдем оценки \mathcal{B}_o , \mathcal{B}_t . \mathcal{B}_z параметров \mathcal{B}_o , \mathcal{B}_t , \mathcal{B}_z . Решение ение Составим матрицу χ наблюдений и транспонированную матрицу χ' :

$$X = \begin{pmatrix} x_0 & x_1 & x_2 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 2 \\ 1 & 0 & -1 \\ 1 & -1 & -1 \end{pmatrix}$$

Тогда

$$X'X = \begin{pmatrix} 9 & 5 & 4 \\ 5 & II & 7 \\ 4 & 6 & I2 \end{pmatrix}$$

Berghouse $(X'X)^{-1}$:

$$(\chi'\chi)^{-1} = \frac{1}{628} \begin{pmatrix} 96 & -36 & -14 \\ -36 & 92 & -34 \\ -14 & -34 & 74 \end{pmatrix}$$

Дажее запишем матрину У и найдем произведение ХУ:

$$y = \begin{pmatrix}
10 \\
17 \\
20 \\
14 \\
18 \\
24 \\
40 \\
3
\end{pmatrix};
 \chi' y = \begin{pmatrix}
149 \\
151 \\
155
\end{pmatrix}.$$

И, наконец,

$$\beta = (X'X)^{\frac{1}{2}}X'y = \begin{pmatrix} \delta_{\bullet} \\ \delta_{\uparrow} \\ \delta_{z} \end{pmatrix} = \begin{pmatrix} 10.65 \\ 5.2 \\ 6.8 \end{pmatrix}.$$

Таким образом, $b_0 = 10.65$; $b_1 = 5.2$; $b_2 = 6.8$ и искомое уравнение асть $y = 10.65 + 5.2 \, X_1 + 6.8 \, X_2$.

В результате эксперимента получени данние:

X	5	3	24	3 5	44	55	63	74	82	95
y	18	12	8	8	8	8	7	6	8	8

Пусть моделью, описывающей зависимость между X в y служит уравнение гиперболи $y = \beta_0 + \beta_1 \frac{1}{X}$. Найдем МНК-оценки параметров β_0 , β_1 .

Решение

Система (4) для данного случая примет вид

$$\begin{cases} n \mathcal{B}_{o} + \mathcal{B}_{i} \sum_{i} \frac{1}{X_{i}} = \sum_{i} \mathcal{Y}_{i}; \\ \mathcal{B}_{o} \sum_{i} \frac{1}{X_{i}} + \mathcal{B}_{i} \sum_{i} \left(\frac{1}{X_{i}}\right)^{2} = \sum_{i} \mathcal{Y}_{i} \frac{1}{X_{i}}. \end{cases}$$

Произведем замену переменных $\frac{1}{X} = X_1$, получим следующую систему:

$$\begin{cases} n b_0 + b_1 \sum_{i} X_{ii} = \sum_{i} y_i ; \\ b_0 \sum_{i} X_{ii} + b_1 \sum_{i} X_{ii}^2 = \sum_{i} y_i X_{ii} . \end{cases}$$
 (10)

Для определения параметров гиперболи строим расчетную таблицу

i	Χi	$ \chi_{ii}^o = \left(\frac{\ell}{X_i}\right)^o$	$X_{t\bar{t}} = \frac{1}{X_{\bar{t}}}$	Xi	Yi	Xii Yi
I	5	I	0,2000	0,0400	18	3,6000
2	3	I	0,3333	0,1111	12	3,9996
3	24	I	0,0417	0,0017	8	0,3336
4	35	I	0,0286	0,0008	8	0,2288
5	44	I	0,0227	0,0005	8	0,1816
6	55	I	0,0182	0,0003	8	0,1456
7	63	I	0.0159	0,0002	7	0,1113
8	74	I	0,0135	0,0002	6	0,0810
9	82	I	0,0122	0,0001	8	0,0976
IO	95	I	0,0105	0,0001	8	0,0840
Σ		10	0,6966	0,1550	91	8,8631

Подставим значения фактических данных в систему (10), получим:

Решая последнюю систему, будем иметь: $\delta_o = 7.448$, $\delta_t = 23.7$. Уравнение гиперболы будет иметь вид

$$y = 7.448 + 23.7 \frac{1}{x}$$

Пример 5

Результати эксперимента представлени в таблице.

Пусть зависимость между X и y выражается степенной функцией $y = \mathcal{A}_{o} X^{\mathcal{A}_{o}}$.

Найти МНК-оценки параметров В., В.

Решение

Для определения параметров произведем логарифмирование степенной функции $(g \ y = lg \ \beta_0 + \beta_1 \ lg \ x)$

Введем обозначения: Y = lgy; $B_o = lgB_o$; $B_i = B_i$; $X = lg \times ...$

В этих новых обозначениях будем иметь $y = B_o + B_i X$.

Опенки δ_o , δ_s для неизвестных параметров β_o и β_s найдем из системы

$$\begin{cases} nb_0 + b_1 \sum X_i = \sum Y_i \\ b_0 \sum X_i + b_1 \sum X_i^2 = \sum X_i Y_i \end{cases}$$
(II)

где $X_i = lg x_i$; $Y_i = lg y_i$. Для решения системы составляем расчетную таблику:

i	Xi	yi	lgxi=Xi	layi = Yi	X. Y.	X2
I	1,01	0,05	0,0043	-1,3010	-0,0056	0,00002
2	4,0	0,07	0,6021	-0,1549	-0,0933	0,3620
	•	•		•	•	
•	•		•			
•			•			
16	20.3	170.0	I.3075	2,2304	2,9163	I.7076
٤			11,1562	22,0416	19,8959	10.549

Подставим полученные данные в систему (II):

$$16 \, \theta_o + 11.156 \, \theta_t = 22.0416;$$

 $11.156 \, \theta_o + 10.549 \, \theta_t = 19.8959.$

Решая последнюю систему, будем иметь \mathcal{B}_o = 0,24; \mathcal{B}_t = 1,633. Следовательно, \mathcal{L}_{gy} = 0,24 + 1,633 \mathcal{L}_{gx} .

ЗАЛАНИЕ

Данные опыта приведены в таблицах. Полагая, что x и y связаны данной функцией, найти параметры этой функции методом наименьших квадратов.

I.
$$\frac{\chi}{y} = \frac{54}{8} = \frac{63}{10} = \frac{74}{11} = \frac{90}{13} = \frac{112}{15} = \frac{140}{17} = \frac{190}{19} = \frac{190}{1$$

2.
$$x \mid 29.0 \mid 38.0 \mid 46.0 \mid 54.0 \mid 62.0 \mid 70.0 \mid 79.0 \mid 97.3$$

 $y \mid 3.6 \mid 5.83 \mid 6.0 \mid 7.90 \mid 8.03 \mid 10.98 \mid 13.87 \mid 15.50$
 $y = A_0 + A_1 \times A_2$

4.
$$\frac{\chi}{y} = \frac{6.3}{5} = \frac{6.0}{7.5} = \frac{7.5}{8.5} = \frac{8.7}{3.5} = \frac{6.0}{7.5} = \frac{8.7}{4} = \frac{6.0}{3.7}$$
 $y = \frac{3.7}{5} = \frac{4}{5} = \frac{6}{7} = \frac{7}{3} = \frac{4}{5} = \frac{6}{7} = \frac{7}{4} = \frac{3}{3}$

6.
$$x = 5.0 = 6.0 = 6.5 = 7.0 = 8.0$$

 $y = 25 = 28 = 31 = 35 = 40$; $y = 36.7 + 3.7 + 3.2 \times 2.7 = 3.1 + 3.1$

8.
$$\chi$$
 | 40 | 55 | 64 | 75 | 82 | 94 | 104 | 110 | 115 | 120
 χ | 2.8 | 4.3 | 4.6 | 4.9 | 5.6 | 6.4 | 7.7 | 7.9 | 10.2 | 9.8 | χ |

IO.
$$x = 54 = 63 = 74 = 90 = 112 = 140 = 190 =$$

II.
$$x = 1.0 = 0.5 = 0.07 = 0.3 = 0.25 = 0.34 = 0.13 = 0.08 = 0.22 = 0.58$$

 $y = 1.6 = 1.0 = 8.5 = 5.0 = 4.4 = 2.0 = 6.0 = 7.5 = 3.8 = 1.4$
 $y = 3.0 + 3.0 + 3.0 = 7.5 = 3.8 = 1.4$

13.
$$\chi$$
 | 152 | 116 | 100 | 108 | 129 | 141 | 147 | 156 | 156 | 163
 ψ | 47,6 | 34.8 | 31.6 | 32.6 | 38.2 | 42.1 | 45.0 | 47.3 | 47.4 | 49.0 ;
 χ | 170 | 178 | 187
 ψ | 51,5 | 53,2 | 55,6 ; $\psi = \beta_0 \chi^{\beta_0}$

I5.
$$\chi$$
 0 4 I0 I5 2I 29 36 5I 68 y 66.7 7I.0 76.3 80.6 85.7 92.9 99.4 II3.6 I25.1 $y = \beta_0 + \beta_1 \chi$

20.
$$\frac{x}{y} = \frac{5}{51,33} = \frac{10}{78,00} = \frac{20}{144,3} = \frac{40}{263,6} = \frac{60}{375,2}$$
; $y = 30, +30, \times$

21.
$$\frac{x}{y} = \frac{-3}{-0.71} = \frac{-2}{-0.01} = \frac{-1}{0.51} = \frac{0}{0.82} = \frac{1}{0.88} = \frac{3}{0.81} = \frac{3}{0.49} = \frac{1}{0.49} = \frac{3}{0.49} = \frac{1}{0.49} = \frac{3}{0.49} = \frac{1}{0.49} = \frac{3}{0.49} = \frac{1}{0.49} = \frac{1}{0.49} = \frac{3}{0.49} = \frac{1}{0.49} = \frac{1}{0.49}$$

y= Bo + B1 X1 + B2 X2.

Составитель Леонтий Николаевич Прокофьев

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

Редактор А.П.Захардяе ва Техн. редактор Н.М.Каленюк Корректор Н.Л.Чайникова

Подписано в печать II.I2.89. Формат 60х84 I/I6. Бумага оберточная белая. Печать офсетная. Усл.п.л. 0,93. Уч.—изд.л. 0,8. Тираж 300 экз. Заказ № 1792. Бесплатно.

Куйбышевский ордена Трудового Красного Знамени авиационный институт имени академика С.П.Королева. 443086 Куйбышев, Московское шоссе, 34.

Типография имени В.П.Мяги Куйбышевского полиграфического объединения 443099 Куйбышев, ул. Венцека, 60.