министерство высшего и среднего специального образования $P \subset \Phi \subset P$

Куйбышевский ордена Трудовсто Красного Знамени авиационный институт им. С.П.Королева

ЛАБОРАТОРНЫЙ ПРАКТИКУМ
по курсу "Проектирование
приемно-усилительных устройств"

Утвержден Советом института I5 декабря I966 гола

Кулбышев

ПРАВИЛА ВЫПОЛНЕНИЯ РАБОТЫ

В процессе подготовки к работе следует: ознакомиться с описанием раболы и применяемой измерительной аппаратурой; произвести необходимые расчеты; уяснить методику измерений и порядок проведения лабораторной работы; подготовить таблицы для заполнения данных эксперимента.

Перед выполнением работы студент получает контрольные вопросы с целью определения готовности его к проведению эксперимента. При удовлетворительных ответах на контрольные вопросы студент допускается к выполнению работы.

Для сокращения времени, затрачиваемого на обработку экспериментального материала, а также для более отчетим-вого физического представления зависимостей, которые не-обходимо получить в лаборатории в виде графияса, рекомендуется следующий порядок снятия графиков.

Прежде всего, без каких-либо записей при соблюдении всех требований, относящихся к данному эксперименту, про-изводится опыт, который помогает уяснить общий характер

зависимости, оценить ее соответствие ожидаемой из теоретических предположений или расчетов.

Замечаются участки с наиболее выраженной нелинейной зависимостью и линейные.

Для снятия кривой опыт повторяется. Точки (обозначаются крестиками, кружками и др.) заносятся в отчет на листы миллиметровки или клетчатой бумаги, сводятся в таблицы. Наибольшее число точек следует снимать на нелинейных участках кривой, линейные участки достаточно определить тремя точками.

Каждый график снабжается надписями и номерами, указываются величины, которые в эксперименте не меняются, но существенны для карактеристики условий эксперимента.

Работа считается законченной после проверки и утверждения отчета преподавателем.

По окончании работы студент должен выключить все источники питания и приборы, отключить установку от электрической сети и сдать ее дежурному лаборанту.

СОСТАВЛЕНИЕ ОТЧЕТА

Отчет по работе составляется индивидуально на типовом бланке или на стандартных листах писчей бумаги и подписывается. Графики вычерчиваются на листах миллиметровки или клетчатой бумаги и вклеиваются в отчет. На каждом графике должны строиться только те кривые, которые предусмотрены соответствующим пунктом описания. Совмещение графиков не допускается. Принципиальные схемы выполняются согласно МНСЧХ. Расчету отдельных величин должно предшествовать краткое объяснение с приведением необходимых фсрмул.

Стчет включает краткие выводы о проделанной работе.

Выводы могут содержать толкование подученных результатов — с точки зрения теории, объяснение причин отклонения результатов эксперимента от теоретических предположений, оценку погрешности при измерениях и т.п. Выводы не должны являться простым пересказом соответствующих глав курса.

СДАЧА ОТЧЕТА

Отчет по предыдущей работе принимается преподавателем в начале следующего лабораторного занятия. Сдача отчета производится каждым студентом в отдельности. Следует получить зачет по каждой работе с дифференцированной оценкой, проставленной на отчете и в ведомости.

Студент, не сдавший отчета по предыдущей работе, к следующей работе не допускается.

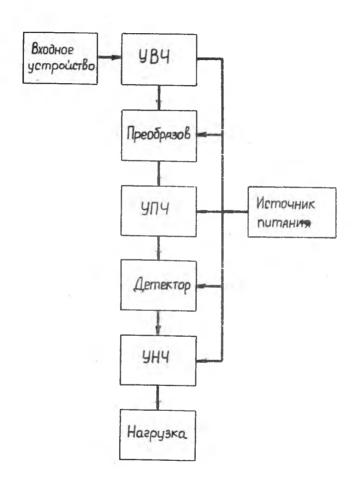
КРАТКОЕ ОПИСАНИЕ ЛАБОРАТОРНОГО СУПЕРГЕТЕРОЛИННОГО ПРИЕМНИКА

Для проведения лабораторных работ используется лабораторный супергетеродинный приемник с питанием от сети 220 в.

Диалазон принимаемых частот 520-1600 кгц.

Чувствительность - не хуже 30 мкв.

Избирательность - 35 дб.


Ослабление зеркальной частоты - 65 дб.

Выходная мощность - 4 вт.

Конструкция приемника позволяет свободно измерять режим работы каскадов и познакомиться с их конструктивным оформлением.

Особенностью лабораторного приемника является раздельное управление настроенной входной цепи, усилителя В.Ч. и гетеродина преобразователя.

Отсутствие сопряженного управления настройкой не является характерным для супергетеродинных приемников, но дает большие возможности в отношении исследования первых наскадов приемника.

Puc. I.

При помощи перекличателей можно снимать карактеристики различных вариантов схем и изменять резисторы и емкости в схеме.

Блок-схема лабораторного приемника приведена на рис. I. Принципиальная схема каждого блока приведена далее.

СХЕМА ЛАБОРАТОРНОГО ПРИЕМНИКА

Элемент № I, <u>входное устройство</u>, дает возможность собрать схему входных цепей с укороченной и удлиненной антеннами при индуктивной связи, с емкостной связью и со смешанной связью.

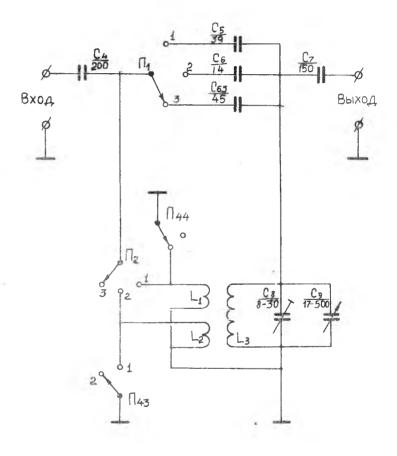
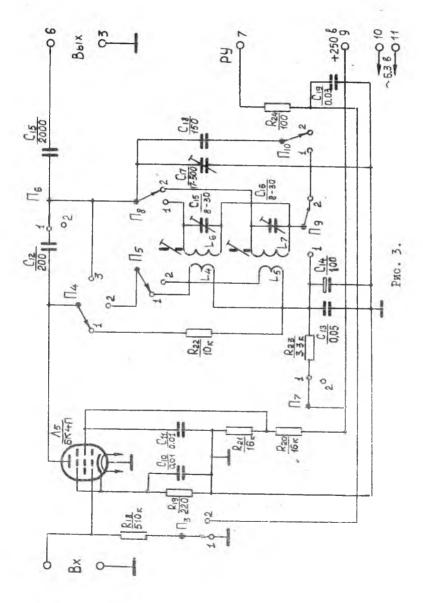
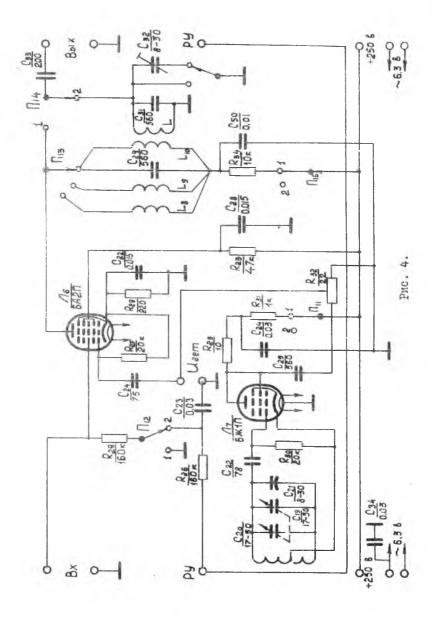
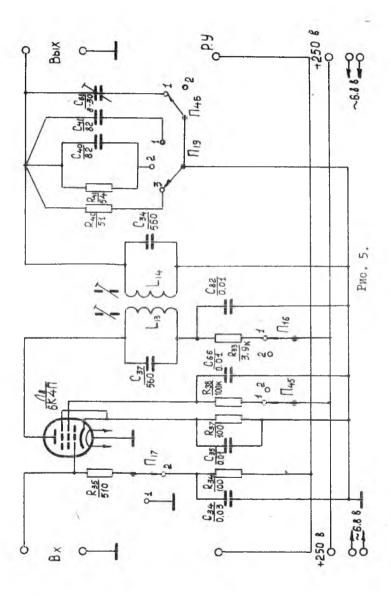
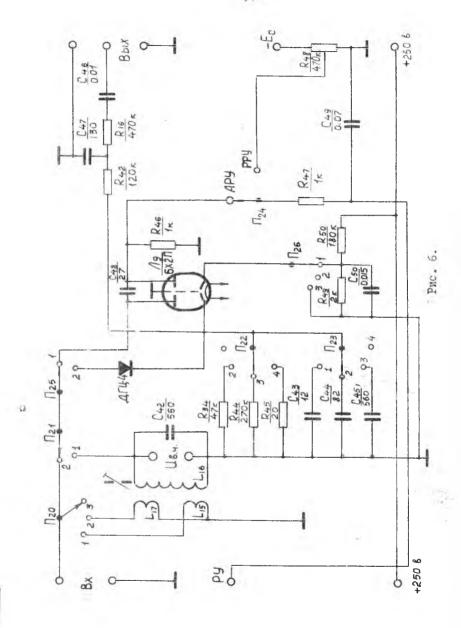
Входной контур настраивается переменным конденсатором с градуированной шкалой. Принципиальная схема приведена на рис.2.

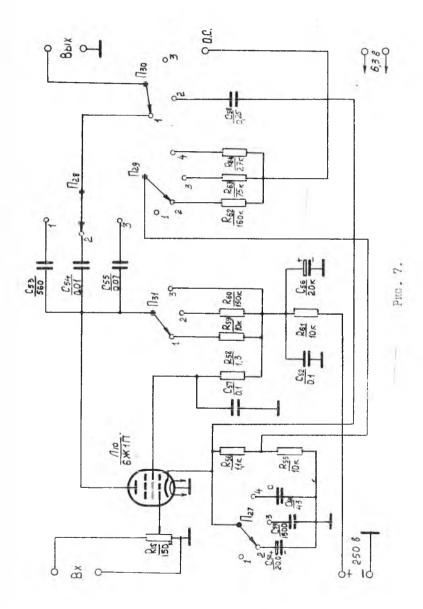
Элемент № 2, усилитель B.Ч., дает возможность с помощью переключателей собрать схему с контуром в анодной цепи с последовательным и параллельным питанием, схему с трансформаторной связью. Диапазон принимаемых частот разбит на два поддиапазона.

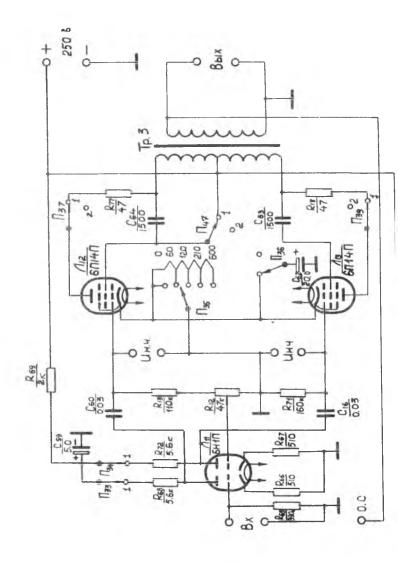
Предусмотрено соединение выхода элемента № 2 с входом последующего элемента В.Ч. кабелем; при отсутствии этого соединения подключается эквивалентная емкость, если элемент № 2 работает самостоятельно или соединяется с элементом № 3 перемычками. Для стабильности работы схемы автоматической регудировки усиления питание экранной сетки берется с делителя напряжения (принципиальную схему см. на рис.3).

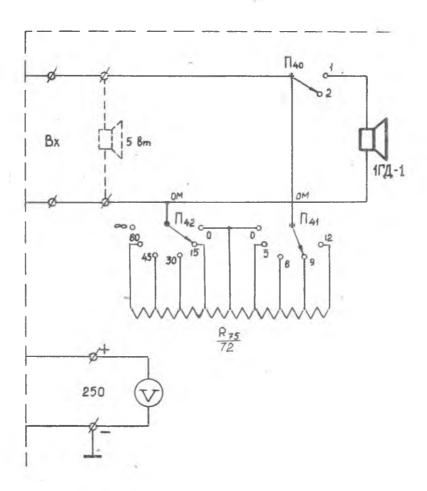
Элемент № 3, преобразователь частоты, состоит из двух каскадов: гетеродина, диапазон частот которого 650-2500 кгц и смесителя. При помощи потенциометра возможно плавно регулировать величину напряжения гетеродина, подаваемого на первую сетку смесителя. Предусмотрен выход на разних промежуточных частотах (II2, 465 и 800 кгц). На этих частотах возможна работа блока промежуточной частоты. Приндапиальная схема приведена на рис.4.

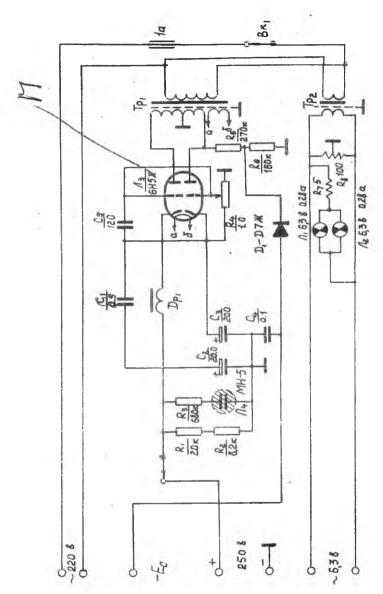
Элемент № 4, <u>усилитель промежуточной частоты</u>, настроен на частоту 465 кгц, фильтр промежуточной частоты в анодной цепи лампы имеет переменную полосу пропускания. Мож-


Рис. 2.







Pmc. 9.

PKC. IO.

но мунтировать вторичную катушку фильтра резисторами и конденсаторами. Принципиальная схема приведена на рис.5.

Элемент № 5, детектор, в котором сигнал промежуточной частоты детектируется ламповым и полупроводниковым диодом. При исследовании элемента без предварительного усиления входного сигнала имеется возможность подавать сигнал от генератора через входной трансформатор высокой частоты, изменять величину сопротивления нагрузки. В этом элементе образуется и напряжение автоматической регулировки усиления, которое может подаваться на предыдущие каскады с задерживающим напряжением и без него, и возможно переключение с автоматической на ручную регулировку усиления. Принципиальная схема детектора приведена на рис.6.

Элемент № 6, предварительный усилитель низкой частоты. Имеется возможность собрать схему с анодной и катодной нагрузкой, изменять глубину обратной связи, величину нагрузки каскада, переходных жикостей, а также шуктировать выход. Привципиальная схема усилителя приведена на рис. 7.

Элемент № 7, оконечный усилитель низкой частоты, состоит из двух каскадов. Первый — фазоинверсный, второй — оконечный каскад, работающий в двухтактной схеме. Имеется
возможность работать в разных режимах усиления мощности,
исследовать обратную связь по току, а также одно плечо
оконечного каскада полностью выключить. Принципиальная
схема усилителя приведена на рис. 8.

Эдемент № 8, оконечная нагрузка, состоит из сопротивления нагрузки, которое можно изменять, контрольного динамика и контрольного вольтметра. Принципиальная схема приведена на рис. 9.

Питание макета осуществляется от отдельного выпрамителя, обеспечивающего аппаратуру: регулируемым анодным напряжением 250 в. постоянного тока, напряжением смещения до 10 в. постоянного тока, напряжением накада 6, 3 в. переменного тока. Принципиальная схема приведена на рис. 10.

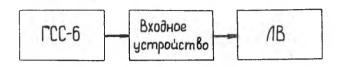
РАБОТА № 1

ИССЛЕДОВАНИЕ РАЗЛИЧНЫХ СХЕМ ВХОДНЫХ ПЕПЕЙ ПРИВИНИКОВ

ШЕЛЬ РАБОТЫ

- У Меследование схемы с емкостной, индуктивной и инду тивно-емкостной связями антенны с контуром.
- 2. Измерение коэффициента передачи и снятие резонансных характеристик для перечисленных схем.
- 3. Сопоставление экспериментальных данных с расчет-

заланив


I. Снять зависимость резонансного коэффициента передачи от частоти для схемы входной цепи с эмкостной связью с антенной.

- 2. Снять зависимость резонансного коэффициента передачи от частоты для схемы входной цепи с индуктивной связью с антенной.
- 3. Экспериментально определить резонансную частоту антенной цепи для схемы входной цепи с индуктивной связью с антенной.
- 4. Снять резонансные характеристики входной цепи для двух крайних частот и средней частоты диапазона. Измерение произвести для всех вышеуказанных схем входной пепи.
- 5. Снять зависимость резонансного коэффициента передачи от частоты для схемы входной цепи с индуктивно-емкостной связью с антенной.
- 6. Рассчитать добротность контура из резонансных характеристик входной цепи. Расчет произвести для двух крайних частот и средней частоты диапазона.
- 7. Рассчитать резонансный коэффициент передачи для схемы входной цепи с емкостной связью с антенной. Расчет произвести для двух крайних частот и средней частоты.
- 8. Произвести аналогичный расчет для схемы входной цепи с индуктивной связыю с антенной.

порядок выполнения работы

Перед выполнением экспериментальной работы следует ознакомиться с инструкцией по использованию $I^{**}CC-6$. Соединить приборы и макет входного устройства согласно блок-схеме puc.II $\stackrel{**}{\longrightarrow}$).

^{*)}Включение напряжений производится после проверки схемы преподавателем или лаборантом.

Puc. II.

Проверить калибровку напряжений генератора ГСС-6 и вольтметра, для чего включить вольтметр на выход генератора ГСС-6 и установить такое выходное напряжение генератора, чтобы вольтметр показал I в.

I. С помощью переключателей макета приемника собрать схему входной цепи с емкостной связью с антенной. Напряжение, снимаемое с выходного делителя ГСС-6, следует поддерживать постоянным и равным I в.

Изменяя с помощью переменного конденсатора частоту входного контура в диапазоне 220-600 кгц, настроить ГСС-6 на резонансную частоту контура по максимальному показанию лампового вольтметра и снять соответствующие показатели.

Поскольку напряжение от ГСС-6 поддерживается равным I в, показания вольтметра численно определяют коэффицизнт передачи входной цепи $\kappa_o = \mathcal{G}(f)$.

Полученные данные следует занести в таблицу I и построить по ним график $\kappa_o = \phi(f)$.

2. Собрать схему входной цепи с индуктивной связью с антенной. Снятие экспериментальных данных производить согласно схеме п.І. Данные свести в таблицу I и построить по ним график

•		<u>Таблица I</u>		
:== === ∫KoHm	:====================================	$K_0 = \frac{v_{6MX}}{1}$		
ĸ	:			

3. При выполнении третьего пункта задания установить максимальную емкость переменного конденсатора.

Изменяя частоту ГСС-6 по показаниям лампового вольтметра, определить, при какой более низкой частоте, чем $f_{o\,\text{min}}$ обнаруживается 2-ой максимум выходного напряжения. Это и есть резонансная частота антенной цепи f_{a} .

4. Для снятия резонансной характеристики на крайней частоте диапазона $f_{o\ min}$ установить максимальную емкость переменного конденсатора. Настроить ГСС-6 на частоту $f_{o\ min}$. Напряжение от ГСС-6 устанавливается таким, чтобы при резонансе напряжение на контуре равнялось I в. Затем следует заметить, при каких отклонениях частоты влево и вправо от $f_{o\ min}$ напряжение на контуре составляет 0,9, 0,8, 0,7, 0,6 в и т.д. Результаты измерений следует занести в таблицу 2 и построить по ним график.

таблица 2

υ _{бых}	Ko= VB6	fo + A	$f f_0 - \Delta f$

Снятие резонансной характеристики производится на средней и максимальной частоте диапазона. Результаты измерений следует занести в таблицу 2 и построить по ним графики.

- 5. Собрать схему входной цепи с индуктивно-емкостной связью с антенной. Снятие экспериментальных данных производить согласно схеме п.І. Данные свести в таблицу І и по ним построить график $\kappa_o = \varphi(f)$.
- 6. Для расчета добротности контура из резонансных характеристик входной цепи определить полосу частот $2\Delta f_{0,7}$ при спаде коэффициента лередачи до уровня 0,7.

Ввиду малости связи с антенной и ее сильной расстройки при снятии резонансных кривых вносимым из антенны сопротивлением можно пренебречь.

- 7. Расчет резонансного коэффициента передачи для входной цепи с емкостной связью с антенной в трех точках диапазона производится по формуле $K_0=4\, {\mathfrak T}^2 \cdot Q_3 \cdot L_K \cdot {\mathcal C}_A^\dagger \cdot {\mathcal f}_0^2$. Результаты расчета в виде трех точек следует нанести на график с экспер ментальной кривой.
- 8. Расчет резонансного коэффициента передачи для схемы с индуктивной овязью с антенной производится по формуле

$$\kappa_0 = \frac{\kappa \sqrt{\frac{L_K}{L_A}} + \frac{C_C B}{C_K}}{1 - \frac{f_A^2}{f_0}} \cdot Q_9$$

Резонансную частоту антенной цепи $f_{\rm A}$ определить также расчетным путем и в виде трех точек нанести на экспериментальный график.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- Изобразить схемы входных цепей с емностной и индуктивной связью.
- 2. Изобразить эквивалентные схемы антенны и входа цепи лампы.
- Каковы качественные требования, предъявляемые к входным цепям.
- 4. Пояснить основные электрические характеристики входных цепей.
- 5. Из каких соображений выбирается коэффициент перекрытия диапазона.
- 6. Как влияет емкость C (начальная емкость контура) на коэффициент перекрытия диапазона.
- 7. Назначение емкости связи входной цепи. Из каких соображений выбирается ее величина.

- 8. Дать физическое объяснение диапазонных характерис— тик $\kappa_0 = \varphi(f)$ входных цепей при различных связях контура с антенной.
- 9. Изобразить частотные характеристики входных цепей при индуктивной и емкостной связи для больших расстроек.
- Из каких соображений выбирается степень связи контура входной цепи с антенной.
- II. В чем заключается условие получения максимального коэффициента передачи?
 - 12. Каково назначение входных цепей приемников СВЧ ?
- 13. Как изменяются параметры колебательного контура при его перестройке в пределах поддиапазона?
- 14. Почему при индуктивной связи с антенной обычно выполняют условие $f_A < f_{o\,min}$, т.е. используют случай -"удлиненной антенны" ?
 - 15. Назначение входной цепи.
 - 16. От чего зависит резонансная частота цепи антенны ?
- 17. Какие существуют виды связи антенны с входным контуром приемника ?
- 18. Каков характер зависимости ксэффициента передачи входной цепи от резонансной частоты контура для индуктивной связи при настройке цепи антенны на частоту, которая ниже самой низкой частоты диапазона?
- 19. Какой характер имеет эта зависимость в случае укороченной антенны ?
- 20. Для чего применяют индуктивно-емкостную связь входного контура с антенной ?
- 21. От чего и как зависит расстройка входного контура при смене антенны ?
 - 22. От чего зависит избирательность входного контура ?

ЛИТЕРАТУРА

- I. В.И.Сифоров. Радиоприемные устройства, гл.2, стр. 27-53, Воениздат, 1954 г.
- 2. Н.И. Чистяков. Радиоприемные устройства, стр. 27-90, Связьиздат, 1958 г.

РАБОТА № 2

ИССЛЕДОВАНИЕ УСИЛИТЕЛЯ ВЫСОКОЙ ЧАСТОТЫ

цель работы

- 1. Исследование резонансного усилителя с непосредственным включением контура в анодную цепь и последовательным питанием анода.
- 2. Исследование резонансного усилителя с непосредственным включением контура в анодную цепь и параллельным питанием анола.
- 3. Исследование резонансного усилителя с трансформаторным включением контура в анодную цепь и последовательным питанием анода.

заданив

- Снять зависимость резонансного коэффициента передачи от частоты для трех различных схем усилителя высокой частоты.
- 2. Снять резонансные характеристики контура для трех точек диалазона.
- 3. Рассчитать в каждом случае добротность контура из резонансных характеристик. Расчет производить для двух крайних частот и средней частоты диапазона.

порядок выполнения работы

Соединить приборы и макет усилителя высокой частоты согласно рис.12 * .

Рис. 12.

^{*)} Включение напряжения производится после проверки схемы преподавателем или лаборантом.

Проверить калибровку напряжений генератора ГСС-6 и лампового вольтметра, для чего включить вольтметр АЧ-М2 но выход генератора ГСС-6 и установить такое выходное напряжение генератора, чтобы вольтметр показал 0,3 в.

Напряжение, снимаемое с выходного делителя ГСС-6 следует поддерживать постоянным и равным 0,3 в.

I. С помощью имеющихся переключателей собрать схему резонансного усилителя с непосредственным включением контура в анодную цепь и последовательным питанием анода.

Устанавливая ручку переменного конденсатора через наждые 100 кгц настроить ГСС-6 на резонансную частоту контура в диапазоне усилителя по максимальному показанию лампового вольтыетра и снять соответствующие показания. Полученные экспериментальные данные занести в таблицу 3 и построить по ним график.

			Таблица 3		
f	500 кгц	1000 кгц	1500 кгц		
			0		
2 %	o		*		
вых					
	4				
K					
		.===========			

- 2. Установить ручку переменного конденсатора на нижнюю (близкую к 500 кгц) частоту контура. Не изменяя настройки контура и амплитуды входного сигнала, изменять частоту генератора ГСС-6 через 2-4 кгц в обе стороны до напряжения на выходе $\mathcal{V}=0.1\mathcal{V}_{\text{max}}$. Аналогичные измерения произвести на средней и верхней частоте контура.
- 3. Собрать схему резонансного усилителя с непосредственным включением контура в анодную цепь и параллельным питанием анода и повторить измерения, как указано в пункте і и 2.
- 4. Собрать схему резонансного усилителя с трансформагорным включением контура в анодную цепь и последователь-

ным питанием. Измерение провести аналогично п. 1 и 2.

Для расчета добротности контура из резонансных харак— теристик определить полосу частот при спаде коэффициента передачи до уровня 0,7. По пунктам 1,2,3,4 построить соответствующие графики.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- I. Объясните назначение усилителей радиочастоты радиоприемников.
- 2. Как (и почему) зависит резонансный коэффициент усиления каскада от резонансной частоты контура при непосредственном включении контура в анодную цепь лампы ?
- 3. Какой вид имеет аналогичная зависимость для индуктивной связи контура с лампой при настройке анодной цепи на частоту, превышающую верхнюю частоту диапазона?
- 4. Сравните эту зависимость с зависимостью коэффициента передачи входной цепи от резонансной частоты входного контура в случае укороченной антенны.
- 5. Какое влияние оказывает емкость управляющая сетка анод лампы на форму резонансной характеристики колебательного контура, включенного в сеточную цепь ?
- 6. Как определить резонансную частоту антенной цепи приемника и анодной цепи усилителя ?
- 7. Какие искажения сигналов могут быть в резонансном усилителе и от чего они зависят ?
 - 8. Как выбирается лампа для УВЧ ?
- 9. Охарантеризуйте источники паразитных связей в УВЧ и меры оорьбы с этими связами ?

ЛИТЕРАТУРА

I. Л.С.Гуткин, В.Л.Лебедев, В.И.Сифоров. "Радиоприемные устройства", гл.І, Советское радио, 1961.

PABOTA Nº 3

ИССЛЕДОВАНИЕ УСИЛИТЕЛЕЙ ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ С ДВУХКОНТУРНЫМ ПОЛОСОВЫМ ФИЛЬТРОМ

цель работы

- 1. Изучение влияния связи между контурами и их взаимной расстройки на форму резонансной характеристики усилителя.
- 2. Исследование условий получения симметричной резонансной характеристики.
 - 3. Поверочный расчет усилителя промежуточной частоты.

заданив

I. Экспериментально определить критическую связь между контурами (β = I) и снять для этой связи резонансную характеристику усилителя.

- 2. Снять резонансную карактеристику усилителя при связи между контурами больше критической ($\beta = \beta_{\text{max}}$)
- 3. Снять резонансную характеристику усилителя при взаимно расстроенных контурах.
- 4. Снять резонансную характеристику усилителя при взаимно расстроенных контурах с различным затуханием.
- 5. Снять резонансную характеристику при связи между контурами меньше критической ($\beta < 1$).
- 6. Пользуясь резонансной хара́ктеристикой усилителя для критической связи, рассчитать следующие параметры: коэффициент затухания контура; крутизну характеристики лампы 6К4П в рабочей точке; критический коэффициент связи K_{K0} ; критическую взаимоиндукцию M_{K0} .

порядок выполнения работы

Блок-схема соединения приборов изображена на рис.13. Установить на ГСС-6 частоту 465 $^\pm$ 10 кгц и входное напряжение 0,03 в.

Рис. 13.

I. Для определения критической связи между контурами следует не перестраивая ГСС-6 и контуров, увеличивать связь до тех пор, пока напряжение на выходе усилителя не начнет падать (при настроенных контурах и одинаковых затуханиях контуров $\beta = I$).

При снятии резонансной характеристики поддерживать постоянным напряжение на входе усилителя, равное 0,03 в.

Изменять частоту входного напряжения вблизи максимума резонансной характеристики через 2 кгц, а для остальных точек через 4 кгц.

2. Связь между контурами больме критической (β = β_{max}) подобрать так, чтобы провал между горбами резонансной кривой был равен 0,7 от максимума.

Резонансную характеристику для этой связи снимать, поддерживая на входе усилителя.постоянным напряжение, равное 0,03 в.

- 3. Для снятия резонансной характеристики при взаимно расстроенных контурах переключатель Π_{19} замкнуть в положение I, не меняя расстояния между катушками фильтра, что соответствует включению дополнительной емкости параллельно 2-му контуру.
- 4. Для выполнения п.4 задания замкнуть переключатель Π_{19} в положение 2, не меняя расстояния между катушками фильтра, что соответствует подключению, кроме дополнительной емкости, сопротивления параллельно второму контуру.
- 5. Перевести переключатели Π_{19} в положение "выключено". Связь меньше критической ($\beta < I$) подобрать так, чтобы резонансное усиление было равно 0,7 от резонансного усиления при критической связи. Полученные данные занести в таблицу 4.

					Таблица 4				
	***	======	======			******			
+	4								
4	-					-:-			
					- 1				
770				14	1.4				
Colx									
10									
K		4							
					_:-	_:-		:	
and .				1	-				
111					2				

По результатам измерений вычислить и занести в таблицу значения коэффициента усиления $K = \frac{U_{\text{бых}}}{U_{\text{бк}}}$ и величины отношения $m = \frac{K}{K_{\text{max}}}$, а также построить график $m = \varphi(\Delta f)$ 6. При расчете параметров схемы считать, что контуры

6. При расчете параметров схемы считать, что контуры настроены на частоту $f_1 = f_2 = f_0 = 465 + 10$ к α параметры контуров одинаковы.

Расчет производится в следующем порядке:

из резонансной характеристики усилителя для критической связи определяется полоса частот $\Delta f_{0.7}$ и рассчитывается по формуле затухания контура;

определяется крутизна характеристики $S_{p,T}$ в рабочей точке по измеренному резонансному коэффициенту усиления. При критической связи ($\beta=1$) измерений резонансной коэффициент усиления K_o равняется:

$$K_o = \frac{S}{2 \cdot 1,4\sqrt{C_1 \cdot C_2} \cdot \Delta f_{0.7}} ;$$

по формуле $K_{\kappa p} = 1$ определяется критический коэффициент связи;

из уравнения $M_{\kappa p} = \frac{K_{\kappa p}}{L}$ находится значение взаимоиндукции при критической связи;

по известным значениям f_{\bullet} и f_{\bullet} и f_{\bullet} из условия резонанса определяется индуктивность контуров $f_{\bullet} = f_{\bullet} = f_{\bullet}$

контрольные вопросы

- I. Нарисовать принципиальные схамы усилителей с одним настроенным в резонансе контуром; с попарно расстроенными контурами; с двумя индуктивно-связанными контурами.
- 2. Объяснить назначение всех элементов схем усилителей, перечисленных в пункте I.
- 3. Составить эквивалентные схемы усилителей, перечисденных в пункте I.

- 4. Перечислить основные требования к усилителям рассматриваемых типов.
- 5. Объяснять влияние коэффициента связи между контурами на вид резонансных карактеристик.
- 6. Объяснить, что называется единичным коэффициентом усиления многокаскадного усилителя.
- 7. Перечислить причины, вызывающие асимметрию резонансных характеристик.
- 8. Чем определяется величина устойчивого усиления кас-кала ?
- 9. Какие меры борьбы с самовозбуждением усилителя промежуточной частоты ?

JUTEPATYPA.

- В. Е. Сифоров. Радмоприемные устройства, стр. 103-129, Воениздат. 1954.
- 2. В.Е.Сжфоров. Радвоприемнике сверхвысоких частот, стр. 261-273, Воениздат, 1955.
- 3. М.Л.Волин. Усилители промежуточной частоты, стр.30-33 и 160-172, «Советское радио", 1955.
- 4. Н.И. Чистяков и др. Радиоприемные устройства, Связьиздат, 1958.

PABOTA # 4

ИССЛЕДОВАНИЕ ПРЕОБРАЗОВАТЕЛЯ ЧАСТОТЫ

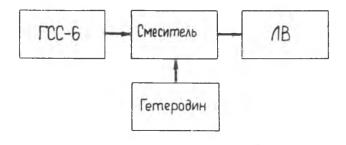
ЦЕЛЬ РАБОТЫ

- І. Исследование различных каналов приема в преобразователе.
- 2. Исследование зависимости коэффициента преобразователя от различных режимов его работы.
- 3. Исследование преобразования частоты на 2-ой гармонике гетеродина.

заданив

I. Исследовать прохождение через преобразователь частот f_2+f_{np} ; f_2-f_{np} и f_{np} .

2. Сиять кривую зависимости коэффициента усиления преобразователя от амплитуды напряжения гетеродина


$$K = \varphi(v_2)$$
.

- 3. Снять кривую зависимости коэффициента усиления преобразователя от амплитуды напряжения сигнада $\kappa_{np} \! \! \varphi | \psi_c |$
- 4. Определить полосу пропускания и коэффициент усиления преобразователя для частоты $f=f_{\rm DD}$
- 5. Снять кривую зависимости коэффициента усиления преобразователя от отрицательного смещения на его сетке.
- 6. Исследовать преобразование на 2-ой гармонике гетеродина.

порядок выполнения работы

Перед началом работы следует изучить схему и познакомиться с используемой аппаратурой (по инструкции).

Собрать схему установки согласно блок-схеме рис. 14.

PMc. I4.

Вильчение напряжений производится после проверки схемы преподавателем или лаборантом.

I. Для выполнения задания следует установить напряжение гетеродина $u_{\Gamma}=5\,\delta$; задать смещение на сетку преобразователя $E_q=-8\,\delta$; подать на сетку преобразователя напряжение сигнала от ГСС-6 — 0,5 в; изменяя частоту сигнала в пределах 2-5-го диапазонов ГСС-6, определить $\int_{C}=\int_{Z}+\int_{\text{пр}}$ и $\int_{C}^{1}=\int_{Z}-\int_{\text{пр}}$, соответствурщие максимальным показаниям A4-M2 на выходе преобразователя; зная \int_{C} и \int_{C}^{1} , определить промежуточную частоту $\int_{\text{пр}}$, частоту гетеродина из формул

$$f_{np} = \frac{1}{2} \left(f_c - f_c' \right)$$
, $f_2 = \frac{1}{2} \left(f_c + f_c' \right)$

переключить ГСС-6 на 3-й диапазон и определить $\int_c^c = \int_{np}$ во всех трех случаях следить за постоянством напряжения ГСС-6 - 0,5 в; определить напряжение промежуточной частоты на выходе преобразователя для 3-х частот: \int_c^c ; \int_c^c ;

2. Для выполнения задания следует задать смещение на сетку преобразователя $E_q=-4,5$ в; настроить ГСС-6 на частоту f_c ; установить напряжение сигнала $U_c=0,2$ в; изменяя напряжение гетеродина, снять кривую зависимости коэффициента усиления преобразователя от напряжения гетеродина.

$$K_{np} = \frac{v_{np}}{v_c} = K_{np}(v_2)$$
.

Напряжение гетеродина изменять от минимально-возможного до 10 в через I в. При снятии кривой зависимости $K_{np} = \phi\left(\mathcal{V}_2 \right)$ необходимо следить за постоянством $E_{\mathfrak{g}}$ и $\mathcal{V}_{\mathfrak{g}}$. Данные эксперимента и расчетов свести в таблицу 5 и по ним построить график.

						Таблиг	<u>a 5</u>	
	=======	=====	=====	======	======	======	======	===
:	:	:	:	:			•	
29	:	:	:	:	:	:	:	
:	:	-:	-:	:	:	:	-:-	
v_{np}	:	:		:			:	
Onp :	i	_:	—: <u> </u>	:	:	:	: <u></u>	
19	:	:	:	:	:		:	
K- Unp	:	:	:	:	:	:	:	
Vc :					0.00			
==========		=====	======	======	======	======	======	==:

3. Для выполнения задания настроить ГСС-6 и смещение оставить то же, что и в пункте 2. Напряжение гетеродина установить 5 в. Меняя напряжение сигнала от 0, I до I в через 0, I в, снять кривую зависимости коэффициента усиления преобразователя от напряжения сигнала

$$K_{np} = \frac{v_{np}}{v_c} = K_{np}(v_c)$$
.

При этом необходимо следить за постоянством \mathbb{E}_q и \mathbb{V}_2 Экспериментальные данные и результаты выполнения свести в таблицу \mathfrak{S} , построить кривую $\kappa_{np} = \phi\left(\mathfrak{V}_c\right)$

						Таблиц	<u>ta 6</u>	
========	======	=====		======	======			=
v								
_{np}	•				:			_
$K_{np} = \frac{v_{np}}{2}$								_
========	======	=====	=====	=====		======	=======	==

4. Для определения полосы пропускания частот преобразователя, его коэффициента усиления на частоте f_{np} необходимо подать на вход преобразователя напряжение промежуточной частоты от ГСС-6, равное 0,I в; напряжение гетеродина установить $M_{\Gamma} = 0 \delta$; установить $E_{\phi} = -2 \delta$; измерить на выходе преобразователя напряжение U_{np} ; увеличить выходное напряжение ГСС-6 в I,4 раза и расстраивая ГСС-6 в обе стороны от f_{np} довести напряжение на вы-

ходе преобразователя до режима, установленного ранее.

Записать соответствующие этому отсчеты по шкале частот ГСС-6. Разность отсчетов дает полосу пропускания преобразователя на уровне 0,7 его резонансной кривой.

5. Определить коэффициент усиления. Для этого следует настроить ГСС-6 на частоту $f_{\rm C}=f_2+f_{\rm пp}$ и установить напряжение $U_{\rm C}=0.2$ в; установить напряжение гетеродина $U_{\rm F}=10$ в; изменяя напряжение смещения на сетке преобразователя от 0 до 15 в снять зависимость коэффициента усиления преобразователя от величины отрицательного смещения на его сетке

$$K_{np} = \frac{v_{np}}{v_c} = K_{np}(E_g)$$
.

При снятии этой зависимости необходимо следить за постоянством $N_{\rm C}$ и $N_{\rm \Gamma}$. Данные эксперимента свести в таблицу 7 и построить кривую.

						1	аблица	7
	=======	.=====		======		======	=====	=======
F.	*	:	:	:	0 0	:		
L- g	-:	-:	:	:	-	-:	*	·:
v_{np}		•			:	:	* * * * * * * * * * * * * * * * * * *	
Knp								
					.=====			

6. Для выполнения задания необходимо настроить ГСС-6 на частоту $f_{\rm c}=2f_2+f_{\rm np}$ и снять, как в п.5, зависимость $\kappa_{\rm np}=\varphi({\rm E}_{\rm g})$ для преобразования на второй гармонике гетеродина. Данные эксперимента и вычислений свести в таблицу 8 и построить график зависимости $\kappa_{\rm np}=\varphi({\rm E}_{\rm g})$

	Tao	Л	ИЦ	a	8
--	-----	---	----	---	---

=======	=====				=====	======	=====	
					•		•	•
				•	•		•	
					•	•		
							-	1
L 0 '				*	•	-	-	•
					b			
							-	-
						•		•
		, ,						
17								
Onp :				•	•			•
Ttp		· ·	•		•	•	•	
							_	
	,							•
7.4				•				•
Unn •								
V							-	<u> </u>
Can an					*			
Knp 190								
=======					=====:	=====		

контрольные вопросы

- I. Как зависит коэффициент передачи преобразователя частоты от амплитуды напряжения гетеродина и отрицательного смещения на сигнальной сетке ?
- 2. Что такое крутизна преобразования и каксе соотношение между ней и крутизной лампы в усилительном режиме?
- 3. Что такое внутреннее сопротивление преобразователя и какое соотношение между ним и внутренним сопротивление ем лампы в усилительном режиме?
- 4. Почему напряжение на выходе преобразователя частоты проходит через максимум при нескольких значениях частоты генератора ГСС-6 ?
- 5. Укажите преимущества и недостатки супергетеродинного приемника по сравнению с приемником прямого усиления.
- 6. Какими соображениями сдедует руководствоваться при выборе промежуточной частоты ?
- 7. Что такое избирательность приемника по смежному каналу и чем она отличается?
- 8. Что такое избирательность приемника по симметрично- му каналу и от чего она зависит ?
- 9. Сравните односеточное и двухсеточное преобразование частоты.

- 10. Нарисуйте и сравните различные схемы преобразователей частоты.
 - II. Какие искажения могут возникнуть в преобразователе §
- 12. Какие требования предъявляются к стабильности частоты гетеродина?

ЛИТЕРАТУРА

- 1. В.И. Сифоров. Радисприемные устройства, стр. 235-275, Воениздат, 1954.
- 2. Н.И. Чистяков и др. Радиоприемные устройства, стр. 376-457, Связьиздат, 1959.
- 3. Л.С.Гуткин, В.Л.Лебедев, В.И.Сифоров, Радиоприемные устройства, стр. 273-337, Советское радио, 1961.

РАБОТА № 5

ИССЛЕДОВАНИЕ ДЕТЕКТОРА СИГНАЛОВ

ЦЕЛЬ РАБОТЫ

- І. Исследовать зависимость выходного напряжения детектора от параметров входного сигнала.
- 2. Исследовать влияние емкости нагрузки на частотную характеристику детектора и на нелинейные искажения в детекторе.

задани в

- І. Снять амплитудную характеристику детектора сигналов.
- 2. Снять модуляционную характеристику детектора сигна-
 - 3. Снять частотную характеристику детектора сигналов.

4. Исследовать влияние нагрузки детектора на нединей-

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

I. Изучить принципиальную схему детектора. Анодный детектор, вкодящий в схему лабораторного приемника, собран на левом диоде лампы 6X2П или подупроводниковом диоде ДГЦ-4 по последовательной схеме. Емкости C_{43} , C_{44} , C_{45} шунтируют по промежуточной частоте сопротивление нагрузки R_{34} , R_{44} , R_{45} . Выходное напряжение снимается с нагрузки и подается на вход усилителя пизкой частоты. Блок-схема измерения приведена на рис. 15.

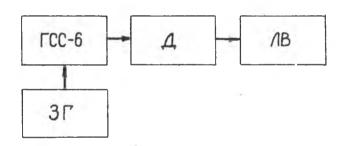


Рис. 15.

П. Снять амплитудную характеристику детектора. На вход усилителя промежуточной частоты подключить выход генератора ГСС-6.

К клеммам "внешняя модуляция" генератога ГСС-6 подключить выход генератора звуковой частоты.

К выходным клеммам панели детектора подключить вольтметр АЧ-M2 и осциллограф СІ-5.

Подать на вход усилителя промежуточной частоты промо-

дулированное напряжение промежуточной частоты ($f_{\text{пр}} = 465 \text{ кгд}$) с частотой $F_{\text{м}} = 400$ и глубиной модуляции m = 30 %. Включить вольтметр АЧМ-2 на входе детектора и установить напряжение промежуточной частоты $U_{\text{c}} = 15 \text{ в}$.

Не изменяя глубины и частоты модуляции, уменьшать напряжение на аноде детектора, измеряя по второму вольт-метру выходное напряжение $U_{K_{\rm bol}}$.

Результаты измерений свести в таблицу 9.

v_c	102-22-01
v_c	
79-	
	======

- Ш. Снятие модуляционной характеристики детектора. Схема измерений остается неизменной.
- I. Подать на вход детектора напряжение промежуточной частоты $U_c=15$ в, с глубиной модуляции m=90 % и частотой модуляции F=400 гц.
- 2. Не изменяя напряжение на входе детектора и частоту модуляции, уменьшать глубину модуляции, отсчитывая при этом напряжение на выходе.

Результаты измерений свести в таблицу IO.

m,%

Таблица ІО

- ІУ. Снятие частотной характеристики детектора. Схема измерений остается предней.
 - І. Подать на вход детектора напряжение промежуточной

частоты $V_{\rm C} = 15$ в при глубине модуляции m = 30 % с частотой модуляции $F_{\rm M} = 400$ гц.

	Tagana II
Fzu	
$v_{Q}(6)$	

- У. Исследование влияния нагрузки детектора RC на нелинейные искажения.
- Вилючить в схему детектора исходиме значения сопротивления и емкости нагрузки.
- 2. Істановить входное напряжение детектора $N_c = 15$ в при глубине модуляции m = 70-80 %.
- 3. Изменяя частоту модулеции по осциллографу заметить появление нелинейных искажений.
- 4. Включить в схему детектора другое значение емкости нагрузки и проделать измерения, указанные в п.3.

Заметить, при каком значения появились нелинейные искажения для нового значения емкости. Значение частот записать в отчет.

контрольные вопросы

- I. От чего зависит величина входиого сопротивления диодного детектора, работанцего с отсечкой тока ? Чему равио входиое сопротивдение детектора, выполненного по последовательной и парадлежьной схемам ?
- 2. Зависит ли коэффициент передачи детектора от величины емкости, пунтирующей сопротивление нагрузки ?

- 3. В чем состоит трудность измерения постоянного напряжения на нагрузке диодного детектора при помощи магнитоэлектрического вольтметра ?
- 4. От чего зависит величина постоянного напряжения на нагрузке диодного детектора, работаждего с отсечкой тока ?
- 5. Для чего служит конденсатор, включенный парадлельно сопротивлению нагрузки диодного детектора?
- 6. При каких параметрах детектора возникают нелинейные искажения сигнала ?
- 7. Как зависит полоса пропускания контура $2\Delta f_{0,7}$ от сопротивления нагрузки детектора ?
- 8. При каком сопротивлении утечки в цепи сетки усилителя низкой частоты $R_{\bf g}$ будут более значительные искажения входного сигнала? Какой характер имеют эти искажения?
- 9. Какой вид имеют характеристики выпрямдения детектора?
- 10. Как влияет входное сопротивление детектора для огибающей модулированного сигнала на частотную карактеристику низкочастотного эквивалента усилителя?
- II. Какова зависимость формы детекторных карактеристик от сопротивления нагрузки детектора ?
- 12. Как из характеристик выпрямления определить критический коэффициент модуляции $m_{\rm Kp}$ и коэффициент передачи детектора ?

ЛИТЕРАТУРА

- І. В.И.Сифоров. Радионриемные устройства, стр. 189-230, Вобимадат, 1954.
- 2. Л.С.Гуткий. Преобразование сверхвысових частот и детектирование, стр. 15-57, Госэнергоиздат, 1953.

PABOTA Nº 6

ИССЛЕДОВАНИЕ УСИЛИТЕЛЕЙ С ОБРАТНОЙ ОТРИЦАТЕЛЬНОЙ СВЯЗЬЮ

ЦЕЛЬ РАБОТЫ

- I. Экспериментальное изучение влияния отрицательной обратной связи на качественные псказатели работы усилителя.
- 2. Приобретение навыков по расчету усилителя с отрицательной обратной связью.
- 3. Сопоставление теоретических и экспериментальных результатов.

ЗАЛАНИЕ

1. Снять амплитудно-частотную характеристику усилителя с катодной нагрузкой при $u_{\delta x} = 4$ в и при трех зна-

чениях емности в цепи катода.

- 2. Оценить влияние емкости $C_{\rm K}$ на качественные по-казатели работы усилителя с катодной нагрузкой.
- 3. Снять амплитудно-частотную характеристику усилителя с RC связью при $U_{\rm Ry}=$ I в и $C_{\rm K}=$ 20 мкф.
- 4. Определить из эксперимента $\Pi.3$ суммарную емкость $\mathcal C$, шунтирующую анодную нагрузку и величину постоянной времени анодной цепи, равную $\mathcal T_{\mathfrak A} = \mathcal R_{\mathfrak A} \mathcal C_{\mathsf{D},\mathsf{A}\mathsf{D}}$.
- 5. Снять амплитудно-частотные характеристики усилителя с RC связью при U_{6x} = 0, I в и при трех значениях емкости в цепи катода.
- 6. Подсчитать величину постоянной времени катодной цепи $\tau_{\kappa} = C_{\kappa} R_{\kappa}$ и отношение $\frac{\tau_{\alpha}}{\tau_{\kappa}}$ для трех значений емкости в цепи катода.
- 7. Оценить влияние емкости C_{K} на качественные показатели работы усилителя с RC связыв.
- 8. Снять амплитудно-частотные характеристики усилителя с RC связью при различных величинах сопротивления анодной нагрузки и разделительного конденсатора.

порядок выполнения работы

I. При выполнении п.I задания к гнездам "вход ЛІ" подключить широкополосный генератор и собрать схему усилителя с катодной нагрузкой (рис.I6).

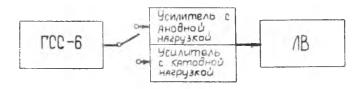


Рис. 16.

По вольтметру, расположенному на лицевой панели генератора, установить напряжение $U_{6\chi}=4$ в и в течение всего эксперимента поддерживать его постоянным. Отсчет выходного напряжения производить для частот 50, 100, 500 гц. 1, 9, 10, 20, 30, 50, 100 кгц, 0,5-I мгц и далее через каждые 0,5 мгц до частоты, при которой показания лампового вольтметра будут составлять 0,7 от показания на средних частотах.

Для усилителя с катодной нагрузкой U_{6x} = 4 в эта область лежит в интервале 50-I00 кгц. Результаты измерений занести в таблицу I2.

По данным таблицам I2 построить график K = K(f), $M = -\frac{K}{K_0} = m(f)$ для области верхних частот.

2. При выполнении п.3 задания собрать схему усилителя с RC — связью. Напряжение на входе установить равным 0,1 в.

			Таблиц	a I2
f	C _{K1} =		C _{K2} =	
	V _{вых} (в)	K	υ _{вых} (в)	К
=========		•		

Напряжение на входе в течение всего эксперимента поддерживать постоянным. Отсчет выходного напряжения производить так же, как при выполнении п.I.

Результаты экспериментов по исследованию усилителя с обратной связью занести в таблицу ${\tt I3.}$

f	C _{Kt} =		C _{K2} =		$C_{\kappa 3}^{-}$		C _{K4}	
	V _{вых}	K	¹⁹⁻ бых	К	V _{вых}	К	U _{бых}	K

- 3. Определение суммарной емкости производится по формуле $C = \frac{159}{f_6 R_0}$. Здесь f_6 (мгц); C (п ϕ); R_a (ком).
- 4. Порядок выполнения п.5 задания аналогичен порядку выполнения п.3. По данным таблицы построить график и для области верхних частот (выше 100 кгц), график
- $m = \frac{\kappa}{\kappa_o} = m$ (f) 5. При подсчете величины $T_K = \widetilde{\kappa}_K C_K$ емкости ламп и монтажа можно не учитывать, ввиду их малости по сравнению с емкостями конденсаторов, включаемых переключателем.
- 6. Оценка влияния емкости C на качественные показатели работы усилителя производится по добротности усилителя.
- 7. Порядок выполнения задания п.8 аналогичен п.3. Исследуются характеристики усилителя при различных значениях сопротивления анодной нагрузки и разделительных конденсаторов.

Для записи результатов эксперимента необходимо заготовить таблицу I4.

Таблица 14

f	C p1; F	$R_{\alpha_1}; R_{\alpha_2}$	Cp2;Ra1	R _{a2}	Cp3; Ra	; R _{a2}
•	Uвых	К	U _{вых}	К	U _{вых}	K
9	0.0				0 0 0	• •
:					:	:

8. По данным таблицы I4 построить график $\mathbb{M} = \mathbb{M}$ (f) для областей верхних и нижних частот. Оценить влияние этих элементов на частотные характеристики усилителя.

КОНТРОЛЬНЫЕ ВОПРОСЫ

I. Нарисовать принципиальную и эквивалентную схемы усилителя с катодной нагрузкой.

- 2. Какими свойствами обладает усилитель с катодной нагрузкой ?
- 3. Какими эквивалентными параметрами характеризуется лампа в схеме усилителя с катодной нагрузкой?
 - 4. Что называется добротностью усилителя ?
- 5. Как влияет емкость нагрузки на добротность усилителя с катодной нагрузкой ?
- 6. Нарисовать принципиальную схему и эквивалентную схему усилителя с RC связью.
- 7. Объяснить возникновение обратной связи в усилителе с RC связью при $\mathcal{C}_{\mathsf{K}} = \frac{1}{\omega_{\mathsf{H}} \, \mathsf{R}_{\mathsf{K}}}$.
- 8. От чего зависит коэффициент усиления каскада с обратной связью ?
 - 9. Каковы применения усилителей с обратной связью?
- 10. Как влияет величина сопротивления анодной нагрузки на частотную характеристику усилителя ?
- II. Как влияет величина постоянной времени разделительной цепи на частотные характеристики усилителя?

JUTEPATYPA

І. Б.Л.Крейцер. Видеоусилители, стр.280-292, Советское радио, 1952.

РАБО.ТА № 7

ИССЛЕДОВАНИЕ УСИЛИТЕЛЯ НИЗКОЙ ЧАСТОТЫ

ЦЕЛЬ РАБОТЫ

Необходимо исследовать предварительный усилитель, инверсный усилитель и двухтактный усилитель мощности при наличии и отсутствии обратной связи.

Исследование заключается в снятии амплитудной, натрузочной и частотной характеристик, а также определении зависимости нелинейных искажений от нагрузки и установлении влияния обратной связи на эти характеристики.

ЗАДАНИЕ

I. Снять амплитудную характеристику усилителя низкой частоты. 2. Снять зависимость выходного напряжения от сопротивления нагрузки $U_{6\text{ыx}} = \mathcal{Q}\left(\mathsf{R}_{\mathsf{H}}\right)$ при амплитуде на входе оконечного каскада $U_{\mathsf{C}} = 12\, 6$ с обратной и без обратной связи. По результатам измерений построить зависимость

 $P = \varphi(R_H)$ 3. Построить зависимость коэффициента нелинейных искажений от величины сопротивления нагрузки при включенной и
выключенной обратной связи для двухтактной схемы в режиме
класса A; для двухтактной схемы в режиме класса AB; для
однотактной схемы в режиме класса A: для однотактной схе-

мы в режиме класса АВ.

4. Измерить коэффициенты усиления предварительного и инверсного каскадов.

5. Снять и построить частотную характеристику усилите-

порядок выполнения работы

В работе производятся следующие измерения:

I. Снятие зависимости выходного напряжения от величины напряжения на входе усилителя $U_{6b|X}=f\left(U_{6\times}\right)$. Частота питающего напряжения берется равной 1000 гц. При этом собирается схема всего усилителя н.ч. (рис.17).

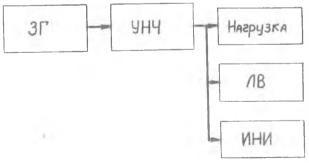


Рис. 17.

2. Снятие зависимости выходного напряжения от величины сопротивления нагрузки $U_{6blx} = \varphi(R_H)$ и определение коэффициента нелинейных искажений χ для тех же сопротивлений нагрузки.

Осциллограф, подключенный к выходу прибора ИНИ-I2, позволяет наблюдать жарактер искажений выходного напряжения. Прк измерениях по этому пункту напряжение звуковой частоты на входе усилителя поддерживается постоянным, а частота берется равной 1000 гц. Нагрузку усилителя имитирует реостат.

- 3. Снятие частотной характеристики мощного каскада производится в диапавоне частот от 50 до I2000 гц. Величина сопротивления нагрузки 6 ом.
- 4. Измерение усиления предварительного и инверсного каскадов.

контрольные вопросы

- Каково назначение инверсного каскада в схеме мощного блока ?
- 2. В каком режиме работают лампы в оконечном каскаде усилителя ?
- 3. Почему при определенной величине нагрузки оконечного каскада мощность, отдаваемая в нагрузку, максимальна.
- 4. Изменится ли смещение на сетках мощных ламп при изменении входного сигнала.
- 5. Каково влияние индуктивности рассеяния на ход частотной карактеристики оконечного каскада ?
 - 6. Какие бывают схемы выходных каскадов УНЧ ?
 - 7. Какого рода обратиая связь применена в данной схеме?
- 8. Каково влияние распределительной емкости обмоток выходного трансформатора на ход частотной характеристики оконечного каскада ?

литература

- С.Н.Кризе. Усилители низкой частоты, Связьиздат,
- 2. А.А.Ризкин. Основы теории усилительных схем, Связьиздат, 195
 - 3. Г.С. Цыкин. Электронные усилители. Связь. 1965.

PABOTA Nº 8

ИССЛЕДОВАНИЕ ОСНОВНЫХ ЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК ПРИЕМНИКА

ЦЕЛЬ РАБОТЫ

Экспериментально определить основные электрические характеристики лабораторного приемника.

задани в

- І. Снять характеристику чувствительности приемника.
- 2. Снять резонансную характеристику приемника.
- 3. Снять кривую верности приемника.
- 4. Снять амплитудную характеристику приемника.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- I. Соединить между собой все элементы макета лабораторного приемника.
 - 2. Подключить приборы по блок-схеме рис.18.

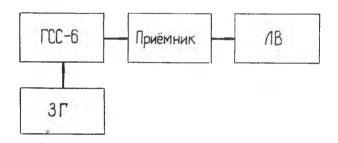


Рис. 18.

- 3. Настроить макет лабораторного приемника на выбранную частоту ГСС-6.
- 4. Снятие характеристики чувствительности приемника. Подать на вход приемника с ГСС-6 модулированное колебание несущей частоты $U_{\rm C}$ = 0, I в при глубине модуляции M= 0,3 (30 %) и частоте модуляции M= 400 гц.

Последовательной настройкой гетеродина, УВЧ и входной цепи добиться максимального показания измерителя выхода W_B-4 . После этого уменьшить U_C до такой величины, при которой на выходе приемника $U_{6\text{bix}}=5$ в. Эта величина входного напряжения будет соответствовать чувствительности приемника на заданной частоте.

Измерение чувствительности произвести в шести точках диапазона, настраивая каждый раз приемник на частоту подволимого сигнала.

Результаты измерений свести в таблицу 15.

	<u>Таблица 15</u>
f,kzy	*
U _С , мкв	
MK6 .	

5. Снятие резонансной характеристики приемника. Настроить приемник на частоту, соответствующую средней частоте диапазона.

Подать на вход приемника $3.Д.С. E_{\rm d}$, равную чувствительности на данной частоте настройки. После подстройки приемника на выходе установить нормальное напряжение.

Изменяя частоту ГСС-6 в обе стороны от резонансной увеличивать Э.Д.С. E_α , поддерживая напряжение на выходе приемника нормальным. Произвести отсчет при Э.Д.С. соответствующих $2E_\alpha$, $4E_\alpha$, $40E_\alpha$ с обеих сторон от резонанса.

Результаты измерений свести в таблицу 16.

Таблица 16

======	
Δf,	
кгц	
-	:
Ea	:
======	

6. Снять кривую верности приемника:

настроить приемник на среднюю частоту диапазона и по-дать на его вход 3.Д.С., равную чувствительности приемни-ка при данной частоте настройки, добиться $U_{\theta_{\rm bol}} = 5$ в;

изменяя частоту модуляции от 50 до 15.000 μ , измерить величину выходного напряжения, поддерживая при этом неизменными Э.Д.С. $E_{\rm G}$ и глубину модуляции m=0,3.

Результаты измерений свести в таблицу I7.

Ta	бл	иII	а	17

=======	
	·
_	•
F, 24	*
110	•
661X,	:
В	

7. Снять амплитудную характеристику приемника:

подать на вход приемника Э.Д.С. $E_{\rm Q}$ при F=400 гц m=30% соответствующую чувствительность приемника на средней частоте диапазона СВ. Настроить приемник на заданную частоту;

изменяя величину Э.Д.С. в эквиваленте антенны от $E_0 = 0$ до максимального значения выходного напряжения ГСС-6 измерять выходное напряжение.

Результаты измерений свести в таблицу 18.

Таблица 18

========	
F	•
α .	1
MKB	7. m.
110	1
O BBIX 1	•
6	

КОНТРОЛЬНЫЕ ВОПРОСЫ

- І. Что называется чувствительностью приемника ?
- 2. Что называется динамическим диапазоном приемника ?
- 3. Какие каскады приемника оказывают влияние на кривую верности в области низких и высоких звуковых частот ?
- 4. Какие каскады приемника супергетеродинного типа обеспечивают ослабление по соседнему и зеркальному каналам ?
- 5. Что необходимо знать для определения ослабления по зеркальному каналу приема?

- 6. Какие каскады приемника влияют на характер изменения чувствительности приемника в диапазоне частот?
 - 7. Для чего необходима АРУ в приемниках ?.
 - 8. Описать принцип действия простой схемы АРУ.
 - 9. Описать принцип действия АРУ с задержкой.
- 10. Как изменяется амплитудная характеристика приемника при введении автоматической регулировки усиления?
- II. Какое влияние оказывает автоматическая регулировка усиления на резонансную характеристику регулируемого усидителя ?
- . 12. Почему называется кажущимся ухудшение избирательности, наблюдаемое при медленном снятии резонансной характеристики усилителя, снабженного автоматическим регулятором усиления? Можно ли снять действительную резонансную характеристику при работающем АРУ?
- 13. Какой вид имеет амплитудная характеристика приемника при действии АРУ с задержкой ?
 - 14. Сравните различные схемы АРУ.
- 15. По каким соображениям выбирается постоянная времени фильтра цепи АРУ.
- 16. Можно ди за счет действия системы АРУ "назад" подучить надаваую амплитудную жарактеристику приемника?
- 17. Можно ли получить горизонтальный участок амплитудной характеристики приемника, пользуясь системой АРУ пназад"?
 - 18. Для какой цели в схему АРУ вводится задержка ?
- 19. Нарисуйте резонансную характеристику приемника, содержащего APV с задержкой.
- 20. Нарисуйте амплитудные характеристики приемника без АРУ и с АРУ с задержкой для разных наприжений задержки.
- 21. Вызывает ли нелинейность амплитудной характеристики приемника с APУ появление нелинейных искажений сигнала?

ЛИТЕРАТУРА

- I. В.И.Сифоров. Радиоприемные устройства, стр.614-632, Воениздат, 1964.
- 2. Н.И.Чистяков и др. Радиоприемные устройства, стр.653-659, Связьиздат, 1958.

PABOTA 169

ИССЛЕДОВАНИЕ ШИРОКОПОЛОСНЫХ УСИЛИТЕЛЕЙ

ЦЕЛЬ РАБОТЫ

- I. Экспериментальное изучение влияния корректирующих индуктивностей на качественные показатели работы широко-полосного усилителя.
- 2. Приобретение навыков по расчету широкополосного усилителя.
- 3. Сопоставление теоретических и экспериментальных результатов.

ЗАДАНИЕ

- I. Снять и построить на графике амплитудно-частотную карактеристику некорректированного усилителя при $\mathcal{V}_{\mathsf{Rv}} = 0, 5_{\mathsf{B}}$.
- 2. Из снятой карактеристики определить величину суммарной емкости С.

- 3. Определить добротность некорректированного каскада по формуле (I.IO) и сравнить ее с вычисленной по формуле (I.9).
- 4. Снять амплитудно-частотную карактеристику для широко-полосного усилителя с парадлельной анодной коррекцией при $\mathcal{U}_{6\times}=0,5$ и построить ее график.
 - 5. Определить величину корректирующей индуктивности.
- 6. Определить добротность каскада усилителя с парадлельной анодной коррекцией по формуле (I.9).

$$Q_o = \kappa_o f_6(0,7) \tag{I.9}$$

 K_o коэффициент усиления на частоте f_o .

$$Q = \frac{S}{2\pi c} \tag{I.10}$$

- 7. Снять амплитудно-частотную характеристику для широко-полосного усилителя со сложной коррекцией при $v_{6\times}=0,5$ и построить ее график.
- 8. Из условия оптимальности параметров определить величины индуктивностей $L_{\mathfrak{q}}$ и $L_{\mathfrak{q}}$.
- 9. Определить добротность наскада со сложной коррекцией по формуле (I.9).

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

На рис. 19 представлена принципиальная схема исследуемого усилителя.

Усилитель собран на лампе типа 6%4. Переключением Π_1 , Π_2 , Π_3 можно осуществить одну из трех схем коррекции.

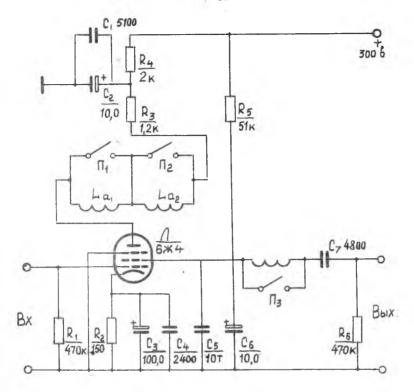


Рис. 19.

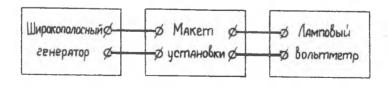


Рис. 20.

На рис.20 приведена блок-схема экспериментальной установки, состоящей из исследуемого усилителя, широкополосного генератора, блока питания.

ПОРЯЛОК ВЫПОЛНИНИЯ РАБОТЫ

Перед выполнением расоты необходимо изучить принципиальную схему усилителя, ознакомиться с маркировкой гнезд. *

I. Перед началом эксперимента переключатели Π_1 , Π_2 и Π_3 поставить в положение, соответствующее заданию. Стрелку катодного вольтметра установить на нуль.

При исследовании обычного усилителя переключатели Π_1 , Π_2 и Π_3 должны быть замкнуты.

При исследовании усилителя с простой параллельной коррекцией переключатель Π_2 разоминут, а переключатели Π_1 и Π_3 заминуты.

При исследовании сложной схемы коррекции переключатели Π_1 и Π_3 разомкнуты, а Π_2 замкнут.

К выходным зажимам усилителя подключить широкополосный генератор и при $v_{6x} = 0.5$ в снять характеристику для следующих частот: 50, 100, 500 гц; I, 5, I0, I5, 20 кгц.

Характеристика в области нижних частот снимается только раз, т.к. подключение корректирующих индуктивностей не изменяет закономерности ее.

После этого при U_{6x} = 0,5 и далее до частоты: 100, 200, 500 гц, I, I,5 кгц и до частоты, при которой коэффициент усиления уменьшится до уровня 0,7 от значения коэффициента усиления на средних частотах.

В данном усилителе Ко получается на частотах 20+200 кгц.

 $[\]frac{*}{}$ Включение источников питания разрешается после проверки схемы преподавателем или лаборантом.

Для записи результатов исследования амплитудно-частотных характеристик заготовить табл. 19.

Таблица 19

f	· Volux, 6	$\frac{\mathcal{V}_{\text{Bhix}}}{\mathcal{V}_{\text{Bx}}} = K$	$m = \frac{\kappa}{\kappa_o}$

По данным таблицы построить графики $m\left(\frac{f}{f}\right)$ в полулога-рифмическом масштабе.

2. Определение емкости на снятой амплитудно-частотной характеристике некорректированного усилителя производится с помощью формулы (I.3)

$$C = \frac{\sqrt{1 - m(\omega_{6})^{2}}}{\omega_{6} R_{\alpha} m(\omega_{6})} .$$

При

$$m(\omega_6) = \frac{1}{\sqrt{2}}$$
, $c = \frac{159}{f_6(0,7)R_a}$.

Здесь

3. Определение корректирующих индуктивностей производится из оптимальных значений коэффициентов коррекции.

для схемы рис. 1.2

$$L_{\alpha} = 0,414 \, CR_{\alpha}^2$$

для схемы рис. І.3

$$L_{\alpha} = 0.143 \, \text{CR}_{\alpha}^2 \; ; \; L_{g} = 0.582 \, \text{CR}_{\alpha}^2$$

КОНТРОЛЬНЫЕ ВОПРОСЫ

- I. Нарисовать схемы широкополосных усилителей с простой параллельной, с простой последовательной (прямую и обратную) и сложной коррекциями.
- 2. Нарисовать схему усилительного каскада с низкочастотной корректирующей цепочкой R_{ϕ} , C_{ϕ} и ее эквивалентную схему.
- 3. Нарисовать эквивалентные схемы перечисленных в пункте І широкополосных усилителей.
 - 4. От чего зависит добротность каскада ?
- 5. Какая связь между коэффициентом усиления каскада на средних частотах и временем установления каскада ?
- 6. Какой формулой определяются коэффициенты коррекций для схем, перечисленных в п.I.
- 7. Какие оптимальные величины коэффициентов коррекции для схем, перечисленных в п.I.
- 8. Как определить верхнюю частоту усилителя на уровне 0,7 при известных значениях времени установления каскада t_y или величине частотных искажений M_B .
- 9. Какое условие распространения энергий в усилителе бегущей волны ?
- 10. Какова оптимальная величина усиления каскада для получения минимального числа ламп на один каскад усилителя бегущей волны ?
 - II. Чем определяется спад верхушки импульса ?

ЛИТЕРАТУРА

- І. Г.С. Цыкин. Электронные усилители, 1965.
- 2. Г.В.Войнивилло. Усилители низкой частоты на электронных лампах, "Связьиздат", 1963.

- 3. А.А.Ризкин. Основы теории усилительных схем, Азд. Сов.Радио, 1954, 1964.
- 4. И.Г. Мамонкин. Импульсные усилители, Госэнергоиздат, 1958.
 - 5. Балик. "Широкополосные усилители".
 - 6. Конспект лекций по курсу "ППУУ".

PABOTA Mº 10

ИССЛЕДОВАНИЕ ОСНОВНОГО ТРАКТА РАДИОЛОКАЦИОННОГО ПРИЕМНИКА

ЦЕЛЬ РАБОТЫ

- I. Изучение особенностей типовой схемы основного тракта радиолокационного приемника.
- 2. Приобретение навыков экспериментального исследования радиолокационных приемников.

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

Блок-схема установки приведена на рис.21. Блок основного усиления состоит из пятикаскадного УПЧ, настроенного на промежуточную частоту $\int_{\mathsf{ПP}} = 30$ мгц, диодного детектора с гнездом для включения измерительного прибора м

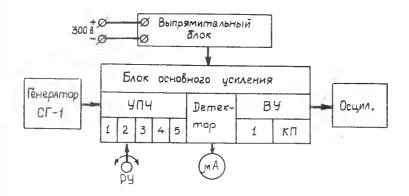


Рис. 21.

двужкаскадного видеоусилителя, причем, один из каскадов (оконечный) собран по схеме катодного повторителя.

Источником сигнала является У.К.В. генератор стандартных сигналов СГ-I, индикатором — электроннолучевой осциллограф.

Блок основного усиления питается стабилизированным напряжением 160 в.

Принципиальная схема блока приведена на рис. 22.

УСИЛИТЕЛЬ ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ

Усилитель промежуточной частоты состоит из пяти одинаковых каскадов, собранных по одноконтурной схеме. Резонансные частоты контуров одинаковы и равны промежуточной частоте $f_{\rm DR}$.

в катодную цепь второго каскада УПЧ включен потенциометр регулировки усиления R_7 .

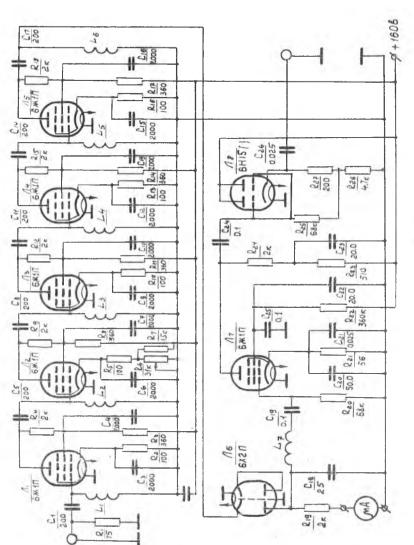


Рис. 22.

IETEKTOP

В схеме использован диодный ламповый детектор, дающий на выходе отрицательный импульс продетектированного напряжения (выходное напряжение снимается с анода лампы).

В схеме детектора предусмотрено гнездо для включения микроамперметра, измеряющего постоянную составляющую тока детектора.

По показаниям этого прибора производится настройка приемника, а также измерение коэффициента шума.

видеоу силитель

Видеоусилитель состоит из одного каскада усиления на сопротивлениях и катодного повторителя.

Применение катодного повторителя объясняется значительной емкостью кабеля, соединяющего выход блока с индикатором (осциллографом).

ЗАДАНИЕ

- I. Снять частотные характеристики УПЧ при двух положениях регулятора усиления.
- 2. Снять амплитудную характеристику УПЧ и определить коэффициент усиления УПЧ.
 - 3. Вычислить полосу пропускания шумов.
 - 4. Определить коэффициент шума.

порядок выполнения работы

1. Снятие частотной характеристики УПЧ.

Ознакомиться с правилами пользования генератором сигналов типа СГ-I (по инструкции).

Установить усиления приемника таким, чтобы шумы на экране осциллографа были едва видны.

Установить величину входного непрерывного сигнала с частотой f = 30 мгц такой, чтобы стрелка индикатора тока детектора μ А установилась около деления IOO.

Изменяя частоту входного сигнала ступенями через каждые 0,5 кгц и следя за постоянством его амплитуды, отметить показания индикатора тока детектора μ A

Вычесть из этих показаний показание $\alpha_{\text{нач}}$, обозначенное начальному току диода и наличию напряжения шумов, и вычислить $m = \frac{\alpha - \alpha_{\text{нач}}}{\alpha_{\text{max}} - \alpha_{\text{нач}}}$. Измерение производить в интервале частот $f_1 \div f_2$, на границах которого m = 0.05. Результаты измерений свести в таблицу 20.

Малое усилени	e ν _{6x} ;	≪нач	Таблица	20
f, mzų	(t	•		
∠	• • • • •			
∝-∝ _{Hαч}				
m	•	•		

Таблица 2I

Большое усилен	ие ϑ_{6x} ; $\alpha_{\mu\alpha\gamma}$		
		:=========	:
f,mzu	*		*
< ✓			
≪-≪ _{нач}			
m			

Полученную таким образом частотную карактеристику построить в координатах f и m .

Замерить полосу пропускания на уровне M = 0,7 и указать ее на графике:

установить максимальное усиление приемника при отсутствии сигнала;

установить величину входного сигнала такую, чтобы стрелка индикатора тока детектора μ А установилась около деления 100:

снять частотную характеристику УПЧ, как указано ранее. Полученную частотную характеристику построить в той же сетке координат, что и при малом усилении. Сравнить полученные характеристики.

2. Снятие амплитудной характеристики УПЧ и определение усиления УПЧ:

установить усиление приемника, как указано в п.Іб (малос усиление):

настроить генератор сигналов на частоту, соответствующую максимуму показания микроамперметра;

изменяя величину входного сигнала от нуля до максимального значения, отмечать показания индикатора тока детектора \propto . Пользуясь градуированной кривой, перевести показания в напряжение. При отсчете по шкале \propto вычесть начальное значение

установить большое усиление приемника и вновь снять амплитудную характеристику, подстроив генератор сигналов по максимуму показаний микроамперметра.

Определить коэффициент усиления УПЧ.

Результаты измерений свести в табл. 22.

			Таблица 22	_
	ν _{6x} , β	•		_
Малое усиление	_{вых} упч	•		
	К	•		_
Большое	<u> </u>	•		
усиление	υ _{6x} , β	o o	M	_
	Vobix, 6	6 6 6		
=======================================				==

Обе амплитудные характеристики построить в одной сетке координат. Отметить рабочие области характеристик.

3. Вычисление полосы пропускания шумов:

возвести в квадрат ординаты любой из частотных характеристик, полученных в п.І. Результаты вычислений занести в табл. 23. Построить кривую;

вычислить площадь фигуры, ограниченной осью абсцисс и кривой $m^2(f)$, пользуясь формулой парабол (правило Симпсона). Для этого промежуток $f_1 - f_2$, на котором определены значения $m^2(f)$, разбить на n равных частей ($n \gg 10$), причем n-1 четное число.

Тогда
$$S = \int_{f_1}^{f_2} m^2(f) df = \frac{h}{3} (m_o^2 + 4m_1^2 + 2m_2^2 + 4m_3^2 + \cdots + 2m_{n-1}^2 + m_n^2)$$
,

Таблица 23

где

$$h = \frac{f_2 - f_1}{n} ;$$

 $\cdots f = f_1 + nh = f_2$

 m_0^2 ; m_1^2 ; m_2^2 — значения ординат кривой $m^2(f)$ при абсциссах равных $f=f_1$; $f=f_1+h$; $f=f_1+2h$;

(фиг.13.5).

При этом крайние ординаты $m_{\rm o}^2$ и $m_{\rm n}^2$ должны быть

$$m_0^2 \ll 1$$
; $m_n^2 \ll 1$;

полоса пропускания шумов определяется по формуле

$$\Delta f_{\text{III}} = \int_{0}^{f_2} m^2(f) df$$

4. Определение коэффициента шума УПЧ:

установить минимальное усиление приемника (фактически) запереть его и заметить начальный ток диода при минимальном усилении \propto_{Hd4} ;

при отсутствии сигнала установить такое усиление приемника, чтобы шумы на экране осциллографа были хорошо видны. Заметить показания индикатора тока детектора.

$$\propto_{\text{Hay}} = \propto_{\text{Hay}} - \propto_{\text{m}}$$

Определить

$$\propto_{\rm m} = \propto_{\rm Hay} - \propto_{\rm Hay}$$

подать входной сигнал, увеличивая его до тех пор, пока индикатор тока детектора не отклонится на число делений, равное $\propto_{\text{Hqq}} + 1,41 \propto_{\text{max}}$. Заметить напряжение входного сигнала E_{C} по лимбу генератора сигналов;

вычислить коэффициент шума УПЧ

гле

$$\coprod_{yn4} = \frac{E_c^2}{4 \kappa T R_A \Delta f_{iii}}$$

К - постоянная Больцмана

 R_{Λ} - выходное сопротивле СГ-I

T - комнатная температура, T = 290°К.

контрольные вопросы

- 1. Дать определение полосы пропускания шумов.
 - 2. Дать определение коэффициента шума.
- 3. Как, зная коэффициент шума, подсчитать чувствительность приемника по мощности и напряжению?
- 4. Что такое коэффициент различимости и от каких причин он зависит ?
 - 5. Причины возникновения шумов ламп.
- 6. Нарисовать схему типового каскада УПЧ и объяснить назначение каждого элемента схемы.
- 7. Нарисовать схему диодного детектора и рассказать о выболе параметров схемы при импульсных сигналах.
- 8. Нарисовать схему типового каскада видеоусилителя и объяснить назначение наждого элемента схемы.
- 9. Нармоовать схему нагодного повторителя и перечислить его основные свойства и области поименения.
 - 10. От чего зависит коеффициент шума приемника ?
 - II. Как влижот первые каскады на величину шума приемника ?
 - 12. Как уменьшить коеффициент шума приемника ?

- 13. Дать определение реальной чувствительности приемника ?
- 14. Какими путями можно повысить чувствительность приемника СВЧ ?
- 15. Дать определение предельной чувствительности при-емника ?
 - 16. Как определяется коэффициент шума приемника ?
- Порядок величины коэффициента шума в приемниках, если первым каскадом является:

кристаллический смеситель;

УВЧ на лампе с бегущей волной;

параметрический усилитель.

- 18. Изобразить эквивалентную шумовую схему анодной цепи и первого УВЧ ?
- 19. Изобразить зависимость коэффициента шума приемника от величины связи контура входной цепи с антенной.
- 20. Пояснить, почему максимум коэффициента передачи и минимум коэффициента шума получаются при разной связи контура входной цепи с антенной ?

ЛИТЕРАТУРА

- I. В.И.Сифоров. Радиоприемные устройства, стр.361-379, 617-624, 361-379, 658-674, Воениздат, 1954.
- 2. А.П. Сиверс. Радиолокационные приемники, гл. У., У.Г., У.Г., Советское радио, 1952.
- 3. А.А.Колосов. Резонансные усилители, стр. II9-I40, Связьиздат, I949.
- 4. В.И. Сифоров. Радиоприемники сверхвысоких частот, стр. 386-397, Воениздат, 1957.

ЛАБОРАТОРНЫЙ ПРАКТИКУМ

по курсу "Проектирование приемно-усилительных устройств"

Редактор - И.С.Кольшева Корректор - И.Б.Гридина

Подписано в печать 29/уш-1987 г. ЕООЗ410 Формат 60 х 84 $^{\rm I}/_{\rm I6}$. Объем 5 печ.листов Тираж 1000 экз. Заказ $^{\rm 26.327}$

Куйбышевский авиационный институт им. С.П.Королева, г.Куйбышев, ул.Молодогвардейская, 151.

Ротапринтный цех типографии им. Мяги управления по печати при Куйбышевском Облисполкоме, г.Куйбышев, ул. Венцека, 60.

Цена 40 коп.