КОНТАКТНО-ГИДРОДИНАМИЧЕСКАЯ ТЕОРИЯ СМАЗКИ ДЛЯ ЖИДКОСТИ, НАХОДЯЩЕЙСЯ В НЕНЬЮТОНОВСКОМ СОСТОЯНИИ

Как известно, тенденцией современного машиностроения является рост скоростей и напряжений в зонах контактов трущихся тел.

С ростом скоростей движения резко уменьшается время прохождения частицы масла через область трения (для подшипников качения это время измеряется 10^{-6} сек). При увеличении давления экспоненциально растет вязкость и время релаксации (время релаксации растет с 10^{-9} до 10^{-4} сек при высоких давлениях). Таким образом, время релаксации становится соизмеримым, а иногда и больше времени прохождения смазки через зону контакта, в связи с чем жидкость приобретает вязко-упругие свойства, нарушается линейная зависимость между касательным напряжением и градиентом скорости.

При переходе на новые синтетические смазочные материалы

указанное встречается все чаще.

Поэтому назрела настоятельная потребность в разработке контактно-гидродинамической теории смазки для неньютоновских вязко-упругих жидкостей. Однако до сих пор еще не опубликовано ни одной теоретически рассчитанной эпюры давления совместно с соответствующей формой зазора для контактно-гидродинамической задачи при смазке вязко-упругими жидкостями.

Имеющиеся в настоящее время работы показывают, что наиболее вероятной моделью для неньютоновской жидкости является модель Ри-Эйринга, которая дает выражение для сил трения, хорошо

подтверждаемое экспериментально.

В работе [1] для этой модели уже сделана попытка решения контактно-гидродинамической задачи, однако ее автор И. Белл после вывода уравнения Рейнольдса вернулся фактически к известному решению Эртеля-Грубина, введя туда некоторые поправки.

Считаем, что в этом возвращении нет нужды и можно легко получить решение плоской изотермической, стационарной приближенной контактно-гидродинамической задачи для вязко-упругой Ри-Эйринговской жидкости.

Изобразим на рис. 1 связь между касательным напряжением и градиентом скорости для Ри-Эйринговской жидкости.

$$\tau = X \cdot Ar \operatorname{sh} \left[\beta \frac{\partial u}{\partial y} \right],$$

$$= X_0 e^{\gamma_1 k_0}; \quad \beta = \beta_0 e^{\gamma_2 k_0}.$$
(1)

где $X = X_0 e^{\gamma_1 k_0}; \quad \beta = \beta_0 e^{\gamma_2 k_0},$

 γ_1 и γ_2 — пьезокоэффициенты вязкости; X_0 и β_0 — параметры вязкости, соответствующие атмосферному давлению; k_0 и τ — местное

Рис. 1. Связь между касательным напряжением и градиентом скорости для Ри-Эйринговской жидкости

гидродинамическое давление и касательное напряжение; $\frac{\partial u}{\partial y}$ —градиент скорости поперек смазочного слоя.

Легко показать, как это сделано в работе [1], что уравнение Рейнольдса для Ри-Эйринговской жидкости имеет вид

$$\frac{dk_0}{dx} = \frac{2X_0 e^{\gamma_1 k_a}}{h} \Phi \left[\beta_0 (U_a + U_b) e^{\gamma_2 k_0} \frac{k_0 - h}{h^2} \right]. \tag{2}$$

При этом Φ определяется из уравнения

$$\beta_0(U_a + U_b) e^{\gamma_s h_0} \frac{h_0 - h}{h^2} = \frac{\phi \operatorname{ch} \phi - \operatorname{sh} \phi}{\phi^2}$$
 (3)

Здесь x — координата в направлении, обратном движению; h и h_0 — толщина смазочного слоя в данной точке и толщина слоя в точке экстремума давления; $U_a + U_b$ — сумма скоростей движения трущихся поверхностей.

Вторым уравнением контактно-гидродинамической теории смазки будет [2]

$$h = h_{m_1} - \Delta + \frac{x^2 \left(\lambda_a \pm \lambda_b\right)}{2} + \frac{A' k_0}{E} \tag{4}$$

Здесь h_{m1} — наименьшая толщина смазочного слоя до деформации; $\lambda_a \pm \lambda_b$ — приведенная кривизна трущихся поверхностей до деформации; E — приведенный модуль упругости трущихся поверхностей; A' — коэффициент пропорциональности между деформациями поверхностей и давлением, действующим на них; Δ — величина сближения поверхностей при мысленном переходе от жестких к упругим поверхностям.

Переходя к безразмерным параметрам с помощью размерных величин $B,\,B_1$ и $h_0,\,$

$$x = B_1 \cdot z; \quad h = h_0 \cdot H; \quad k_0 = Bk -$$
 получим
$$\frac{dk}{dz} = \frac{2B_1 X_0}{Bh_0} \cdot \frac{e^{Y_1 Bk}}{H} \Phi \left[\frac{\beta_0 (U_a + U_b)}{h_0} e^{Y_2 B^k} \cdot \frac{1 - H}{H^2} \right]$$

$$H = 1 - a^2 + z^2 + Ck$$
(5)

Параметр B выбираем таким образом, чтобы упростить уравнения и получить удобный переход от приближенного решения контактно-гидродинамической задачи для ньютоновской жидкости к соответствующей задаче для неньютоновской жидкости.

Обратим внимание на то, что при малых значениях аргумента $\frac{\beta_0 \left(U_a + U_b\right)(h_0 - h)}{h^2} \, e^{\gamma_2 \, h_0} - \text{функция} \, \Phi \quad \text{равна} \quad \text{утроенному значению}$ аргумента, и уравнение (2) превращается в обычное уравнение Рей-

 $\frac{dk_0}{dx} = 6\beta_0 X_0 (U_a + U_b) \frac{h_0 - h}{h^3} e^{(Y_1 + Y_2) k_0}. \tag{6}$

В этом случае находим связь между параметрами ньютоновской жидкости — μ_0 и n и ньютоновскими β_0 , X_0 , γ_1 и γ_2 .

$$\mu_0 = \beta_0 \cdot X_0$$
 и $n = \gamma_1 + \gamma_2$.

Примем

нольдса

$$B = \frac{6\beta_0 X_0 (U_a + U_b) B_1}{h_0^2}; \quad C = \frac{A'B}{Eh_0};$$

$$B_1 = \sqrt{\frac{2h_0}{h_0 \pm h_b}}; \quad C_1 = \frac{\beta_0 (U_a + U_b)}{h_0}$$
(7)

Используя эти параметры, получим

$$\frac{dk}{dz} = \frac{1}{3C_1 H} \exp\left[\frac{Bnk}{1 + \frac{\gamma_2}{\gamma_1}}\right] \Phi\left\{C_1 \frac{1 - H}{H^2} \exp\left[\frac{Bn \frac{\gamma_2}{\gamma_1} k}{1 + \frac{\gamma_2}{\gamma_1}}\right]\right\}$$

$$H = 1 - a^2 + z^2 + C \cdot \kappa. \tag{9}$$

Таким образом, приближенная стационарная изотермическая контактно-гидродинамическая задача в общем случае при жидкости, находящейся в ньютоновском или неньютоновском Ри-Эйринговском состоянии, сводится к совместному решению системы (8)—(9), при функции Φ , определяемому из уравнения

$$C_1 \frac{1 - H}{H^2} \exp \left[\frac{B n \frac{\gamma_2}{\gamma_1} k}{1 + \frac{\gamma_2}{\gamma_1}} \right] = \frac{\mathfrak{D} \operatorname{ch} \Phi - \operatorname{sh} \Phi}{\Phi^2}$$
 (10)

Здесь имеется один аргумент z, две неизвестные функции k(z) и H(z), четыре безразмерных параметра C, Bn, C_1 , $\frac{7^2}{7^1}$ и один параметр a, определяемый из условия получения k(b)=0.

Решение системы (8)—(9) при условин (10) производится с

помощью ЭВМ методом Рунге-Кутта.

Несущая способность определяется в виде

$$K_0 = \int\limits_{K_0}^{x_1} k_0 \, dx = \frac{12\beta_0 \, X_0 \, (U_a + U_b)}{n_0 \, (\lambda_a \pm \lambda_b)} \cdot K$$
, где $K = \int\limits_a k dz$.

На рис. 2—3 изображены примеры эпюр давления и форм зазоров для Ри-Эйринговской жидкости, а на рис. 4 — несущая способность и отношение минимальной толщины смазочного слоя к толщине слоя в месте экстремума давления — $H_m = rac{h_m}{h_a}$. В таблице 1 приведены результаты расчетов. Несущая способность при возникновении неньютоповских свойств жидкости синжается иногда в несколько раз. Эпюра давления имеет необычный вид и напоминает как бы «полуэллипс со стесанным боком» на выходной части контакта. Причем этот срез может доходить почти до вершниы полуэллипса. Подобную «стесанную» эпюру давления получили экспериментально Белл и Кеннел для полифенилэфира, причем в конце 1971 г. они опубликовали [3], что время релаксации этой жидкости при атмосферном давлении и температуре 82° на два и три порядка (в сто и тысячу раз) превыщает время релаксации других масел. Таким образом, имеется качественное экспериментальное подтверждение разработанной теории.

Отношение же $H_m = \frac{h_m}{h_0}$ для неньютоновских жидкостей обычно значительно меньше, чем для ньютоновских.

Ри-Эйринговская зависимость между касательным напряжением и градиентом скорости является частным видом нелинейной зависимости между этими параметрами.

Покажем и другой нелинейный вид зависимости касательного напряжения и граднента скорости. Для иллюстрации этого положения разложим Ри-Эйринговское соотношение (1) в степенной ряд. Как известно, гиперболический синус раскладывается в ряд при любом значении аргумента (радиус сходимости равен бесконечности). При этом получим

$$\beta_0 e^{\gamma_2 k_0} \cdot \frac{\partial u}{\partial y} = \frac{z}{X_0^{2^{\gamma_1} k_0}} + \frac{1}{6} \left(\frac{z}{X_0^{2^{\gamma_1} k_0}} \right)^3 + \frac{1}{120} \left(\frac{z}{X_0^{2^{\gamma_1} k_0}} \right)^5 + \dots$$
 (11)

Откуда
$$\frac{\partial u}{\partial y} = \frac{z}{\beta_0 X_0 e^{(\gamma_1 + \gamma_2) k_0}} + \frac{1}{6} \left[\frac{z}{\beta_0 X_0 e^{(\gamma_1 + \gamma_2) k_0}} \right]^3 (\beta_0 e^{\gamma_2 k_0})^2 + \frac{1}{120} \left[\frac{z}{\beta_0 X_0 e^{(\gamma_1 + \gamma_2) k_0}} \right]^5 \cdot (\beta_0 e^{\gamma_2 k_0})^4 + \dots$$

Рис. 2а, б, в, г — эпюры давления и формы зазоров

Рис. 3. Эпюры давления и формы зазора

или
$$\frac{\partial u}{\partial y} = \frac{\tau}{\beta_0 X_0 e^{(\gamma_1 + \gamma_2) k_0}} + \frac{1}{6} \frac{\tau^3}{\beta_0 X_0 e^{(\gamma_1 + \gamma_2) k_0}} \left(\frac{1}{X_0 e^{\gamma_1 k_0}}\right)^2 + \frac{1}{120} \frac{\tau^5}{\beta_0 X_0 e^{(\gamma_1 + \gamma_2) k_0}} \left(\frac{1}{X_0 e^{\gamma_1 k_0}}\right)^4 + \dots$$

Переходя от $\beta_0\,X_0\,e^{\,(\gamma_1+\gamma_2)\,k_0}$ к $\mu=\mu_0\,e^{nk_0}$, можно написать два ряда, связывающие τ с $\frac{\partial\,u}{\partial\,y}$:

$$\frac{\partial u}{\partial y} = \frac{\tau}{\mu} + A_1 \frac{\tau^3}{\mu^3} + A_2 \frac{\tau^5}{\mu^5} + \dots$$
 (12)

$$\frac{\partial u}{\partial y} = \frac{\tau}{\mu} + A_1 \frac{\tau^3}{\mu} + A_2 \frac{\tau^5}{\mu} + \dots$$
 (13)

Принятые здесь параметры A_1 , A_2 и т. д. могут быть определены при физико-механических испытаниях смазочных материалов путем определения ньютоновской вязкости и времени релаксации.

Рис. 4а. Относительная несущая способность при смазке Ри-Эйринговской жидкостью

№ кривой	I	2	2	2	3	4	5	5	5	6	7	8	9	10	11
	1	0,5	1	0,5	1	1	0,5	0,5	3	3	1	1	0,5	0,5	0,2
Bn	12	12	12	12	9	9	9	9	9	6	6	6	6	6	6
Y2	10	10	50	50	10	50	10	50	10	10	10	50	10	50	10
γ_1	[]					l				1					

При определении реологических характеристик смазочных масел с использованием крутильно-колеблющегося цилиндра все пересчеты производятся в предположении, что жидкость максвелловская. Как известно при этом

$$\mu_{\mathsf{a}\phi} = \frac{\mu}{1 + t_p^2 \left(\frac{\partial u}{\partial y}\right)^2} \tag{14}$$

Здесь t_p — время релаксации и $\mu_{\mathfrak{I} \Phi} = \frac{\pi}{\frac{\partial u}{\partial y}}$

Подставляя $\mu_{\phi \phi}$ в (14), получим 42 .

Рис. 46. Синжение Н_т для Ри-Эйрингонской жидкости

.№ кривой	1	2	3	4	5	6	6	7	8
C	0,2	0,5	1	3	1	1	0,5	0,5	0,2
Bn	6	6	6	6	9	12	9	12	12
$\frac{\Upsilon_2}{\Upsilon_1}$	10	10	10	10	10	10	10	10	10

$$\mu \frac{\partial u}{\partial y} = \tau \left[1 + t_p^2 \left(\frac{\partial u}{\partial y} \right)^2 \right]. \tag{15}$$

Решая это уравнение относительно $\frac{\partial u}{\partial y}$, получим

$$\frac{\partial u}{\partial y} = \frac{\mu}{2\tau t_{\text{per}}^2} \left[1 - \sqrt{1 - \frac{4\tau^2 t_{\text{per}}^2}{\mu^2}} \right].$$

Раскладывая выражение под квадратным корнем в степенной ряд, получим

$$\frac{\partial u}{\partial v} = \frac{\tau}{u} + \frac{\tau^3}{u^3} t_{pen}^2 + \frac{\tau^5}{u^5} 2t_{pen}^4 \dots$$
 (16)

Сопоставляя это выражение с (12), найдем $A_1=t_{\sf pen}^2$; $A_2=t_{\sf pen}^4$ и т. д

Некоторые авторы уже пытаются решать гидродинамические задачи при частных значениях зависимостей по типу (13). Например, Хсу [4] принимал $\frac{\partial u}{\partial y} = \frac{\tau}{\mu} + A_1 \frac{\tau^3}{\mu}$.

Рассмотрим вывод основных уравнений контактно-гидродинамической теории смазки для неньютоновских нелинейных жидкостей типа (12) и (13). Для этого произведем двойное интегрирование уравнений (12) и (13) по y, причем первый раз проинтегрируем от 0 до y, второй — от 0 до h.

В результате получим

$$\frac{6\mu \left(U_a + U_6\right)(h_0 - h)}{h^3} = \frac{dk_0}{dx} + A_1' \left(\frac{dk_0}{dx}\right)^3 + A_2' \left(\frac{dk_0}{dx}\right)^5 + \dots, \tag{17}$$

где при использовании уравнения (12)

$$A_{1}^{'} = A_{1} \frac{3h^{2}}{20\mu^{2}}; \quad A_{2}^{'} = A_{2} \frac{3h^{4}}{112\mu^{4}}; \dots$$

В случае использования уравнения (13)

$$A_1' = A_1 \frac{3h^2}{20}; \quad A_2' = A_2 \frac{3h^4}{112}; \dots$$

Переходя, как и ранее, к безразмерным параметрам, получим в качестве первого уравнения контактно-гидродинамической задачи для нелинейной жидкости

$$\frac{\partial u}{\partial y} = \frac{\tau}{\mu} + A_1 \frac{\tau^3}{\mu^3} + A_2 \frac{\tau^5}{\mu^5} + \dots$$

$$\frac{dk}{dz} + C_1 H^2 e^{-2Bnk} \left(\frac{dk}{dz}\right)^3 + C_2 H^4 e^{-4Bnk} \left(\frac{dk}{dz}\right)^5 + \dots = \frac{1-H}{H^3} e^{Bnk}, \quad (18)$$
где
$$C_1 = \frac{5.4 (U_a + U_b)^2}{h_0^2} A_1; \quad C_2 = \frac{3.47 (U_a + U_b)^4}{h_0^4} A_2; \dots$$

Для нелинейной жидкости

$$\frac{\partial u}{\partial y} = \frac{\tau}{\mu} + A_1 \frac{\tau^3}{\mu} + A_2 \frac{\tau^5}{\mu} + \dots$$

$$\frac{dk}{dz} + C_1 H^2 \left(\frac{dk}{dz}\right)^3 + C_2 H^4 \left(\frac{dk}{dz}\right)^5 + \dots = \frac{1 - H}{H^3} e^{Bnk} , \qquad (19)$$

где

$$C_1 = \frac{5.4 (U_a + U_b)^2 \mu_0^2}{h_0^2} A_1; \quad C_2 = \frac{3.47 (U_a + U_b)^4 \mu_0^4}{h_0^4} A_2.$$

В обонх вариантах вторым уравнением контактно-гидродинамической задачи является выражение (9).

Значительно упрощается решение, если ограничиться лишь первыми двумя членами в уравнениях (12) и (13) (A_2 =0 и т. д.).

Тогда, решая уравнения (18) и (19) относительно $\frac{dk}{dz}$, получим

$$\frac{dk}{dz} = \sqrt[3]{-q + \sqrt{q^2 + p^3}} + \sqrt[3]{-q - \sqrt{q^2 + p^3}},$$
 (20)

где для 1 варианта

$$p = \frac{e^{2Bnk}}{3C_1H^2}; \qquad q = \frac{(1-H)e^{3Bnk}}{2C_1H^3}; \tag{21}$$

для 2 варианта

$$p = \frac{1}{3C_1H^2}; \quad q = \frac{1-H}{2C_1H^3}$$

Уравнения (20) и (9) при условии (21) решаем методом Рун-

ге-Кутта на ЭВМ.

В 1971 г. опубликовано [3] сравнение теоретических и экспериментальных результатов по измерению толщины смазочного слоя рентгеновским методом. При этом получено плохое соответствие с теоретическими результатами не только для ньютоновской жидкости, но и для Ри-Эйринговской. В связи с этим авторы работы [3] выдвинули гипотезу о необходимости рассматривать модель запаздывающей жидкости (при быстром росте давления вязкость возрастает, но со значительным отставанием по сравнению со статическими характеристиками). При бесконечном запаздывании они получили хорошее соответствие. В связи с этим заметим, что, как показано в работе [5], если течение произвольной жидкости может быть представлено одной какой-либо моделью, то это означает, что опо может быть представлено также любой другой моделью при соответствующем изменении численных параметров модели.

Действительно, в теории запаздывания Белл и Кеннел исходили из уравнения

$$\frac{\partial \varphi_d}{\partial t} = \frac{1}{t_d} (\varphi - \varphi_d), \tag{22}$$

где $\varphi_d=rac{\mu_{s,\varphi}}{\mu_0}$ и $\varphi=rac{\mu}{\mu_0}$. Здесь $\mu_{s,\varphi}$ — эффективная вязкость $\mu_{s,\varphi}=$ $=\frac{\tau}{\partial u};$ μ_0 — вязкость при атмосферном давлении; μ — ньютоновская

вязкость при термодинамически равновесном состоянии и данном дав-

лении; t_d — время запаздывания — ретардации; t — время. Подставляя в (22) соответствующие выражения для φ , φ_d , $\mu_{\ni \varphi}$ и, пренебрегая $\frac{\partial}{\partial t} \left(\frac{\partial \dot{u}}{\partial y} \right)$ по сравнению с $\frac{\partial \tau}{\partial t}$ (что представляет собой усреднение неньютоновских эффектов поперек сечения), получим

$$\tau + t_d \frac{\partial \tau}{\partial t} = \mu \frac{\partial u}{\partial y} . \tag{23}$$

1 ao Audu	H _m Hbot	1 0,81379 0,4918 0,1575	1, 7109 0, 36 0, 266	1, 76814 0, 503 0, 20796	1 0,83851 0,67364 0,242736 0,171766	1 0,78382 0,19038 0,132806	1 0,776429 0,61557 0,26913	0,93052 0,805 0,19678 0,13427
	KHEHOT	1 0,97685 0,96651 0,84416	1 0,99213 0,957 0,9494	1 0,83749 0,6466 0,41121	1 0,993302 0,985165 0,976235 0,97295	1 0,999 0,999 0,999	1 0,74352 0,40379 0,37718	1 0,99471 0,989078 0,95497 0,952998
	K	1,823 1,7808 1,76195 1,5389	5,7353 5,69015 5,4896 5,4455	1,68300 1,40949 1,08734 0,69206	8,39412 8,3379 8,2696 8,1946 8,1671	25, 1522 25, 1177 25, 1485 25, 1387	1,7694 1,3156 0,7144 0,6674	12, 7165 12, 6493 12, 5776 12, 1438 12, 11878
	Kmax	0,821458 0,821458 0,821456 0,726268	1,797693 1,79769 1,797682 1,797682	1,08064 1,08035 0,88321 0,4747	3 3856 3,3856 3 3855 3 4225 3 4225	7,0756 7,0755 7,1289 7,1289	1,4497 1,3329 0,64614 0,3608	5,6448 5,6440 5,6440 5,6448 5,6448
	H_m	0,742356 0,604127 0,365113 0,11696	0,709721 0,504536 0,255108 0,189108	0,7179 0,5514 0,3611 0,1493	0,6599 0,5533 0,4445 0,16018 0,11335	0,62248 0,48792 0,11851 0,08267	0,71019 0,55141 0,43717 0,19113	0,62761 0,584 0,505 0,1235 0,08427
	B		2, 3223 2, 32236 2, 32236 2, 32236	-1,03955 -1,03944 -1,04 -1,04	######################################	-2,66 -2,66 -2,67	0,8514 0,8514 0,83817 0,94608	\$88888 77777
	C	10^{-5} 10 10 10	10 ⁻⁵ 3 10 15	10 ⁻⁵ 3 10 50	$\begin{array}{c} 10^{-5} \\ 1 \\ 2 \\ 10 \\ 15 \\ 15 \end{array}$	10-5 1 10 15	10 ⁻⁵ 3 10 50	10-5 0,5 10 15
	772	10	10	10	10	10	10	10
	Вп	9	6	9	6	12	9	6
	C	ಣ	r	1	-	1	0,5	0,5

-	12	10	0 - 5 0 - 5 10	2222 2222 22222	0,60401 0,5040 0,162018 0,08023	12 49999 12 49999 12 5000 12 4998	41.7 41.608 41.47819 41.46565	1 0 99779 0 99468 0 99438	1 0 83442 0 26823 0 132826
	9	10	10 ⁻⁵ 10 10 50	-0.68 -0.63 -0.73 -0.905	0,710 0,629447 0,506768 0,211193	2, 3119 1, 6908 0, 476206 0, 323327	2,0626 1,16782 0,534 0,46109	0,56619 0,25889 0,22355	1 0,886545 0,71375 0,297
	6	10	10 5	1.57	0,6	12,300	25,700 25,5	0,99222	1 0,847
	2	10	10 - 5	-2,415 -2,415	0,568 0,185406	29, 160	93,460 93,450	1 0,999	1 0,32642
	9	20	10 - 5	1,00 1,03944 1,04	0,712 0,5417 0,35125	1, 129 1, 06852 0, 8212	1 683 1 3693 1 0393	1 0,813588 0,617528	1 0,7608 0,4933
	6	20	10 ⁻⁵ 1 10	1 84	0,636 0,54067 0,146738	3 386 3 3855 3 3856	8, 303 8, 21096 8, 0249	1 0,986 0,9665	1 0 85011 0 2307
	12	50	10 ⁻⁵ 0,5 5		0,62249 0,5757 i 0,180647 0,099316	7,0756 7,0755 7,0755 7,0755	25 088 25 03177 24 9935 24 95115	1 0 998 0 99623 0 991545	1 0,92484 0,290 0,15954
	9	20	10 ⁻⁵ 3 10 50	-0,86 -0,85 -0,84086 -0,95257	0,702 0,54437 0,4297 0,18132	1,440 1,202 0,593988 0,35583	1 800 1 22316 0 68716 0 52238	1 0,67953 0,3817 0,2902	1 0,77545 0,61 0,2583
	6	50	$\begin{array}{c} 10^{-5} \\ 0,5 \\ 5 \\ 10 \end{array}$	1 68 -1 68 -1 68	0,626 0,56269 0,186014 0,10041	5,640 5,64407 5,6448 5,6448	12,609 12,608 12,2727 12,12375	1 0 999 0 97402 0 9622	1 0 8988 0 297 0 1604
	12	20	10-5	-2,5	0,604007	12,49976	41,7	0 99462	1 0 2009

Как известно, для максвелловской жидкости

$$\tau + t_p \frac{\partial \tau}{\partial t} = \mu \frac{\partial u}{\partial y} \tag{24}$$

Если принять численно совпадающие значения $t_{\rm d}$ и $t_{\rm p}$, то получим аналогичные выражения и возможность формального перехода от максвелловской модели к запаздывающей.

Как мы указывали в [6], неньютоновское поведение жидкости, определяемое временем релаксации, включает в себя как собственно релаксационные явления для казательных напряжений, так и запаздывание вязкости при быстром росте давления. Поэтому нет особой нужды в разработке новой запаздывающей модели для жидкости. Анализируя работу [3], заметим, что несоответствие между экспериментальными результатами и их теоретическим расчетом при Ри-Эйринговском поведении жидкости можно объяснить двумя причинами.

Прежде всего очевидна весьма ориентировочная оценка величин времени релаксации, произведенная Беллом и Кеннелом, и значительное занижение возможного неньютоновского эффекта, особенно при больших нагрузках. Фактически они приняли, что время релаксации у них не зависит от давления. Таким образом, при более корректном учете неньютоновских свойств толщина слоя сильно снизится при больших давлениях и мало изменится при малых. Отсюда и получится более резкая теоретическая зависи-

мость между толщиной слоя и нагрузкой.

Вторым, более важным фактором, является то, что Белл и Кеннел, по-видимому, не строили эпюры давления и формы зазоров для Ри-Эйринговской жидкости и поэтому по аналогии с ньютоновской жидкостью предположим, что и для Ри-Эйринговской жидкости $H_m = \frac{h_m}{h_0}$ близко к 0,8 (или 0,7).

Для ньютоновских жидкостей это справедливо с точностью $\pm 10-15\%$. Однако, как мы показали (см. таблицу и рис. 2-3), для Ри-Эйринговской жидкости это отношение часто снижается до 0,1 и даже 0,07. Таким образом, оно может быть на порядок меньше. Следовательно, при сравнении экспериментальных результатов, полученных для неньютоновских жидкостей рентгеновским методом, с теоретическими (полученными для ньютоновских жидкостей или для неньютоновских, но без учета указанного явления), даже если толщина слоя смазки в точках экстремума давления h_0 совпадает, то наименьшая толщина слоя $h_{\rm m}$, экспериментально замеренная, может быть даже в 7—10 раз меньше теоретически рассчитанной. С ростом давления резко растет время релаксации и эффект запаздывания вязкости, поэтому происходит относительное уменьшение $h_{\rm m}$.

В работе [7] также экспериментально найдено, что для неньютоновских жидкостей $H_{\rm m}=\frac{h_{\rm m}}{h_{\rm n}}$ может снизиться до 0,12.

Таким образом, имеется качественное и количественное экспериментальное подтверждение приведенных в данном докладе теоретических расчетов. Для получения количественного сравнения необходимо знать действительное время релаксации американских

В данной работе предложена приближенная контактно-гидродинамическая теория смазки для жидкостей, находящихся в неньютоновском состоянии, предложены алгоритмы решения, приведены результаты численных расчетов и показано качественное соответствие экспериментальных и теоретических результатов.

ЛИТЕРАТУРА

1. Bell I. C. Lubrication of Rolling Surfaces by a Ree-Eyring Fluid. ASLE Transactions, v. 5, 1962.

2. Қоднир Д. С. Қонтактная гидродинамика деталей машин. Қуйбышев-

ский авиационный институт, 1970.

3. Белл И. Ц. Кенелл И. В. Интерпретация данных о толщине масляной пленки при качении. Ч. II. Влияние реологических факторов. Проблемы трения и смазки, № 4, 1971.

4. Hsu I. C. Non-Newtonian Flow in Infinite-Length Full journal Bearing.

Journal of Lubrication Technology, N 3, 1967.

5. Kuhn W. Relaxationszeitspektrum bei systemen, mit beliebig Vielen, teils in Serie, teils parallel wirkenden, mit Reibung belasteten elastischen zusammenhaltsmechanismen. Helvetica Chimia Acta, 1947, v. 30, N 2.

6. Коднир Д. С. Современное состояние контактно-гидродинамической теории смазки и краткий обзор работ Куйбышевского авиационного института им. С. П. Королева по этой проблеме. Настоящий сборник докладов.

7. Сэнборн Д. М., Винер В. О. Влияние реологических свойств жид-кости на упругогидродинамический точечный контакт при скольжении в условиях переменной нагрузки. Проблемы трения и смазки, № 2, 1971.

д. С. КОДНИР

НЕИЗОТЕРМИЧЕСКАЯ СТАЦИОНАРНАЯ ЗАДАЧА ДЛЯ НЕНЬЮТОНОВСКОЙ ЖИДКОСТИ

Выполненные расчеты показывают, что для определения коэффициента трения необходимо учитывать неньютоновское поведение смазки, возникающее на всей или на части зоны контакта.

В настоящем докладе приведено решение приближенной неизотермической стационарной контактно-гидродинамической задачи для вязко-упругой неньютоновской смазки, когда градиент скорости является произвольной нелинейной функцией касательного напряжения. Одним из частных случаев полученного общего решения является максвелловское поведение жидкости, другим -- ньютоновское поведение.

При решении неизотермической задачи следует учесть наличие двух тепловых потоков — конвективного в направлении движения и теплопроводности поперек смазочного слоя (в направлении, пер-