Менистерство науки , высшей школы и технической политики Российской Федерации

Самарский государственный аэрокосмический университет имени академика С.П.Королёва

KNHEMATNKA N ДИНАМИКА ГАЗОВ

Методические указания к решению задач

Составители: В.В.В а с и л ь е в, В.М.Г о л о в и н, Л.В.М о р о з о в, Г.В.Ф и л и п и о в, С.В.Ю р и н

УЛК 532.526

Кинематика и динамика газов: Метод, указания к решению зацич / Симар. гос. аэрокосм. ун-т. Сост. В.В.В а с и л ь о в, В.М.Г оловин, Л.В.М о розов и др. Самара, 1993.

Приведены типовые задачи по семи разделам аэрэдинамики. В каждом разделе дано по меньшей меро 25 задач или вариантов, что обеспечивает индивидуальное задание каждому студенту при групповых занятиях. Темитический комплекс включает всё необходимое для решения задач: формулы, графики, таблицы.

Указания предназначены для студентов факультета летательных аппаратов и факультета эксплуатации лотательных аппаратов и двигателей. Составлены на кафодре аэрогидродинамики.

Печатаются по решению редакционно-издательского совета Самарского государственного аэрокосмического университета имени академика С.П.Королёва.

I. ОСНОВНЫЕ ПОНЯТИЯ КИНЕМАТИНИ ВОЗДУХА

Общие сведения

Ускорение-полная производная скорости по времени-определяется формулой

$$\frac{d\vec{V}}{dt} = \frac{\partial \vec{V}}{\partial t} + (\vec{V}, \nabla) \vec{V} = \frac{\partial \vec{V}}{\partial t} + \sigma_{x} \frac{\partial \vec{V}}{\partial x} + \sigma_{y} \frac{\partial \vec{V}}{\partial y} + \sigma_{x} \frac{\partial \vec{V}}{\partial z}, \qquad (I.I)$$

где $\nabla = \tilde{i} \frac{\partial}{\partial x} + \tilde{j} \frac{\partial}{\partial y} + \tilde{k} \frac{\partial}{\partial z}$ — оператор Гамильтона, \tilde{V} — вектор скорости; ∂_x , ∂_y , ∂_y , ∂_z — компоненти скорости по соответствующим осям координат.

Слагаемое $\frac{\partial V}{\partial x}$ характеризует изменение скорости во времени в данной точке потока. В случае установившегося движения $\frac{\partial V}{\partial x} = 0$ и

$$\frac{d\vec{V}}{dt} = (\vec{V}, \nabla) \vec{V}.$$

Проектируя уравнение (І.І) на ось ОХ, получаем

$$\frac{d\sigma_x}{dt} = \frac{\partial v_x}{\partial t} + (\vec{\nabla}, \vec{\nabla}) v_x = \frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial z} + v_y \frac{\partial v_x}{\partial z} + v_z \frac{\partial v_x}{\partial z} \,.$$

Аналогичный вид имеют проекции ускорения на другие оси коор-

Диния тока-это линия, касательная к которой в данный момент времени в каждой точке совпадает по направлению с вектором скорости в той же точке.

Форма линий тока определяется уравнением

$$\vec{\nabla} \cdot d\vec{z} = 0$$
 where $\frac{dx}{\vec{v}_e} = \frac{dy}{\vec{v}_g} = \frac{dz}{\vec{v}_z}$,

где $d\vec{z} = \vec{t} dx + \vec{j} dy + \vec{k} dz$ —элемент насательной

Вихревая линия -это линия, касательная к которой в данный момент времени в каждой точке совиадает по направлению с вектором угловой скорости вращения частицы, расположенной в той же точке.

Угловая скорость вращения частицы воздуха определяется формулой

$$\begin{split} \overline{cS} &= \frac{1}{2} \left[\overrightarrow{i} \left(\frac{\partial \mathcal{V}_E}{\partial y} - \frac{\partial \mathcal{V}_G}{\partial z} \right) + \overrightarrow{j} \left(\frac{\partial \mathcal{V}_X}{\partial z} - \frac{\partial \mathcal{V}_Z}{\partial z} \right) + \overrightarrow{K} \left(\frac{\partial \mathcal{V}_G}{\partial z} - \frac{\partial \mathcal{V}_Z}{\partial y} \right) \right] = \frac{1}{2} \left[\nabla \times \overrightarrow{V} \right] = \\ &= \frac{1}{2} \left[\overrightarrow{J}_G \xrightarrow{\delta_G} \overrightarrow{J}_G \xrightarrow{\delta_G} \overrightarrow{J}_G \right] \end{split}$$

Уравнение вихревой линии по форме аналогично уравнению линии тока:

$$\vec{\omega}_x d\vec{z} = 0$$
 unu $\frac{dx}{\omega_x} = \frac{dy}{\omega_y} = \frac{dz}{\omega_z}$

Скорость относительного изменения объёма частицы воздуха $\theta = \frac{f}{W} \frac{dW}{dt}$ равна дивергенции вектора скорости: $\theta = div V$

При скоростях до 100 м/с воздух можно считать несжимаемым газом, тогда объём его не будет изменяться со временем и

$$\operatorname{div} \vec{V} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_y}{\partial x} = 0. \tag{I.2}$$

Это уравнение называют уравнением неразривности для скимаемого газа. В случае плосконараллельного течения из уравнения (I.2)следует, что существует функция тока Ψ ,через которую компоненты скорости определяются формулами

$$v_x = \frac{\partial \psi}{\partial y}$$
, $v_y = -\frac{\partial \psi}{\partial x}$. (1.3)

Расход воздуха через произвольную линию равен разности значений функции тока в её крайних точках.

Семейство линий тока описывается уравнением $\Psi(x,y) = c$. Линия тока, определяемая значением c = c , называется нулевой линией тока.

Из уравнения неразривности и формул (I.3) можно выразить функцию тока и потенциал скорости через компоненты скорости:

$$\Psi = \int \sigma_x \, dy - \int \left[\sigma_y + \frac{\partial}{\partial x} \int \sigma_x \, dy \right] dx + C \, ; \, \varphi = \int \sigma_x \, dx + \int \left[\sigma_y - \frac{\partial}{\partial y} \int \sigma_x \, dx \right] dy + C \, .$$

Задача І.І

Заданы компоненты скорости. Определить $\frac{dv_x}{dt}$, $\frac{dv_y}{dt}$, $\frac{dv_z}{dt}$, $div \vec{V}$, $\vec{\omega}$; найти уравнения линий тока и изобразить их с указанием направления движения. Изобразить вихревие линии с указанием направления вращения частиц.

Ответить на вопросы: является ли движение стационарным или нестационарным, вихревым или безвихревым, является ли среда сжимаемой или несжимаемой?

Зацания

I.
$$v_x = -\kappa y$$
 2. $v_x = xe^{-t}$ 3. $v_z = \kappa x + t$ 4. $v_x = (\kappa + x)e^{-ct}$

$$v_y = \kappa x$$

$$v_y = -ye^{-t}$$

$$v_z = 0$$

$$v_z = 0$$

$$v_z = 0$$

$$v_z = 0$$

$$v_z = 0$$

5.
$$v_x = -\kappa y/(x^2 + y^2)$$
 6. $v_x = x \sin \kappa t$ 7. $v_z = 2xy$

$$v_y = \kappa x/(x^2 + y^2)$$
 $v_y = -y \sin \kappa t$ $v_y = x^2 - y^2$

$$v_z = 0$$
 $v_z = 0$ $v_z = 0$

8.
$$v_x = 2\sqrt{x}$$
 9. $v_x = x^2y$ 10. $v_x = -\frac{2xy}{(x^2 + y^2)^2}$

$$v_y = -y/\sqrt{x} \quad v_y = -xy^2 \quad v_y = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

$$v_z = 0 \quad v_z = 0 \quad v_z = 0$$

II.
$$v_x = e^{-t}/x$$
 I2. $v_x = (\sin kt)/x$ I3. $v_x = (\frac{1}{3}x^3 + y)e^{-pt}$

$$v_y = \frac{v}{2} \sin kt$$
 $v_y = -x^2ye^{-pt}$

$$v_z = 0$$
 $v_z = 0$ $v_z = 0$

I4.
$$U_x = 3(x^2 - y^2)\cos kt$$

$$U_y = -6xy\cos kt$$

$$U_x = 0$$

I4.
$$v_x = 3(x^2 - y^2)\cos kt$$
 I5. $v_x = x + y + t$ I6. $v_x = \frac{1}{4}e^{-xy}$

$$v_y = -6xy\cos kt$$
 $v_y = x - y + t$ $v_y = \frac{1}{x}e^{-xy}$

$$v_z = 0$$
 $v_z = 0$ $v_z = 0$

I7.
$$V_Z = \frac{y^2 - z^2}{(x^2 + y^2)^2}$$

$$V_Z = \frac{2xy}{(x^2 + y^2)^2}$$

$$V_Z = 0$$

18.
$$v_x = \kappa y e^{-\rho t}$$
 19. $v_x = 0$

$$v_y = 0 \qquad v_y = x + t$$

$$v_x = 0 \qquad v_z = 0$$

20.
$$v_x = 4(x^5 - 3xy^2)$$

 $v_y = -12x^2y$
 $v_z = 0$

2I.
$$U_X = K\sqrt{y}$$
 22. $U_X = X^3y$

$$U_Y = -K\sqrt{x}$$

$$U_Z = 0$$

$$U_Z = 0$$

$$U_Z = 0$$

23.
$$U_Z = \frac{K}{y}$$

$$U_{\bar{y}} = -\frac{K}{Z}$$

$$V_{\bar{z}} = 0$$

24.
$$v_x = x\sqrt{y}$$
 25. $v_x = ye^{-t^2}$

$$v_y = -\frac{2}{3}y\sqrt{y} \quad v_y = xe^{-t^2}$$

$$v_z = 0 \quad v_z = 0$$

26.
$$V_{\mathcal{Z}} = \frac{\mathcal{Z}}{t}$$

$$V_{\mathcal{Y}} = -\frac{\mathcal{Y}}{t}$$

$$V_{\mathcal{Y}} = 0$$

2. ПЛОСКИЕ ПОТЕНЦИАЛЬНЫЕ ТЕЧЕНИЯ ИПЕАЛЬНОМ НЕСКИМАЕМОЙ СРЕИН

Общие сведения

В плоском безвихревом движении идеальной нескимаемой среды выполняются: уравнение неразрывности

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0 \tag{2.1}$$

и условие отсутствия викрей

$$\omega_{z} = \frac{1}{2} \left(\frac{\partial U_{y}}{\partial y} - \frac{\partial U_{z}}{\partial y} \right) \tag{2.2}$$

Из уравнения (2.1) следует существование функции тока (см. тему I). Из условия (2.2) следует, что выражение $v_z dz + v_y dy$ является полным дифференциалом функции φ , названной потенциалом скоростей. Поэтому

$$dy = v_x dx + v_y dy, v_x = \frac{\partial \mathcal{G}}{\partial x}, \quad v_y = \frac{\partial \mathcal{G}}{\partial y}.$$

С другой стороны, как известно из темы 1,

$$v_x = \frac{\partial \psi}{\partial y}$$
, $v_y = -\frac{\partial \psi}{\partial x}$. (2.3)

Следовательно,

$$\begin{aligned}
v_x &= \frac{\partial y}{\partial x} = \frac{\partial \psi}{\partial y} ,\\ v_y &= \frac{\partial y}{\partial y} = -\frac{\partial y}{\partial x}
\end{aligned} \right\} C - K .$$
(2.4)

Функции у и у связанные условиями (2.4) Кони-Римана, называются сопряженными гармоническими функциями. Каждая из них удовлетворяет уравнению Іапласа

$$\nabla^2 \varphi = \Delta \varphi = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0, \quad \nabla^2 \varphi = \Delta \varphi = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0, \quad (2.5)$$

где $\nabla^2 = \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ — оператор Лапласа.

Линейность уравнения Лапласа (2.5) позволяет использовать метод наложения потенциальных потоков. Если $g_1, g_2 \dots g_n$ — удовлетворяют уравнению Лапласа, т.е. $\Delta g_1 = 0$, $\Delta g_2 = 0$... $\Delta g_3 = 0$, то и их сумма $g_4 = 2$ $g_4 = 2$ также удовлетворяет уравнению Лапласа: $\Delta g_4 = 0$.

В результате получается картина более сложного течения. Можно подобрать такие φ , которые описивали бы течение около наперед заданного контура.

Выполнение условий Коши-Римана означает, что функция $W(Z) = \mathcal{G} + i \psi$ комплексной переменной $Z = x + i \psi$ является аналитической. Эта функция W(Z) называется комплексным потенциалом.

Значение производной $\frac{dw}{dz}$ не зависит от пути, по которому приращение стремится к нужи:

$$\frac{dw}{dz} = \frac{\partial w}{\partial x} = \frac{\partial w}{\partial (iy)} = v_2 - i v_y.$$

Видно, что производная комплексного потенциала даёт вектор, комплексно сопряжённый с вектором физической скорости. Эту величину называют комплексной скоростью \overline{V} . В интеграле $\oint \overline{V} dz = \oint \frac{dw}{dz} dz$ действительная часть равна циркуляции, а мнимая определяет объёмный раскод.

Известно, что в нескимаемых потоках идеального газа сумма дайления и скоростного напора вдоль линии тока постоянна:

При переходе от одной линии тока к другой величина константи меняется. Однако в случае потенциального движения эта константа сохраняет своё значение во всей плоскости течения.

Запачн

Задача 2.1

По зананному потенциалу скоростей или функции тока найти соответственно функцию тока или потенциал скоростей. Определить комилексный потенциал. комплексную скорость. Написать уравнения линии тока и эквипотенциальных линий и изобразить картину течения, при необходимости используя для упрощения полярные координаты. По уравнению Бернулли определить давление на заданной кривой или в точке. Исходные данные: давление и плотность во всех случаях-

Конкретные данные для определения констант содержатся в каждом задания.

Задания к задаче 2.1

Определить а ,если известно, что полное давление I. 1 = ax в потске равно 10^5 Па. 2. 4=8u Найти δ ,если известно, что полное давление в потоке равно 105 Па. 3. y=ax+by Определить а и в ,если известно, что линии тока образуют с осью абсилсе угол $\omega = 30^{\circ}$, а полное давление в потоке равно 10^5 Па. Найти a и b ,если известно,что линии тока 4. 4=a4-bx образуют с осью абсиисс угол $\alpha = 30^{\circ}$, а полное давление в потоке равно 105 Па. 5. $y=Aln\sqrt{x^2+y^2}$ Определит A ,если известно, что на окружности $R_{r} = I_{M}$ $V_{r} = 4M/c$,давление и плотность ρ_i, ρ_i . Найти ρ на окружности R_2 = 2π и вычислять массовый расход через нее. 6. 4=Bazetg # Найти \mathcal{B} ,если известно,что на окружности $\mathcal{R}_{\ell} = \ell_{N}$ $V_i = 0,4$ м/с ,давление и плотность P_i , P_4 . Вычислить ρ на окружности $R_2=2M$ и расход Qчерез неё. 7. у = Дагау у Определить О ,если известно, что на окружности $R_i = 1$ м $V_i = 4$ м/с "давление и плотность p_i , g_i . Найти ρ на окружности $R_g = 2 m$ и рассчитать ниркуляцию скорости по её длине. 8. $\Psi = -E R \sqrt{x^2 + y^2}$ Найти Е, если известно, что на окружности $R_1 = I_M$ $V_{i}=2\sqrt{2}$ м/с давление и плотность ρ_{i} ρ_{i} . Определить цавление на окружности Р2 - 2м и рассчитать циркуляцию скорости вдоль неё. 9. 4= F(202-42) Определить / всли известно, что на окружности R_{*} =/м V_{*} =2м/с давление и плотность ρ_{*} , ρ_{*} . Определить давление ρ в точке M (4,0). IO. 4=2624 Найти G ,если известно, что на окружности $R_{\ell} = \ell_{N}$ $V_{i} = 4 m/c$,давление и плотность ρ_{i} , ρ_{i} . Определить давление в точке М (3,4). II. 9=H 28+42 Определить Н. если известно, что на окружности $R_i = I_M V_i = 4 m_K$, давление и плотность ρ_i , ρ_i . Вычислить давление в точке М (2,2).

12. $\psi = -T \frac{g}{x^2 + u^2}$ Найти Т, если известно, что на окружности $R = I_M V_s = I_M/c$, давление и плотность ρ_s , ρ_s Вычислить давление на окружности $R_2 = 0,1_M$ 13. 9 = K -4 Определить К,если известно, что на окружности $R_i = I_M$ $V_i = I_M/c$, давление и плотность р, , р, . Вычислить давление на окруж-R2 = 0,2 M. I4. $\psi = -L \frac{\mathcal{Z}}{\mathcal{Z}^2 + \mathcal{V}^2}$ Найти 🛴 ,если известно,что на окружности $R_{i} = I_{M} V_{i} = 2E_{i}$ давление и плотность ρ_{i} , ρ_{i} . Вичислить давление на окружности $R_2 = 0.16 \, \mathrm{m}$ 15. $\varphi = N/2 + \ln \sqrt{x^2 + y^2}$) Определить N, если в точке Ы (-2,0) $V_c = \ln c$, давление и плотность р, р, . Вычислить давление р на нулевой линии тока. 16. 4= 8/y+2 arctg 4) Hahrn B, ecom B Touke M(-4,0) $V_s = 4 M/c$, давление и плотность ρ_{i} , ρ_{i} . Вичислить давление в критической точке, где V=0 . 17. y=Aln VZ2+y2+ Определить А иВ, если известно, что на окружности $R_i = I_M$ $V_i = 2\sqrt{2} n/c$, а циркуляция скорос-+ Barctg # ти вдоль неё $f = 4\pi$ давление ρ_4 плотность ρ , .Рассчитать давление ρ на окружности $R_2 = 2 M$. 18. 4 = Datety + -Определить 🛭 и Е,если известно,что на окружности $R_i = I_M$ $V_i = 4/2 M$, давление и -Eln /22+42 плотность Р. Р. ,а циркуляция скорости вдоль неё $r=8\pi$. 19. 9=0x+8 20+y2 Найти А и В,если известно, что на окружнос-TH $R_{x}=2_{N}$ $V_{y}=4_{x}^{2}$ npu X=0. Npu y=0 u x=-2V =0. давление и плотность Р, Р. Вычислить давление в точке м (0.2). 20. W = Dy-E y Определить О и Е,если известно,что в точке M (-2,0) V = 0, $\rho_M = \rho_\ell$, а в точке N(0,2)V=4м/с. Найти давление в точке N (0,2). 21. 9=Ky+L y Определить К и Д ,если известно, что в точке M (2,0) V = 8 M/c давление и плотность ρ_i , ρ_s . Рассчитать давление в точке N (0,-2). 22. V=-AX+8 X Определить А и В,если известно,что в точке M (0,-2) $V=0, \rho_{M}=\rho_{L}$. Вычислить давление в точке N (0,2).

23. $\varphi = 3A(x^2 - y^2)$

Определить А,если известно, что на окружности $R_i = 0.5_M$ V = 6.7. Давление и плотность P_i , P_i . Найти давление на окружности $R_2 = 2.8$.

24. 4=68 24

Определить В.если известно, что на окружности $R_r = I_M$ давление и плотность ρ_1 , ρ_2 . Циркуляция скорости вдоль неё $|\Gamma| = 24 \text{ M}^2/\text{C}$. Рассчитать давление на окружности $R_2 = 2\text{ M}$. Найти Λ и B .если известно что имркулящия скорости на окружности $R_1 = 2\text{ M}/\text{C}$ $R_2 = 2\text{ M}/\text{C}$ скорость в точке M (0,-2) $V_1 = 8 \text{ M/C}$ давление ρ_2 илотность ρ_3 .Найти давление в точке M (2,0).

25. $y = A\left(x + \frac{4x}{x^2 + y^2}\right) + B \operatorname{azctg} \frac{y}{x}$

найти \mathcal{B} и \mathcal{D} ,если известно, что циркуляция скорости на окружности $\mathcal{R}_i = \mathcal{W}_i = \mathcal{W}_i = \mathcal{W}_i$ скорость в точке M (0,—4) $V_i = \mathcal{W}_i = \mathcal{W}_i = \mathcal{W}_i$, давление и плотность p_i , p_i . Рассчитать давление в точке N (4.0).

26. $\psi = By + 6B \frac{\pi^2 + y^2}{\pi^2 + y^2} - \mathcal{D} \ln \sqrt{\pi^2 + y^2}$

Запача 2.2

Исследовать потенциальное течение найти ψ и ψ , определить линии тока найти критические точки ($v_x=0$, $v_y=0$), виделить нулевую линию тока найти скорость в точках с заданиями координатами x, y (по указанию предодаватели).

Течение является результатом наложения потенциальных течений с комплексными потенциалами.

- Запания к задаче 2.2

1.
$$W_1 = 2Z$$
, $W_2 = 3\ln Z$ 2. $W_1 = -iZ$, $W_2 = 2\ln Z$

3.
$$W_1 = 2 \ln Z$$
, $W_2 = 2 i \ln Z$ 4. $W_1 = 2 i Z$, $W_2 = 3 Z$

21.
$$W_1 = lnZ$$
, $W_2 = ilnZ$

3. УРАВНЕНИЕ БЕРНУЛИ КОЭФФИЦИЕНТ ПАВЛЕНИЯ

Общие сведения

Уравнение Бернули является общим интегралом уравнений установившегося движения идеального газа. Для нескимаемого газа оно имеет вид

$$\rho + \frac{\rho V^2}{2} = c. \tag{3.1}$$

Константу в общем случае определяют для каждой линии тока. В случае потенциального течения константа одинакова для всех линий тока. Её величину обычно определяют по условиям, характеризующим невозмущённый поток (на бесконечности):

$$C = \rho_{\infty} + \frac{\rho_{\infty} V_{\infty}^2}{2}$$

Комплекс $\frac{\rho V^2}{2}$ называют скоростным напором и обозначают буквой q. Тогда уравнение (3.1) можно записать в краткой форме:

т.е. сумма давления и скоростного напора вдоль линии тока не изменя-

Коэффициентом давления \mathcal{C}_{ρ} называют отношение изонточного давления в рассматриваемой точке к скоростному напору невозмущенного потока:

$$C_p = \frac{\rho - \rho_{\infty}}{2\infty} .$$

Запачи

3.1. У самолёта, летящего на висоте h , коэффициент давления в некоторой точке верхней повержности крыла \mathcal{C}_{p} .

Найти величину давления в критической точке (табл. 3.1).

3.2.В вэродинамической трубе давление в рабочей части ρ_{∞} . В коллекторе ρ_{κ} .Найти скорость потока в рабочей части. Степень поджатия принять равной ρ_{κ} . Температура воздуха T_{α} , атмосферное цавление ρ_{κ} (табл.3.2).

3.3.Скорость потока в рабочей части дэродинамической трубн V. Атмосферное давление и темпоратура равны соответственно ρ_a , T_a . Определить показания водяного U —образного вертикального манометра, измеряющего давления, передаваемые от отверстий полного и статического давления окоростного насадка (табл. 3.3).

Таблица З.І

Данные к задаче 3.1

Исходиме далные		ilo	мер	вариа	нта					
	I	3	3	4	5	6	7	8	9	IO
h , kin	0	8	9	IO	7-	EI	15	0	I	
- 90	I,4	-	1,6	1,8	2,0	2,1	-2,2		1,7	2,3

Таблица 3.2

Данные к задаче 3.2

Исходные		Номер варианта									
данные	I	2	3	4	5	6	7	8	9	10	
P. H H20		¥ 1	8,5						9	3,0	
Px , M H20	9,060	8,120	8,650	8,3	8,4	8,15	8,62	8,71	8,815	8,08	
n	4.0	4,5	5,0	5,5	6,0	5,8	5,4	4,8	6,2	6.0	
t, °C	20	25	22	21	20	23	24	25	26	23	
Pa, was Hg	740	750	760	745	755	765	770	735	760	750	

Данные к задаче 3.3

Исходные данные		Но	мер ва	ариант	ra					
	I	2	3	4	5	6	7	8	9	IO
V, M/C	30	35	40	45	50	60	65	50	40	45
Pa, MM Hg	740	760	745	750	755	765	770	760	765	750
t, °C	20	22	24	26	SI	23	25	24	22	23

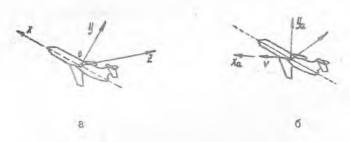
4. АЭРОДИНАМИЧЕСКИЕ КОЭФФИЦИЕНТЫ

Общие сведения

I. <u>Аэродинамические коэффициенти.</u> Коэффициентом полной аэродинамической силы $\mathcal{R}_{\mathcal{O}}$ называют её отношение к произведению скоростного напора q на характерную площадь летательного аппарата \mathcal{S} :

$$C_{R_a} = \frac{R_a}{q \cdot 5}$$
, $q = \frac{\rho V^2}{2}$.

Для крыла, оперения и т.п. за характерную площадь принимают площадь в плане. Для фюзеляжа, гондол двигателей, гондол шасси, подвесных устройств и т.п. — площадь миделя (наибольшего сечения нормального к оси части самолёта). Для самолёта в целом — площаць крыла (включая его подфюзеляжную часть).


Коэффициентом аэродинамического Момента называют отношение

аэродинамического момента М к произведению скоростного напора Q на карактерную площадь $\mathcal S$ и на карактерный линейный размер \angle :

$$m = \frac{M}{q \, 5L} .$$

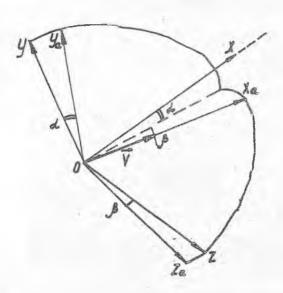
За карактерный линейный размер принимают размах крыла 🖡 или среднюю аэродинамическую хорду $\delta_{\rm A}$ -(см. ниже).

2. Оси координат.В вэродинамине обычно используют связанную и скоростную системы координат. Обе системы декартовы, правые. Начало координат обычно совмещают с центром масс самолёта (рис. 4.1):

Р и с. 4.1. Связанная (а) и скоростная (б) системы координат

OX	Ores	про	дол	квна	ОСЪ	(нап	равлена	
		по	OCN	Camo	лете	3	MILN	хорде);	

 OX_{o} - скоростная ось (направлена по скорости .JLA);


ОУ - нормальная ось (лежит в базовой плоскости):

ОУ - ось подъемной силы;

О? - поперечная ось;

О₹ - боковая ось.

Угол между продольной осью ОХ и проекцией скорости ЛА (летательного аппарата) на плоскость ХОУ связанной системы координат называют углом атаки & (рис. 4.2).

Р и с. 4.2 Углы между скоростной и связанной системами координат

Угол между направлением скорости ЛА и плоскостью ОХУ связан10й системы координат называют углом скольжения β (см рис. 4.2).
Проекции вектора полной аэродинамической силы на оси координат называют в основном так же,как и оси координат.

В связанной системе координат:

Х -продольная сила;

Y -нормальная сила;

Z -поперечная сила.

В скоростной системе координат:

 X_{a} -сила лобового сопротивления;

Уд -подъёмная сила;

Za -боковая сила.

Силу лобового сопротивления и продольную силу считают положительными, если они направлени против положительного направления осей ОХ и OX_2 соответственно.

Коэфициентом любой составляющей аэродинамической силы называют отношение этой составляющей к произведению скоростного напора на характерную площадь. Например: коэфициент лобового сопротивления

$$C_{xa} = \frac{X_a}{q.5}$$

Составляющие аэродинамического момента в связанной системе координат называют так:относительно оси 0X-момент крена,0Y-момент рыскания. 0Z-момент тангажа и обозначают m_x , m_y , m_z соответственно.

Коэффициент любой составляющей аэродинамического момента представляет собой отношение этой составляющей к произведению скоростного напора на характерную площадь и характерный линейный размер. За характерный линейный размер принимают: для составляющих m_x , m_s — размах крыльев, для составляющей m_x —среднюю аэродинамическую хорду. Например:

коэффициент момента крена -

$$m_x = \frac{M_x}{958}$$

коэффициент момента тангажа-

$$m_{\pi} = \frac{M_Z}{9.5 \, B_A} \, .$$

Термини для составляющих аэродинамического момента и их коэффициентов в скоростной системе координат образовывают добавлением к данному термину слов "в скоростной системе координат"; соответственно буквенные обозначения образуют добавлением к букве M (или m) индекса соответствующей оси. Например: M_{ZQ} —момент тангажа в скоростной системе координат, m_{YQ} —коэффициент момента рыскания в скоростной системе координат. Переход от одной системы к другой при определении коффициентов аэродинамических сил в случае полёта без скольжения (β = 0) осуществляют по формулам:

$$C_X = C_{XA} COSd - C_{YA} Sind$$
;
 $C_V = C_{VA} COSd + C_{XA} Sind$.

При малых углах атаки ($\alpha < 15^{\circ}$) $C_x \approx C_{xa} - C_{ya} \alpha$; $C_y \approx C_{ya}$. Угол этаки α здесь берут в радианах.

Задачи

- 4.І. Найти m_x самолёта, если известно: $M_x = 3 \cdot 10^4$ Н.м, число маха равно 0,4; высота полёта h = 2 км, площаль крыла—200, м², размах крыла—40 м.
- 4.2. Момент крена в скоростной системе координат равен $5 \cdot 10^6$ Н.м. Определить коэффициент этого момента, если известно: M=0,5, h=1 км,площаць крыла 145 M^2 , размах крыла 36 м.
- 4.3. Подъёмная сила самолёта $5 \cdot 10^{-5}$ Н, сила лобового сопротивления $5 \cdot 10^4$ Н, угол атаки 5^0 , угол скольжения равен нулю. Найти продольную и нормальную силы.
- 4.4. Дано: c_{xa} =0.02, c_{ya} = 1,2, α = 15 0 , β = 0 0 . Найти: c_{x} и c_{y} . Дать полное наименование всех этих величин.
- 4.5. Дано $c_{xa} = 0.04$, $c_{ya} = 0.5$, $\alpha = 10^{0}$, $\beta = 0^{0}$. Найти c_{x} и c_{y} . Дать полное наименование всех этих величин.
- 4.6 Фюзеляж самолёта имеет длину 40 м, диаметр 4 м. Для него c_{xx} =0,08, высота полёта 5,5 км, число маха 0,6. Вычислить силу лобового сопротивления фюзеляжа.
- 4.7. Дано: $X = 3 \cdot 10^4$ H. $Y = 4 \cdot 10^5$ H. $\alpha = 3^{\circ}$. $\beta = 0$. Найти Y_{α} и X_{α} . Назвать эти силы.
- 4.8. В эксперименте измерено: $M_{xa}=10^3$ н.м. Определить натурное значение M_{xa} ,если известно: масштаб модели I:8,число M полёта и потока в аэродинамической трубе одинаковы (C,8), висота полёта 4 км,характерная площадь натурного объекта 50 м 2 .
- 4.9. По продувкам в аэродинамической трубе сила лобового сопротивления модели самолёта 300 Н. Масштаб модели I:5, скорость 30% натурной.Определить силу лобового сопротивления самолёта,летящего на высоте 4 км, М= 0,2, площадь крыла 30 м², хорда крыла 2 м,диаметр фюзеляжа I:5 м.
- 4.10. $Y_a = 5 \cdot 10^5$ Н, число маха— 1,5 ,висота полёта h = 8 км, площаць крыла 40 м 2 , площаць миделя самолёта 4м 2 . Вичислить c_{ya} . Назвать силу и коэффициент. Как направлена Y_a ,если самолёт летит под углом к горизонту, равным 30^0 ?
- 4.II. $Y_a = 4 \cdot 10^5$ Н.число маха I,5 , висота полёта IO км характерная площадь IOO м 2 . Вичислить c_{ya} . Назвать y_a и c_{ya} .

- 4.12. Масса горизонтально летящего самолёта 80 т, скорость 820км/ч, внеста полёта 9 км, площадь крыла 130 м², площадь миделя физаляжа 8 м². Какова будет величина подъёмной силы, действующей на динамически подобную модель, изготовленную в масштабе 1:10 ? Модельная скорость равна натурной.
- 4.13. Известен момент рыскания самолёта 3·10⁴H·м. Найти его коэффициент, если известно: М=0,5,высота полёта 3 км,площадь в плане 42 м²,размах крыла 24 м.
- 4.14. Коэффициент подъёмной силы равен 0,2. Определить подъёмную силу самолёта при M=2, h = 10 км, площали крыла 50 м².
- 4.15. Дано: $m_{\rm FR}=-0.03$. Найти $M_{\rm FR}$ при M=0.7; h=9 км.Площаць крыла 35 ж 2 , длина самолёта 20 м, хорда крыла 2 м.Указать движение самолёта под действием указанного $M_{\rm FR}$.
- 4.16. В продувках в аэродинамической трубе модели самолёта, изготовленной в масштабе 1:6, при скорости 0,25 от скорости полёта самолёта известна сила лобового сопротивления: 1000Н. Вичислить эту силу, действующую на самолёт в полёте при скорости 500 км/ч, h = 5 км. Площадь крыла 60 м².
- 4.17. Подъёмная сила модели самолёта, масштаб которой I:5, равна 800 Н. Модельная скорость адвое меньше натурной. Число Маха полёта самолёта равно 0,2. Характерная площадь 40 м², высота полёта 3 км. Определить подъёмную силу самолёта.
- 4.18. Скоростной момент рискания равен 2·10⁵ H·м. Определить его коэффициент, если задено: M=2 , h=15 км, S=360 м², $\ell=3$ м, $\ell=25$ м.

5. ИЗОЭНТРОПИЧЕСКИЕ ТЕЧЕНИЯ

Общие сведения

Изоэнтропическим называется течение, в котором энтропия не изменяется:

Плотность и давление при изоэнтропическом пропессе свизани

Скорость звука а может быть рассчитана по формуле

Для воздуха $\mathcal{R} = \text{I.4}$; $\mathcal{R} = 287$ Дж/кг-К , следовательно,

Уравнение энергии для изоэнтропического течения имеет вид

$$\frac{V^2}{2} + i = i_0 , \qquad (5.1)$$

где V -скорость потока, i -энтальния потока, i -энтальния заторможенного потока.

Параметрами торможения называют параметры газа в той точке, где поток изоэнтропически затормаживается до скорости, равной нуже. Их принято обозначать ρ_o , ρ_o , T_o , a_o , i_o .Давление ρ_o называют полным давлением.

Значение энтальнии можно выразить через термодинамические параметри:

$$\dot{L} = \frac{\alpha^2}{\mathcal{Z} - I} = \frac{\mathcal{Z}}{\mathcal{Z} - I} RT = \frac{\mathcal{Z}}{\mathcal{Z} - I} \frac{P}{P}.$$

Из уравнения (5.1) следует, что при уменьшении энтальнии скорость увеличивается. При i=0 скорость становится максимальной:

Отношение скорости течения газа V в данной точке потока к скорости звука в этой же точке называется числом Маха:

$$M = \frac{V}{a}$$
.

Если местная скорость меньше скорости звука, $V < a \ (M < 1)$, то течение называется дозвуковни; если $V > a \ (M > 1)$ —сверхзвуковни; если $V = a \ (M = 1)$ —звуковни. Значения газодинамических переменных при M = I называются критическими и обозначаются ρ_x , ρ_x , T_x , q_x . Они связаны с соответствующими параметрами торможения соотношения—

$$T_{*} = \frac{2}{2!} T_{o} , \quad \rho_{*} = \left(\frac{2}{2!+1}\right)^{\frac{2}{2!-1}} p_{o} , \quad \rho_{*} = \left(\frac{2}{2!+1}\right)^{\frac{1}{2!-1}} \rho_{o} .$$

Для воздуха
$$2 = 1,4$$
, следовательно,

$$\frac{T_{*}}{T_{*}} = 0.031 \; , \; \; \frac{P_{*}}{P_{0}} = 0.528 \; , \; \; \frac{P_{*}}{P_{0}} = 0.636 \; .$$

Критическая скорость звука может быть рассчитана по приближенной формуле $2 = 18.3 \sqrt{T_a} \ .$

К газодинамическим функциям относится также и "функция приведенного расхода":

$$q = \frac{\rho V}{\rho_0 V_0} = \frac{F}{F_0} = M \left[\frac{2+1}{2+(2e-1)M^2} \right] \frac{2+1}{2(2e-1)} =$$

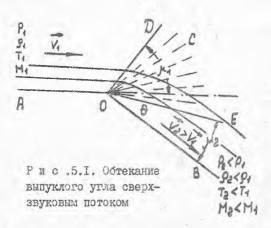
$$= 2 \left[\frac{2e+1}{2} \left(1 - \frac{2e-1}{2+1} \lambda^2 \right) \right] \frac{1}{2e-1}.$$

Здесь $\mathcal A$ -приведенная скорость, равная отношению местной скорости к критической скорости звука:

Приведенная скорость $\mathcal A$ и число Маха в данной точке связаны соотношением

$$A^{2} = \frac{(2l+1)M^{2}}{2 + (2l-1)M^{2}}$$
 (5.2)

Приведенная скорость имеет предельное значение


для воздуха $\lambda_m = 16$.

Зависимости параметров потока газа (ρ , ρ , T) от числа Маха(или от приведённой скорости) и от параметров торможения (ρ_o , ρ_o , T_o) называются газодинамическими функциями:

$$\mathcal{T} = \frac{T}{T_0} = \left(1 + \frac{2\ell-1}{2} M^2\right)^{-1} = 1 - \frac{2\ell-1}{2\ell+1} \chi^2$$

$$\begin{split} \mathcal{R} &= \frac{\rho}{\rho_0} = \left(1 + \frac{2^{-1}}{2} \, \mathsf{M}^2 \right)^{-\frac{2}{2^{-1}}} = \left(1 - \frac{2^{-1}}{2^{+1}} \, \lambda^2 \right)^{\frac{2}{2^{-1}}} \; , \\ \mathcal{E} &= \frac{\rho}{\rho_0} = \left(1 + \frac{2^{-1}}{2} \, \mathsf{M}^2 \right)^{-\frac{1}{2^{-1}}} = \left(1 - \frac{2^{-1}}{2^{+1}} \, \lambda^2 \right)^{\frac{1}{2^{-1}}} \; . \end{split}$$

Значения этих функций приведены в табл. 5.1.

При обтекании сверхзвуковым потоком тупого
угла (рис. 5.І) происходит расширение газа,
понижение в нем давления,
температури, плотности и
увеличение скорости.
Такое плоскопараллельное
изовнтропическое течение
называется течением
Прандтля-Майера. Для него
справедливи все формули,
приведенные ранее. Область,
заключенная между линия-

ми Маха, называется центрированной волной разрежения. В этой области происходит расширение газа, газодинамические параметры в ней постонным вдоль каждого луча ОС.

Если поток газа до расширения имеет звуковую скорость V=a, т.е. M=f , то в этом случае угол поворота в волне обозначают θ_e и он связан с числом Маха потока после поворота М соотношением

$$\theta_{*} = \lambda \operatorname{arctg} \frac{\sqrt{M^{2}-1}}{\lambda} - \operatorname{arctg} \sqrt{M-1},$$
 (5.3)

где ${\mathcal R}$ определяется соотношением (5.2).

Подагая в (5.2) М $\rightarrow \infty$, получим угол $\theta_{s,max}$, на который способен повернуться в волне расширения поток газа, имеющий до поворота начальное число Маха M=1:

$$\theta_{max} = (\mathcal{A}_m - 1) \frac{\pi}{2}$$
.

Пля воздуха $\mathcal{Z} = 1.4$,следовательно, $\theta_{max} = 130.4^\circ$.

Если поток газа до расширения имеет сверхзвуковую скорость, то при решении задач удобно считать "что звуковой (M=I) поток газа разогнался до этой скорости во время некоторого фиктивного поворота на угол θ_{φ} . Угол θ_{φ} определяется также по формуле (5.3) или таблице (5.1).

Для определения числа M_2 после поворота полагают, что звуковой поток (M=1) поворачивается на полный угол

 $\theta_n = \theta_{\varphi} + \theta$.

Угол \mathcal{S}_* ,определяющий центрированную волну расширения звукового потока, определяется по формуле

$$\delta_{*} = \lambda_{m} \ arctg \sqrt{\frac{M^{2}-1}{\Lambda_{m}}}$$
.

Угол ${\mathcal S}$, занятый волной расширения при сверхзвуковом потоке, можно найти как разность соответствующих значений ${\mathcal S}_*$:

где $\mathcal{S}_*(M_2)$ и $\mathcal{S}_*(M_1)$ вычисляются по формуле (5.2) для чисел Маха M_1 до поворота и M_2 после поворота соответственно или по таблице газодинамических функций (табл.5.I).

Таблица 5.1

	θ_{d}	\mathcal{S}_{\star}	М	T= P/Po	E=p/p0	T=T/T0
E	0°00' 0°30' 1°00' 2°00' 3°00' 4°00' 5° 10° 15° 20° 25°	0°00' 18°24' 23°32' 30°00' 34°34' 38°52' 42°18' 55°50' 66°24' 75°42' 84°10'	I,000 I,051 I,083 I,133 I,178 I,219 I,257 I,435 I,603 I,775 I,951	0,528 0,497 0,479 0,450 0,424 0,402 0,383 0,299 0,234 0,181 0,138	0,634 0,607 0,59I 0,565 0,542 0,522 0,504 0,422 0,354 0,295 0,243	0,833 0,819 0,890 0,796 0,783 0,771 0,760 0,768 0,660 0,613 0,563
	30°	92000	2,130	0,1040	0,198	0,523

θ_{*}	\mathcal{E}_{κ}	М	T= p/p0	E= P/Po	T=T/T0
35 ⁰	99 ⁰ 33′	2,327	0,0764	0,159	0,480
·10°	I06 ⁰ 48′	2,539	0,0552	0,126	0,437
45 ⁰	II3 ⁰ 48'	2,765	0,0388	0,098	0,395
50 ⁰	120°36′	3,010	0,0267	0,075	0,355
55 ⁰	127°18′	3,289	0,0178	0,056	0,316
60 ⁰	133°54′	3,606	0,0115	0,041	0,279
65 ⁰	140°20′	3,999	0,712.10-2	0,029	0,244
70°	I46°42′	4,348	0,426	0,0203	0,210
75 ⁰	153 ⁰ 00/	4,810	0,241	0,0135	0,179
800	159 ⁰ 15′	5,362	0,126 0	,851·10 ⁻²	0,149
85 ⁰	I65°27'	6,028	0,631.10-3	0,518	0,122
90°	171°36′	6,845	0,285	0,294	0,097
95 ⁰	1770401	7,837	0,114	0,153	0,075
100°	183048	9,259	0,403.10-4	0,726.10-3	0,055
105 ⁰	189 ⁰ 48	11,037	0,118	0,302	0,039
130 ⁰ 27	220027	00	0	0	0

Задачи

Задача 5.1

Определить число Маха полёта самолёта, если статическое давление потока ρ_{∞} , а давление в критической точке ρ_{σ} . Значения ρ_{∞} и ρ_{∞} для различных вариантов задания приведены в табл. 5.2.

Таблица 5.2

Номер варианта	: Ра, Па	: Po, Ma
I	19390	42965
2	19390	55058
3	19390	71827
4	19390 ·	94920
5	19390	126520
6	101325	187317
7	101325	228289
8	101325	283093
9	101325	355894
IO	101325	452082
II	3079I	65522
I2	30791	83052
13	30791	107172
1 4	3079I	140132
I5	30791	I84900
16	26491	57495
17	26491	73268
18	26491	95054
19	26491	124937
20	26491	165674
21	22690	50294
22	22690	64455
23	22690	84095
24	22690	IIII42
25	22690	148154
	100.00	

Задача 5.2

Самолёт летит на висоте h со скоростью V. Значения скорости и висотн для различных вариантов задания приведены в табл.5.3.

- 1. Определить давление в критической точке.
- 2. На сколько грацусов нагревается воздух в критической точке?
- 3. Чему равна критическая скорость полёта?
- 4. Какое показание будет на указателе скорости, если шкала градуирована для полёта на нулевой высоте без учёта сжимаемости?
 - 5. Чему равно число Маха полёта?
 - 6. Чему равен коэффициент скорости?

Таблица 5.3

Номер варианта	Висота h , км	Скорость V ,км/час
I	0	. I200
2	0	1400
3	0	I600
_4.	0	1800
5	0	2000
6	9	1200
7	9	1400
8	9	1600
9	9	I800
IO	9	2000.
II	10	1200
12	IO	1400
13	IO	1600
14	IO	1800
15	10	2000
16	II	1200
17	II	I400
I8	II	1600
I9 ·	II	1800
20	II	2000
21	12	1200
22	12	1400
23	12	1600
24	12	1800
25	12	2000

Запача 5.3

Сверхзвуковой воздушний поток, обтекая выпуклый угол AOB (см. рис.5.І) поворачивается на угол θ . До поворота поток движется параллельно стенке AO с параметрами ρ , , $T_{\rm I}$, V, значения которых приведены в табл. 5.4. Найти давление $P_{\rm 2}$, температуру $T_{\rm 2}$, скорость $V_{\rm 2}$, число Маха $M_{\rm 2}$ потока после поворота.

Таблипа 5.4

Номер варианта	ρ, , Ha	$\mathtt{T}_{\mathtt{I}}$, K	V , M/c	heta ,rpaz
I	19390	216,66	370,9	5,0
2	19390	216,66	423,42	10,0
3	19390	216,66	473,0	15
4	19390	216,66	523,75	20
5	19390	216,66	575,68	25
6	101325	288,I5	427,73	5
7	101325	288,15	488,30	10
8	I0I325	288,I5	545,47	I5
9	101325	288,15	604,0	20
IO	101325	288,15	663,89	25
II	30791	229,64	38I,85	5.
12	30791	229,64	435,92	10
13	30791	229,64	486,96	15
14	307 9I	229,64	539,2I	20
I5	30791	229,64	592,67	25
16	2649I	223,15	376,4I	5
17	26491	223,I5	429,7I	10
18	26491	223,15	480,02	15
I9	26491	223,15	531,52	20
20	26491	223,15	584,23	25
2I	22690	249,I3	397,73	5
22	22690	249,I3	454,05	IO
23 -	22690	249,13	507,20	15
24	22690	249,I3	561,62	20
25	22690	249,I3	617,32	25

6. ПРЯМОЙ СКАЧОК УПЛОТНЕНИЯ

Общие сведения

Прямой скачок уплотнения возникает перед поверхностью летательного аппарата, ортогональной вектору скорости набегающего потока воздуха (рис.6.1).

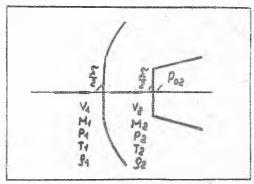


Рис. 6.I Скачок уплотнения перед телом со срезанным носком

Параметри газовой средиплотность ρ , и ρ_z , температура $T_{\rm I}$ и T_2 , давление ρ , и ρ_z , скорость $V_{\rm I}$ и V_z , определяемые соответственно перед скачком и после него, связаны соотношениями:

уравнением неразрывности $\rho_1 V_1 = \rho_2 V_2$;

уравнением изменения количества пвижения

$$\rho_{1}V_{1}(V_{1}-V_{2})=\rho_{2}-\rho_{1};$$
уравнением состояния $\rho_{1}=\rho_{2}RT_{1}, \ \rho_{2}=\rho_{2}RT_{2};$
уравнением энергии $\frac{3^{2}}{2^{2}}RT_{1}+\frac{V_{1}^{2}}{2^{2}}=\frac{3^{2}}{2^{2}}RT_{2}+\frac{V_{2}^{2}}{2^{2}},$

где R -газовая постоянная, $\mathscr Z$ -показатель адмабаты. Основное соотношение теории прямого скачка имеет вид $V_r \ V_2 = \alpha_s^2$, $\alpha_s^2 = \frac{2\mathscr R}{\mathscr R+1} R T_o$,

где T_{0} -температура торможения. Число Маха $M_{\overline{1}}$ и $M_{\overline{2}}$ связани соотношением

$$M_2^2 = \frac{1 + \frac{2 - 1}{2} M_i^2}{2 M_i^2 - \frac{2 - 1}{2}}$$

Плотности , температуры и статистические давления на скачке определяются по формулам

$$\frac{P_2}{P_1} = \frac{(\mathcal{X}+1)\,M_s^2}{2+(\mathcal{X}-1)\,M_s^2}, \quad \frac{P_2}{P_1} = \frac{2\,\mathcal{X}}{\mathcal{X}+1}\,M_s^2 - \frac{\mathcal{X}-1}{\mathcal{X}+1}, \quad \frac{T_s}{T_1} = \left(\frac{2\,\mathcal{X}}{\mathcal{X}+1}\,M_s^2 - \frac{\mathcal{X}-1}{\mathcal{X}+1}\right) \left[\frac{2+(\mathcal{X}-1)\,M_s^2}{(\mathcal{X}+1)\,M_s^2}\right].$$

Отношение давления торможения ho_{o2} к статическому давлению до скачка ho_{t} определяется формулой Релея через число Маха $m M_{I}$ до скачка

$$\frac{\rho_{oz}}{\rho_i} = \frac{\mathcal{Z}-1}{\mathcal{Z}+1} \left[\frac{(\mathcal{Z}+1)^2}{2(\mathcal{Z}-1)} \right]^{\frac{2}{\mathcal{Z}-1}} \frac{M_i^2}{\left(\frac{2\mathcal{Z}}{\mathcal{Z}-1} - \frac{1}{M_i^2}\right)^{\frac{1}{2\ell-1}}}$$

Коэффициент восстановления давления G представляет собой отношение давления торможения за скачком ρ_{o_2} к давлению торможения ρ_{o_1} в предположении изэнтропического торможения. Он характеризует собой необратимые потери механической энергии на скачке

$$\begin{split} \mathcal{G} &= \frac{\rho_{oz}}{\rho_{oi}} = \frac{\rho_{oz}}{\rho_{i}} \frac{\rho_{i}}{\rho_{oi}} \; ; \\ \frac{\rho_{oi}}{\rho_{i}} &= \left(1 + \frac{\mathcal{Z} - 1}{2} M_{i}^{2}\right)^{\frac{2}{2\ell-1}} \; ; \\ \mathcal{G} &= \left[\frac{2}{(\mathcal{Z} + 1)M_{i}^{2}} + \frac{\mathcal{Z} - 1}{\mathcal{Z} - 1}\right]^{-\frac{2\ell}{2\ell-1}} \left(\frac{2\mathcal{Z}}{\mathcal{Z} + 1} M_{i}^{2} - \frac{\mathcal{Z} - 1}{\mathcal{Z} + 1}\right)^{-\frac{1}{2\ell-1}} \end{split}$$

Для воздуха ($\mathcal{Z}=\mathrm{I},4$)выражения $\frac{\rho_{o_2}}{\rho_{e}}$ и σ принимают более простой вид:

$$\frac{P_{0z}}{P_{t}} = 166, 7 \frac{M_{t}^{2}}{\left(7 - \frac{I}{M_{t}^{2}}\right)^{2,5}},$$

$$G = \frac{166, 7 M_{t}^{2}}{\left(7 - \frac{f}{M_{t}^{2}}\right)^{2,5} \left(1 + Q_{t} 2 M_{t}^{2}\right)^{3,5}}.$$

Запачи

Запача С.І

Р и с.6.2. Скачок уплотнения перед вогнутой полусферой

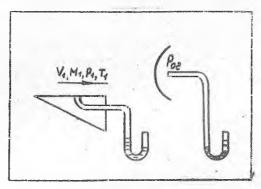

Полусфера находится в сверхзвуковом потоке воздуха (рис.6.2). Определить один параметр газового потока по заданным другим параметрам (τ aбл.6.1.)

Таблица 6.1

Номер <u>варианта</u>	\V_i	72	T,	72	M,	M ₂	Pz	Pas	Taz
I		K80M/c	?						77 ⁰ C
2	400m/c	300m/c	?						
3			20°C 55°C	?	1,5				
4	350m/c	11.0	55°C		-	?		-	
5					?		SKTC/CM2	5кгс/	CM2
6	700M/c					?			1 50°C
7	500m/c		100°C 70°C				5Krc/cm ²	7	
8			70°C		2,5				2
9			?	IOCC	4,0			-	
IO		?				1,2	-		10000

Задача 6.2

Датчик полного напора и клин находятся в сверхзвуковом потоке воздуха (рис.6.3).Определить соотношения между параметрами газа, замеряемыми на поверхности клина и датчика полного давления (табл.6.2).

Р и с.б.З. Датчик полного напора и клин в сверхзвуковом потоке

Таблица 6.2

	1	3.00						
Номер варианта	M,	V,	Ti	Pı	Por	Poz	ρ_{o2}	G
I		-				I2		?
2	I,5	1					in any father of the history of the Company of the	?
3		500 <u>%</u>	40°0	-				?
4	2		1	4KPC.		AND DESCRIPTION OF STREET	7	and intermitted transmission for case between
5				2 Krc	?		6RTC	The Delinstruck Standards of the Control of the Con
6				I,2Krc	I,8 HPC		?	maniferential felleratura exercicione recessor
7	3			2,5Krc		1		7

Завача 6.3

Определить параметры газа в камере ВРД самолёта, летящего на высоте \hbar со скоростью V_r , при наличии прямого скачка на входе и давление ρ_{or} , которое получилось бы в камере, если бы торможение было изэнтропическим.

Таблица 6.3

Номер варианта	h	٧,	6	Pi	₩,	V _z	ρ_{z}	Poz	Pol	Mz	Tz
	IOHM	2160 KM	?					?	?		
2	Экм	2000 KM	AVEL TO A STREET	ACTION AND AND AND AND AND AND AND AND AND AN			?			STREET, STREET	MAKE STATE OF STATE O
3	7km	1800 KM	Men amone of New York	, ille manes della constante d			postar or a constant of the co		,	TENNEN TENNENTE	?
4	5км	\$500 	Delegation - Control of the second	ACCEPTANT MANAGEMENT IN			Abgreed Mr. 4040 Figure			?	
5	?	?	8,	PACK ACTION OF THE PACK ACTION O	?					and the second	
6	IZĸm	?	Water Park	Delatrice con part at the control of	?		www.dichin			A CONTRACTOR OF THE PARTY OF TH	A STATE OF THE PARTY OF THE PAR
7				I,5KTC	?			SKLC		and particular and a second	and the second second
8	IIRM	2400 KM				?					NATIONAL PROPERTY.

7. КОСОЙ СКАЧОК УПЛОТНЕНИЯ

Общие сведения

Косым скачком уплотнения является плоская поверхность разрыва параметров в газовом потоке, нормаль которой не совпадает с вектором скорости невозмущенного потока (рис. 7.1). Скорость потока при переходе через косой скачок меняется по величине и по направлению.

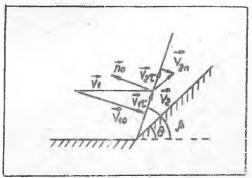


Рис. 7.1 Косой скачок уплотнения, возникающий при обтекании вогнутого угла сверхзвуковым потоком

Параметры газа до скачка-плотность ρ_i нормальная составляющая вектора скорости V_{in} и давление ρ_i -связаны с соответствующими параметрами после скачка ρ_2 , V_{2n} и ρ_2 соотношениями:

уравнением сохранения массы

уравнением изменения количества движения

Характерной особенностью косого скачка является равенство касательных составляющих векторов скоростей до и после скачка

Температура газа до скачка $T_{\rm I}$, нормальная $V_{\rho \rho}$ и касательная $V_{q \rho}$ составляющие скорости связаны с соответствующими параметрами после скачка T_{2} , $V_{2\rho}$ и $V_{q \rho}$ уравнением энергии

$$\frac{z}{z-1}RT_1 + \frac{V_{10}^2}{2} = \frac{z}{z-1}RT_2 + \frac{V_{2n}^2}{2} = \frac{z}{z-1}RT_0 - \frac{V_2^2}{2},$$

где То -температура торможения.

Основным соотношением косого скачка является выражение

$$V_{in} V_{2n} = a_{-\pi}^2$$
, $a_{-\pi}^2 = a_{\pi}^2 - \frac{\mathcal{R} - i}{\mathcal{R} + i} V_{\tau}^2$, $a_{\pi}^2 = \frac{2 \, \mathcal{R}}{\mathcal{R} + i} \, \mathcal{R} \, T_0$.

Угол отклонения потока на скачке θ определяется углом наклона фронта скачка к скорости невозмущенного потока β и числом маха невозмущенного потока M_{T}

$$tg\theta = ctg\beta \frac{M_i^2 sin^2\beta - 1}{1 - M_i^2 \left(\frac{2\ell + 1}{2} - sin^2\beta\right)}.$$

Отношения давлений, плотности и температур после скачка и до скачка определяются виражениями

$$\frac{P_{2}}{P_{i}} = \frac{2 \frac{2}{2} \frac{2}{2} M_{i}^{2} \sin^{2}\beta - \frac{2^{2}-1}{2^{2}+1},$$

$$\frac{P_{2}}{P_{i}} = \frac{(2^{2}+1)M_{i}^{2} \sin^{2}\beta}{2 + (2^{2}-1)M_{i}^{2} \sin^{2}\beta},$$

$$\frac{T_{2}}{T_{i}} = \left(\frac{2 \frac{2}{2} \frac{2}{2} M_{i}^{2} \sin^{2}\beta - \frac{2^{2}-1}{2^{2}+1}}{2^{2}+1}\right) \left[\frac{2 + (2^{2}-1)M_{i}^{2} \sin^{2}\beta}{(2^{2}+1)M_{i}^{2} \sin^{2}\beta}\right].$$

Коэффициент восстановления давления находится следующим образом:

$$G = \frac{\rho_{o2}}{\rho_{oi}} = \frac{\rho_{o2}}{\rho_{i}} \frac{\rho_{i}}{\rho_{oi}},$$

$$\frac{\rho_{oi}}{\rho_{o}} = \left(1 + \frac{2 - 1}{2} M_{i}^{2} \sin^{2} \beta\right)^{\frac{2}{2 - 1}},$$

$$\frac{P_{oz}}{P_{i}} = \frac{\mathcal{Z} - i}{\mathcal{Z} + i} \left[\frac{(\mathcal{Z} + i)^{2}}{2(\mathcal{Z} - i)} \right]^{\frac{\mathcal{Z}}{\mathcal{Z} - i}} \frac{M_{i}^{2} \sin^{2}\beta}{\left(\frac{2\mathcal{Z}}{\mathcal{Z} - i} - \frac{i}{M_{i}^{2} \sin^{2}\beta} \right)^{\frac{1}{\mathcal{Z} - i}}}$$

Отношения давлений $\frac{\rho_{az}}{\rho_i}$ и $\frac{\rho_{az}}{\rho_i}$ для воздуха (x=1,4) принимают более простой вид:

$$\frac{P_{02}}{\rho_i} = 166.7 \frac{M_i^2 \sin^2 \beta}{\left(7 - \frac{1}{M_i^2 \sin^2 \beta}\right)^2,5},$$

$$\frac{P_{01}}{\rho_i} = \left(1 + 0.2 M_i^2 \sin^2 \beta\right)^{3.5}.$$

Задачи

Задача 7.1

Клин с углом полураствора 8 находится в сверхзвуковом потоке воздуха (рис. 7.2). Теневой фотоснимок позволяет определить угол наклона косого скачка на носике клина к скорости невозмущенного потока В .Определить связь параметров потока до и после скачка.

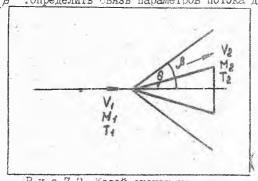
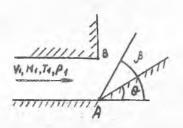


Рис.7.2. Косой скачок на клине

Номор варианта	B rpag.	ß roag.	M,	V, M/C	T_i ,	To.	M2	V ₂ ,	T ₂ ,	Poz Na	6	Pa Pi	P1 ,	
I	20 -	60	?											
2	30	?	2,0											
3	?	40	I,5											
4	I5	50							-iko			2		
5		45	3,0		-				MATERIAL ROSSO		?			
6		55		600	300	a globin physical accumum.			AND DESCRIPTION OF THE PERSON	?			3	
- 7		60.		720	320				?					
8	25	55		?	310	411-20 350000			W-THOWAY					
9	IO	60		500		350		?						-
IO		50		550	350	PACHGLER OF STREET	?	400						


Запача 7.2

Клин с углом полураствора θ находится в сверхзвуковом потоке воздуха со скоростью V_t .Угол наклона косого скачка β измерен по фотографии. Определить параметры течения газа.

Номер варианта	V,,	T, ,	To,	θ, : град	<i>В</i> ,	V ₂ , : м/с	M ₄
I	800		-	20	53	?	
2 -	700	?		25	60		?
3	?		400	15	.40	500	*
4	900	300		3	50		-

Задача 7.3

Воздух течёт по каналу, форма которого показана на рис. 7.3

В сечении АВ число Маха ${\rm M_I}$, давление ${\rho_{\rm f}}$. За точкой А стенка отклоняется на угол ${\theta}$. Рассчитать параметры течения.

Р и с.7.3. Форма канала

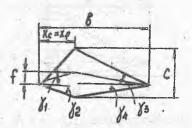
Номер варианта	M,	T,,	<i>To</i> ,	Krc/cm2	<i>в,</i> :град	<i>в,</i> град	V ₂ , M/C	krc/cm ²	Po, 2 KFC/CM	T ₂ K	Ø
Ţ	2,3			I,0	20,0			?			
2	4,0			2,5		30,0		-	?		?
3	3,0				I5,0	?				-	
4	3,5	350				40,0				?	
5	2,5	300	400			35,0	?				

Зацача 7.4

Определить параметры газовой среды за косым скачком уплотнения 10 значениям параметров до косого скачка с использованием таблиц газодинамических функций.

Но- мер ва- риан- та	M	V,,	<i>T</i> ,,	P, KFC CM ²	P, Kree ²	Το, Κ	<i>8</i> , град	<i>В</i> , град	M ₂	τ ₂ , Κ	У ₂ , м/с	PZ	P2	Poz	6
I	3	400	350				I4,7	60		300	?				?
3	2,5	700	000	2,5			15	00		200				?	(2)
4	I,3		310		-		17			?					
5	2 0	320	370 4I0			400	2I 25			390	?			-	
7	2,0		-470	4,0		and the second	64.40	55		فقة حمد مد.		?			
8	3,5				0,08	Control to the second	12								
SCHOOL STATE OF		-		market agency amount form	Accordance to the second		A STATE OF THE PARTY OF T			400-2			_		-

8. A 3 PO JAHAM WY ECKNE XAPAKTEPNCTNKA Y ETYPEX PPAHHOLO OPO ON JR


Общие сведения

І. Геометрические параметры профиля

Профилем крыла называется местное сечение крыла плоскостью, параллельной базовой плоскости летательного аппарата.

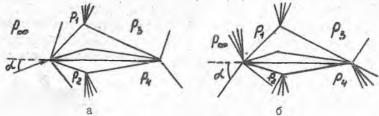
Обычно для описания профиля используются относительные толщины и вогнутость (кривизна) профиля и безразмерные координаты максимальной толщины и максимальной кривизны профиля (рис. 8.1):

 $\bar{C} = \frac{C}{R}$, $\bar{f} = \frac{f}{R}$, $\bar{Z}_c = \frac{f}{R}$, $\bar{Z}_c = \frac{f}{R}$. Величины углов $\chi_1, \chi_2, \chi_3, \chi_4$ могут быть выражены через значения $\bar{C}, \bar{f}, \bar{Z}_c, \bar{Z}_f$.

Р и с. 8.I. Четырехугольный профиль крыла

Например:

$$\chi_i = arctg \frac{c/2.+f}{x_c} = arctg \frac{\bar{c}/2+\bar{f}}{x_c}$$
.


2.Физическая картина обтекания профиля

При обтекании четырёхгранного профиля сверхзвуковым потоком в зависимости от соотношения значений углов χ_1 , χ_2 , χ_3 , χ_4 и α взможны различные случаи обтекания. Например, изображенные на рис. 8.2, где жирными линиями изображены скачки уплотнения, а расходящимися пучками тонких линий — волны расширения.

Параметры потока за косыми скачками уплотнения и после волн расширения определяются по соотношениям, приведенным в темах 7 и 5, а также по табл. 5.1.

3. Определение аэродинамических коэффициентов четырёхгранного профиля

Коэффициенти $\mathcal{C}_{\mathbf{y}}$ и $\mathcal{C}_{\mathbf{z}}$ в связанной системе координат могут быть определены путём интегрирования соответствующих проекций давления по поверхности профиля. Для обтекания четырёхгранного профиля сверхзвуковым потоком интегралы легко вычисляются и приводятся к простым соотношениям. Например, для случая, показанного на рис. 8.2:

Р и с.8.2 Обтекание профиля сверхзвуковым потоком: а)при малом угле атаки; б)при большом угле атаки.

$$C_{y} = \frac{Y}{\frac{P_{\infty}V_{\infty}^{2}}{2}} = \frac{2}{P_{\infty}V_{\infty}^{2}} \left[(p_{2}\cos \chi_{2} - p_{1}\cos \chi_{1})\overline{x}_{c} + (p_{4}\cos \chi_{4} - p_{5}\cos \chi_{3})(1 - \overline{x}_{c}) \right],$$

$$C_{x} = \frac{X}{\frac{P_{\infty}V_{\infty}^{2}}{2}} = \frac{1}{P_{\infty}V_{\infty}^{2}} \left[(p_{1}\sin \chi_{1} - p_{3}\sin \chi_{3})(E + 2\overline{f}) + (p_{2}\sin \chi_{2} - p_{4}\sin \chi_{4})(E - 2\overline{f}) \right]$$

В скоростной системе координат

$$C_{ya} = C_y \cos \alpha - C_x \sin \alpha ,$$

$$C_{xx} = C_x \cos \alpha - C_y \sin \alpha .$$

Варианты зацаний

Двадцать пять вариантов заданий по теме "Аэродинамические характеристики профиля" приведены в таблице 8.1. Значения параметров набегающего потока определяются по таблице стандартной атмостверы (табл.8.2).

Таблица 8.І

Номер		Асходные.	данные			
варманта	Ic = Il	Ē	F	d°	M	h, KM
I	0,2	0,04	- 0,01	10	Ι,3	0.
2	0,2	0,06	10,0	6	1,25	2
3	0,2 /	0,08	- 0,01	2	1,2	4
4	0,2	0,10	-0,01	0	I,I5	8
5	0,2	0,12	- 0,01	- 2	I,I	IO
6	0,3	0,04	0	10	1,3	- 0 -
7	0,3	0,06	0	6	I,25	2

Номер		Исходные	е данные		CONTROL DESCRIPTION CONTROL OF THE C	The property of the party of th
варианта	$\overline{x}_c = \overline{x}_f$	Ē	J.	d'	M	h, KM
8	0,3	0,08	.0	2	1,2	4
9	0,3	0,0	0 -	0	1,15	8
IO	0,3	0,12	0	-2	I,I	IO
II	0,4	0,04	0,01	IO	1,3	0
13	0,4	0,06	0,01	6	I,I5	2
13	0,4	0,08	10,0	2	1,2	4
14	0,4	0,10	0,01	0	1,15	8
I5	0,4	0,12	0,01	-2	I,I	IO
16	0,5	0,04	0,02	10	I,3	0
I7	0,5	0,06	0,02	6	1,125	2
18	0,5	0,08	0,02	2	1,2	4
19	0,5	0,10	0,02	0	1,15	8
20	0,5	0,12	0,02	-2	I,I	IO
SI	0,6	0,04	0,03	IO	1,3	0
22	0,6	0,06	0,03	6	I,125	2
23	0,6	0,08	0,03	2	1.2	4
24	0,6	0,10	0,03	0	I,I5	8
25_	0,6	0,12	0,03	-2	I,I	IO
		• 0 00		resourch or transfer of transf	A CONTRACTOR OF THE CONTRACTOR	

h,M	а, м/с	P, KT/M	₹ ,м ² /c	ρ, Πa
0	340,3	1,225	I,46I	101325
I000	336,4	I.IIS	1,581	89875
2000	332,5	I,006	1,715	79497
3000	328,6	0,9092	I,863	70125
4000	324,6	0,8193	2,028	61636
5000	320,5	0,7364	2,212	54045
6000	316,4	0,6601	2,417	47213
7000	312,3	0,5900	2,648	41080
8000	308,I	0,5257	2,907	35648
9000	303,8	0,4670	3,200	3079I
10000	299,5	0,4135	3,531	2649I
1000	295,I	0,3648	3,806	22606
12000	295,I	0,3118	4,574	19390
13000	295,I	0,2665	5,335	16572
[4000	295,I	0,2278	5,242	T4T64
5000	295,I	0,1947	7,340	12106
0000	295,I	0,1664	8,544	I0348
7000	295,I	0,1422	9,995	8846
(8000	295,I	0,1216	II,78	7562
19000	295,I	0,1040	13,68	-
20000	295,I	0,0889	16,15	5527
22000	295,I	0,0650	21,88	4040
25000	298,5	0,0406	36,7I	2526
27000	298,8	0,0291	49,91	1855
30000	301,8	0,0181	81,95	1183
35000	313,1	0,0083	189,3	580,2
10000	317,6	0,0040	416,7	295,9

КИПЕМАТИКА И ДИНАМИКА ГАЗОВ

Составители: Васильев Валерий Валерьянович Головин Владимир Максимович Морозов Лев Владимирович и др.

Редактор Н. Д. Чайникова Техн редактор Н. М. Калсиюк Корректор Н. С. Куприянова

Подписано в печать 22.06.93. Формат 60×84 1/16. Бумага офсетная. Печать оперативная. Мсл. печ. л. 2,6. Усл. кр.-отт. 2,7. Уч.-изд. л. 2,5. Гираж 200 экз. Заказ № 92. Арт. С-58/93.

Самарский государственный аэрокосмический университет имени академика С. П. Королева. 113086 Самара, Московское шоссе, 34.

Участок оперативной полиграфии Самарского аэрокосмического университета: 443001 Самара, ул. Ульяновская, 18.