КОНТАКТНО-ГИДРОДИНАМИЧЕСКАЯ ТЕОРИЯ СМАЗКИ ДЛЯ ЖИДКОСТИ, НАХОДЯЩЕЙСЯ В НЕНЬЮТОНОВСКОМ СОСТОЯНИИ

Как известно, тенденцией современного машиностроения является рост скоростей и напряжений в зонах контактов трущихся тел.

С ростом скоростей движения резко уменьшается время прохождения частицы масла через область трения (для подшипников качения это время измеряется 10^{-6} сек). При увеличении давления экспоненциально растет вязкость и время релаксации (время релаксации растет с 10^{-9} до 10^{-4} сек при высоких давлениях). Таким образом, время релаксации становится соизмеримым, а иногда и больше времени прохождения смазки через зону контакта, в связи с чем жидкость приобретает вязко-упругие свойства, нарушается линейная зависимость между касательным напряжением и градиентом скорости.

При переходе на новые синтетические смазочные материалы указанное встречается все чаще.

Поэтому назрела настоятельная потребность в разработке контактно-гидродинамической теории смазки для неньютоновских вязко-упругих жидкостей. Однако до сих пор еще не опубликовано ни одной теоретически рассчитанной эпюры давления совместно с соответствующей формой зазора для контактно-гидродинамической задачи при смазке вязко-упругими жидкостями.

Имеющиеся в настоящее время работы показывают, что наиболее вероятной моделью для неньютоновской жидкости является модель Ри-Эйринга, которая дает выражение для сил трения, хорошо подтверждаемое экспериментально.

В работе [1]для этой модели уже сделана попытка решения контактно-гидродинамической задачи, однако ее автор И. Белл после вывода уравнения Рейнольдса вернулся фактически к известному решению Эртеля-Грубина, введя туда некоторые поправки.

Считаем, что в этом возвращении нет нужды и можно легко получить решение плоской изотермической, стационарной приближенной контактно-гидродинамической задачи для вязко-упругой Ри-Эйринговской жидкости.

Изобразим на рис. 1 связь между касательным напряжением и градиентом скорости для Ри-Эйринговской жидкости.

$$\tau = X \cdot Ar \operatorname{sh}\left[\beta \frac{\partial u}{\partial y}\right], \tag{1}$$
$$X = X_0 e^{\gamma_1 k_0}; \quad \beta = \beta_0 e^{\gamma_2 k_0},$$

где

 γ_1 и γ_2 — пьезокоэффициенты вязкости; X_0 и β_0 — параметры вязкости, соответствующие атмосферному давлению; k_0 и τ — местное

Рис. 1. Связь между касательным напряжением и градиентом скорости для Ри-Эйринговской жидкости

гидродинамическое давление и касательное напряжение; $\frac{\partial u}{\partial y}$ — градиент скорости поперек смазочного слоя.

Легко показать, как это сделано в работе [1], что уравнение Рейнольдса для Ри-Эйринговской жидкости имеет вид

$$\frac{dk_0}{dx} = \frac{2X_0 e^{\gamma_1 k_a}}{h} \Phi\left[\beta_0 (U_a + U_b) e^{\gamma_2 k_0} \frac{\hbar_0 - h}{h^2}\right].$$
(2)

При этом Ф определяется из уравнения

$$\beta_0 (U_a + U_b) e^{\gamma_a h_0} \frac{h_0 - h}{h^2} = \frac{\phi \operatorname{ch} \phi - \operatorname{sh} \phi}{\phi^2}$$
(3)

Здесь x — координата в направлении, обратном движению; h и h_0 — толщина смазочного слоя в данной точке и толщина слоя в точке экстремума давления; $U_a + U_b$ — сумма скоростей движения трущихся поверхностей.

Вторым уравнением контактно-гидродипамической теории смазки будет [2]

$$h = h_{m_1} - \Delta + \frac{x^2 \left(\lambda_a \pm \lambda_b\right)}{2} + \frac{A' k_0}{E}$$
(4)

Здесь h_{m1} — наименьшая толщина смазочного слоя до деформации; $\lambda_a \pm \lambda_b$ — приведенная кривизна трущихся поверхностей до деформации; E — приведенный модуль упругости трущихся поверхностей; A' — коэффициент пропорциональности между деформациями поверхностей и давлением, действующим на них; Δ — величина сближения поверхностей при мысленном переходе от жестких к упругим поверхностям.

Переходя к безразмерным параметрам с помощью размерных величин В, В₁ и h₀,

$$x = B_{1} \cdot z; \quad h = h_{0} \cdot H; \quad k_{0} = Bk - \text{получим}$$

$$\frac{dk}{dz} = \frac{2B_{1} X_{0}}{Bh_{0}} \cdot \frac{e^{\gamma_{1} Bk}}{H} \Phi \left[\frac{\beta_{0} (U_{a} + U_{b})}{h_{0}} e^{\gamma_{2} B^{\gamma}} \cdot \frac{1 - H}{H^{2}} \right]$$

$$H = 1 - a^{2} + z^{2} + Ck$$
(5)

Параметр В выбираем таким образом, чтобы упростить уравпения и получить удобный переход от приближенного решения контактно-гидродинамической задачи для ньютоновской жидкости к соответствующей задаче для неньютоновской жидкости.

Обратим внимание на то, что при малых значениях аргумента $\frac{\beta_0 (U_a + U_b) (h_0 - h)}{h^2} e^{\gamma_2 h_0} - функция Ф равна утроенному значению$ аргумента, и уравнение (2) превращается в обычное уравнение Рейнольдса

$$\frac{dk_0}{dx} = 6\beta_0 X_0 (U_a + U_b) \frac{h_0 - h}{h^3} e^{(Y_1 + Y_2) k_\bullet}.$$
(6)

В этом случае находим связь между параметрами ньютоновской жилкости — μ_0 и *п* и ньютоновскими β_0 , X_0 , γ_1 и γ_2 .

$$\mu_0 = \beta_0 \cdot X_0$$
 и $n = \gamma_1 + \gamma_2.$

Примем

$$B = \frac{6\beta_0 X_0 (U_a + U_b) B_1}{h_0^2}; \quad C = \frac{A'B}{Eh_0};$$

$$B_1 = \sqrt{\frac{2h_0}{h_a \pm h_b}}; \quad C_1 = \frac{\beta_0 (U_a + U_b)}{h_0}.$$
(7)

Пспользуя эти параметры, получим

$$\frac{dk}{dz} = \frac{1}{3C_1H} \exp\left[\frac{Bnk}{1+\frac{\gamma_2}{\gamma_1}}\right] \Phi\left\{C_1 \frac{1-H}{H^2} \exp\left[\frac{Bn\frac{\gamma_2}{\gamma_1}}{1+\frac{\gamma_2}{\gamma_1}}\right]\right\}$$
(8)
$$H = 1 - a^2 + z^2 + C \cdot \kappa.$$
(9)

Таким образом, приближенная стационарная изотермическая контактно-гидродинамическая задача в общем случае при жидкости, находящейся в ньютоновском или неньютоновском Ри-Эйринговском состоянии, сводится к совместному решению системы (8) ---(9), при функции Ф, определяемому из уравнения

$$C_1 \frac{1-H}{H^2} \exp\left[\frac{Bn\frac{\gamma_2}{\gamma_1}}{1+\frac{\gamma_2}{\gamma_1}}\right] = \frac{\mathcal{D}\operatorname{ch} \Phi - \operatorname{sh} \Phi}{\Phi^2}$$
(10)

Здесь имеется один аргумент z, две неизвестные функции k(z) и H(z), четыре безразмерных параметра C, Bn, C_1 , $\frac{7z}{71}$ и один параметр a, определяемый из условия получения k(b) = 0.

Решение системы (8)—(9) при условин (10) производится с помощью ЭВМ методом Рунге-Кутта.

Несущая способность определяется в виде

Υ.

$$K_0 = \int_{X_0}^{\infty} k_0 dx = \frac{12\beta_0 X_0 (U_a + U_b)}{n_0 (\lambda_a \pm \lambda_b)} \cdot K$$
, где $K = \int_a k dz$.

На рис. 2—3 изображены примеры эпюр давления и форм зазоров для Ри-Эйринговской жидкости, а на рис. 4 — иесущая способность и отношение минимальной толщины смазочного слоя к толщине слоя в месте экстремума давления — $H_m = \frac{h_m}{h_0}$. В таблице 1 приведены результаты расчетов. Несущая способность при возникновении неньютоновских свойств жидкости спижается иногда в несколько раз. Эпюра давления имеет необычный вид и напоминает как бы «полуэллипс со стесанным боком» на выходной части контакта. Причем этот срез может доходить почти до вершины полуэллипса. Подобную «стесанную» эпюру давления получили экспериментально Белл и Кениел для полифенилэфира, причем в конце 1971 г. они опубликовали [3], что время релаксации этой жидкости при атмосферном давлении и температуре 82° на два и три порядка (в сто и тысячу раз) превышает время релаксации других масел. Таким образом, имеется качественное экспериментальное подтверждение разработанной теории.

тальное подтверждение разработанной теории. Отношение же $H_m = \frac{\hbar m}{h_0}$ для неньютоновских жидкостей обычно значительно меньше, чем для ньютоновских.

Ри-Эйринговская зависимость между касательным напряжением и градиентом скорости является частным видом нелинейной зависимости между этими параметрами.

Покажем и другой нелинейный вид зависимости касательного напряжения и градиента скорости. Для иллюстрации этого положения разложим Ри-Эйринговское соотношение (1) в степенной ряд. Как известно, гиперболический синус раскладывается в ряд при любом значении аргумента (радиус сходимости равен бесконечности). При этом получим

$$\beta_0 e^{\gamma_z k_s} \cdot \frac{\partial u}{\partial y} = \frac{z}{X_0^{e^{\gamma_1} k_s}} + \frac{1}{6} \left(\frac{z}{X_0^{e^{\gamma_1} k_s}} \right)^3 + \frac{1}{120} \left(\frac{z}{X_0^{e^{\gamma_1} k_s}} \right)^5 + \dots \quad (11)$$

Откуда

$$\frac{\partial u}{\partial y} = \frac{z}{\beta_0 X_0 e^{(\gamma_1 + \gamma_2) k_0}} + \frac{1}{6} \left[\frac{z}{\beta_0 X_0 e^{(\gamma_1 + \gamma_2) k_0}} \right]^3 (\beta_0 e^{\gamma_2 k_0})^2 + \frac{1}{120} \left[\frac{z}{\beta_0 X_0 e^{(\gamma_1 + \gamma_2) k_0}} \right]^5 \cdot (\beta_0 e^{\gamma_2 k_0})^4 + \dots$$

39

Рис. 2а, б, в, г — эпюры давления и формы зазоров

Рис. 3. Эпюры давления и формы зазора

$$\text{HJM} \qquad \frac{\partial u}{\partial y} = \frac{\tau}{\beta_0 X_0 e^{(\gamma_1 + \gamma_2) k_0}} + \frac{1}{6} \frac{\tau^3}{\beta_0 X_0 e^{(\gamma_1 + \gamma_2) k_0}} \left(\frac{1}{X_0 e^{\gamma_1 k_0}}\right)^2 + \frac{1}{120} \frac{\tau^5}{\beta_0 X_0 e^{(\gamma_1 + \gamma_2) k_0}} \left(\frac{1}{X_0 e^{\gamma_1 k_0}}\right)^4 + \dots$$

Переходя от $\beta_0 X_0 e^{(\gamma_1+\gamma_2)k_0}$ к $\mu = \mu_0 e^{\pi k_0}$, можно написать два ряда, связывающие τ с $\frac{\partial u}{\partial y}$:

$$\frac{\partial u}{\partial y} = \frac{\tau}{\mu} + A_1 \frac{\tau^3}{\mu^3} + A_2 \frac{\tau^5}{\mu^5} + \dots$$
(12)

$$\frac{\partial u}{\partial y} = \frac{\tau}{\mu} + A_1 \frac{\tau^3}{\mu} + A_2 \frac{\tau^5}{\mu} + \dots$$
 (13)

Принятые здесь параметры A_1 , A_2 и т. д. могут быть определены при физико-механических испытаниях смазочных материалов путем определения ньютоновской вязкости и времени релаксации.

Рис. 4а. Относительная несущая способность при смазке Ри-Эйринговской жидкостью

№ кривой	I	2	2	2	3	4	5	5	5	6	7	8	9	10	11
С	1	0,5	1	0,5	1	1	0,5	0,5	3	3	1	1	0,5	0,5	0,2
Bn	12	12	12	12	9	9	9	9	9	6	6	6	6	6	6
$\frac{\gamma_2}{\gamma_1}$	10	10	50	50	10	50	10	50	10	10	10	50	10	50	10

При определении реологических характеристик смазочных масел с использованием крутильно-колеблющегося цилиндра все пересчеты производятся в предположении, что жидкость максвелловская. Как известно при этом

$$\mu_{\mathsf{P}\Phi} = \frac{\mu}{1 + t_p^2 \left(\frac{\partial u}{\partial y}\right)^2} \tag{14}$$

Здесь t_p — время релаксации и $\mu_{\mathfrak{s}\phi} = \frac{\pi}{\frac{\partial u}{\partial y}}$

Подставляя µэф в (14), получим

42 .

$$\mu \frac{\partial u}{\partial y} = \tau \left[1 + t_p^2 \left(\frac{\partial u}{\partial y} \right)^2 \right]$$
(15)

Решая это уравнение относительно $\frac{\partial u}{\partial y}$, получим

$$\frac{\partial u}{\partial y} = \frac{\mu}{2\tau t_{\text{pen}}^2} \left[1 - \sqrt{1 - \frac{4\tau^2 t_{\text{pen}}^2}{\mu^2}} \right].$$

Раскладывая выражение под квадратным корнем в степенной ряд, получим

$$\frac{\partial u}{\partial y} = \frac{\tau}{\mu} + \frac{\tau^3}{\mu^3} t_{pe\pi}^2 + \frac{\tau^5}{\mu^5} 2t_{pe\pi}^4 \dots$$
(16)

Сопоставляя это выражение с (12), найдем $A_1 = t_{pen}^2$; $A_2 = t_{pen}^4$ и т. д 43

Некоторые авторы уже пытаются решать гидродинамические задачи при частных значениях зависимостей по типу (13). Например, Хсу [4] принимал $\frac{\partial u}{\partial y} = \frac{\tau}{\mu} + A_1 \frac{\tau^3}{\mu}$.

Рассмотрим вывод основных уравнений контактно-гидродинамической теории смазки для неньютоновских нелинейных жидкостей типа (12) и (13). Для этого произведем двойное интегрирование уравнений (12) и (13) по y, причем первый раз проинтегрируем от 0 до y, второй — от 0 до h.

В результате получим

$$\frac{6\mu \left(U_a + U_b\right)(h_0 - h)}{h^3} = \frac{dk_0}{dx} + A_1' \left(\frac{dk_0}{dx}\right)^3 + A_2' \left(\frac{dk_0}{dx}\right)^5 + \dots,$$
(17)

где при использовании уравнения (12)

$$A_{1}^{'} = A_{1} \frac{3h^{2}}{20\mu^{2}}; \quad A_{2}^{'} = A_{2} \frac{3h^{4}}{112\mu^{4}}; \dots$$

В случае использования уравнения (13)

$$A_{1}^{'} = A_{1} \frac{3h^{2}}{20}; \quad A_{2}^{'} = A_{2} \frac{3h^{4}}{112}; \dots$$

Переходя, как и ранее, к безразмерным параметрам, получим в качестве первого уравнения контактно-гидродинамической задачи для нелинейной жидкости

$$\frac{\partial u}{\partial y} = \frac{\tau}{\mu} + A_1 \frac{\tau^3}{\mu^3} + A_2 \frac{\tau^5}{\mu^5} + \dots$$

 $\frac{dk}{dz} + C_1 H^2 e^{-2Bnk} \left(\frac{dk}{dz}\right)^3 + C_2 H^4 e^{-4Bnk} \left(\frac{dk}{dz}\right)^5 + \dots = \frac{1-H}{H^3} e^{Bnk} , \quad (18)$ rge $C_1 = \frac{5, 4 \left(U_a + U_b\right)^2}{h_0^2} A_1; \quad C_2 = \frac{3, 47 \left(U_a + U_b\right)^4}{h_0^4} A_2; \dots$

Для нелинейной жидкости

$$\frac{\partial u}{\partial y} = \frac{\tau}{\mu} + A_1 \frac{\tau^3}{\mu} + A_2 \frac{\tau^5}{\mu} + \dots$$
$$\frac{dk}{dz} + C_1 H^2 \left(\frac{dk}{dz}\right)^3 + C_2 H^4 \left(\frac{dk}{dz}\right)^5 + \dots = \frac{1 - H}{H^3} e^{Bnk} , \qquad (19)$$

где

$$C_1 = \frac{5.4 \left(U_a + U_b\right)^2 \mu_0^2}{\hbar_0^2} A_1; \quad C_2 = \frac{3.47 \left(U_a + U_b\right)^4 \mu_0^4}{\hbar_0^4} A_2.$$

В обоих вариантах вторым уравнением контактно-гидродинамической задачи является выражение (9).

Значительно упрощается решение, если ограничиться лишь первыми двумя членами в уравнениях (12) и (13) (A_2 =0 и т. д.). Тогда, решая уравнения (18) и (19) относительно $\frac{dk}{dz}$, получим

$$\frac{dk}{dz} = \sqrt[3]{-q + \sqrt{q^2 + p^3}} + \sqrt[3]{-q - \sqrt{q^2 + p^3}}, \qquad (20)$$

где для 1 варианта

$$p = \frac{e^{2Bnk}}{3C_1H^2}; \quad q = \frac{(1-H) \ e^{3Bnk}}{2C_1H^3}; \quad (21)$$

для 2 варианта

$$p = \frac{1}{3C_1H^2}; \quad q = \frac{1-H}{2C_1H^3}$$

Уравнения (20) и (9) при условии (21) решаем методом Рунге-Кутта на ЭВМ.

В 1971 г. опубликовано [3] сравнение теоретических и экспериментальных результатов по измерению толщины смазочного слоя рентгеновским методом. При этом получено плохое соответствие с теоретическими результатами не только для ньютоновской жидкости, но и для Ри-Эйринговской. В связи с этим авторы работы [3] выдвинули гипотезу о необходимости рассматривать модель запаздывающей жидкости (при быстром росте давления вязкость возрастает, но со значительным отставанием по сравнению со статическими характеристиками). При бесконечном запаздывании они получили хорошее соответствие. В связи с этим заметим, что, как показано в работе [5], если течение произвольной жидкости может быть представлено одной какой-либо моделью, то это означает, что оно может быть представлено также любой другой моделью при соответствующем изменении численных параметров модели.

Действительно, в теории запаздывания Белл и Кеннел исходили из уравнения

$$\frac{\partial \varphi_d}{dt} = \frac{1}{t_d} \left(\varphi - \varphi_d \right), \tag{22}$$

где $\varphi_d = \frac{\mu_{\phi\phi}}{\mu_0}$ и $\varphi = \frac{\mu}{\mu_0}$. Здесь $\mu_{\phi\phi}$ — эффективная вязкость $\mu_{\phi\phi} = \frac{\tau}{\partial u}$; μ_0 — вязкость при атмосферном давлении; μ — ньютоновская

вязкость при термодинамически равновесном состоянии и данном давлении; t_d — время запаздывания — ретардации; t — время. Подставляя в (22) соответствующие выражения для φ , φ_d , $\mu_{э\varphi}$ и,

Подставляя в (22) соответствующие выражения для φ , φ_d , $\mu_{\vartheta \varphi}$ и, пренебрегая $\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial y} \right)$ по сравнению с $\frac{\partial \tau}{\partial t}$ (что представляет собой усреднение неньютоновских эффектов поперек сечения), получим

$$\tau + t_d \frac{\partial \tau}{\partial t} = \mu \frac{\partial u}{\partial y} \,. \tag{23}$$

45

Ταблица	Н <i>т</i> Н _{<i>т</i> ньют}	$\begin{array}{c}1\\0,81379\\0,4918\\0,1575\end{array}$	$\begin{array}{c} 1 \\ 0, 7109 \\ 0, 36 \\ 0, 266 \end{array}$	$ \begin{array}{c} 1 \\ 0,76814 \\ 0,503 \\ 0,20796 \end{array} $	1 0,83851 0,67364 0,242736 0,171766	1 0,78382 0,19038 0,132806	$\begin{array}{c}1\\0,776429\\0,61557\\0,26913\end{array}$	$\begin{array}{c}1\\0,93052\\0,805\\0,19678\\0,13427\end{array}$
	K K _{H bio T}	$\begin{array}{c}1\\0,97685\\0,96651\\0,84416\end{array}$	$\begin{smallmatrix} 1 \\ 0,99213 \\ 0,957 \\ 0,9494 \end{smallmatrix}$	$\begin{array}{c}1\\0,83749\\0,6466\\0,41121\end{array}$	$\begin{array}{c}1\\0,993302\\0,985165\\0,976235\\0,97295\end{array}$	$\begin{array}{c} 1\\ 0,999\\ 0,9999\end{array}$	$\begin{array}{c}1\\0,74352\\0,40379\\0,37718\end{array}$	$\begin{array}{c}1\\0,99471\\0,989078\\0,95497\\0,952998\end{array}$
	K	1,823 1,7808 1,76195 1,5389	$\begin{array}{c} 5,7353\\ 5,69015\\ 5,4896\\ 5,4455\end{array}$	$\begin{array}{c} 1,68300\\ 1,40949\\ 1,08734\\ 0,69206\end{array}$	8, 39412 8, 3379 8, 2696 8, 1946 8, 1946 8, 1671	25,1522 25,1177 25,1485 25,1387	$\begin{array}{c}1,7694\\1,3156\\0,7144\\0,6674\end{array}$	$\begin{array}{c} 12,7165\\ 12,6493\\ 12,5776\\ 12,1438\\ 12,11878\\ 12,11878\\ \end{array}$
	Kmax	$\begin{array}{c} 0,821458\\ 0,821458\\ 0,821456\\ 0,726268\\ 0,726268\end{array}$	1,797693 1,79769 1,797682 1,797682	$\begin{array}{c} 1,08064\\ 1,08035\\ 0,88321\\ 0,4747\end{array}$	3 3856 3 3856 3 3855 3 4225 3 4225 3 4225	7,0756 7,0755 7,1289 7,1289	$\begin{array}{c}1,4497\\1,3329\\0,64614\\0,3608\end{array}$	5, 6448 5, 6440 5, 6440 5, 6448 5, 6448
	^{m}H	$\begin{array}{c} 0,742356\\ 0,604127\\ 0,365113\\ 0,11696\end{array}$	$\begin{array}{c} 0, 709721 \\ 0, 504536 \\ 0, 255108 \\ 0, 189108 \end{array}$	$\begin{array}{c} 0,7179\\ 0,5514\\ 0,3611\\ 0,1493\end{array}$	0, 6599 0, 5533 0, 4445 0, 16018 0, 11335	$\begin{array}{c} 0, 62248\\ 0, 48792\\ 0, 11851\\ 0, 08267\end{array}$	$\begin{array}{c} 0, 71019\\ 0, 55141\\ 0, 43717\\ 0, 19113 \end{array}$	0,62761 0,584 0,505 0,1235 0,08427
	a	-1,57 -1,57 -1,57 -1,57	2, 3223 2, 32236 2, 32236 2, 32236		1	-2,66 -2,66 -2,67 -2,67	$\begin{array}{c} -0,8514\\ -0,8514\\ -0,83817\\ -0,94608\end{array}$	1,68 1,68 1,68 1,68 68 68 68 68 68 68
	C.	10^{-5} 10^{3} 50	10^{-5} 10 15	10^{-5} 3 50 50	10^{-5} 1 1 10 15 15	10^{-5} 1 10 15	10^{-5} 10 50	10^{-5} 0,5 10^{-5} 10 15
	7(3	10	10	10	10	10	10	10
	Bn	Q	6	Q	6	12	9	<i>б</i>
	2	с С	m	1	1	1	0,5	0,5

5	12	10	10.50	ອງອງອງອ [2 [2 [2 [2 [2 []]]] []	0,5040 0,5040 0,162018 0,08023	12, 49999 12, 5000 12, 4998	41.608 41.608 41.47819 41.46565	$\begin{array}{c}1\\0.99779\\0.99468\\0.99438\end{array}$	$\begin{array}{c} 1 \\ 0 \\ 0 \\ 26823 \\ 0 \\ 132826 \end{array}$
5	Q	10	$ \begin{array}{c} 10^{-5} \\ 2 \\ 10 \\ 50 \end{array} $	$\begin{array}{c} -0.68 \\ -0.68 \\ -0.73 \\ -0.73 \\ -0.568 \end{array}$	$\begin{array}{c} 0,710\\ 0,629447\\ 0,506768\\ 0,211193 \end{array}$	2 3119 1 6908 0 476206 0 323327	2,0626 1,16782 0,534 0,46109	$\begin{array}{c}1\\0,56619\\0,25889\\0,22355\end{array}$	$\begin{array}{c}1\\0,886545\\0,71375\\0,297\end{array}$
,2	6	10	10^{-5} 0,5	-1.57 -1,57	0,6 0,508	12,300 12,32	25,700 25,5	1 0, 99222	$\begin{array}{c}1\\0,847\end{array}$
,2	12	10	10^{-5}	-2,415 -2,415	$\begin{array}{c} 0,568\\ 0,185406\end{array}$	29, 160 29, 15815	93,460 93,450	1 0,999	1 0,32612
	9	50	10^{-5} 3 10	-1,00 -1,03944 -1,04	$\begin{array}{c} 0,712\\ 0,5417\\ 0,35125\end{array}$	1,129 1,06852 0,8212	1 683 1 3693 1 0393	$\begin{array}{c}1\\0,813588\\0,617528\end{array}$	$\begin{array}{c} 1\\0,7608\\0,4933\end{array}$
	6	50	10^{-5}		0,636 0,54067 0,146738	3, 386 3, 3855 3, 3856	8, 303 8, 21096 8, 0249	$\begin{array}{c} 1 \\ 0, 986 \\ 0, 9665 \end{array}$	$\begin{array}{c}1\\0,85011\\0,2307\end{array}$
1	12	50	10^{-5} 0,5 10	2 66 2 66 2 66	0,62249 0,5757 * 0,180647 0,099316	7, 0756 7, 0755 7, 0755 7, 0756	25,088 25,03177 24,9935 24,95115	$\begin{array}{c}1\\0,998\\0,99623\\0,991545\end{array}$	$\begin{array}{c}1\\0.92484\\0.290\\0.15954\end{array}$
.5	9	50	10^{-5} 10^{-5} 50	-0,86 -0,85 -0,84086 -0,95257	$\begin{array}{c} 0,702\\ 0,54437\\ 0,4297\\ 0,18132 \end{array}$	$\begin{array}{c}1,440\\1,202\\0,593988\\0,35583\end{array}$	$\begin{array}{c}1,800\\1,22316\\0,68716\\0,52238\end{array}$	$\begin{smallmatrix} 1 \\ 0, 67953 \\ 0, 3817 \\ 0, 2902 \end{smallmatrix}$	$\begin{array}{c}1\\0,77545\\0,61\\0,2583\end{array}$
,5	6	50	10^{-5} 0,5 10	$\begin{array}{c} -1 \\ 68 \\ -1 \\ 68 \\ 68 \\ 68 \\ 68 \\ 68 \\ 68 \\ 68 \\ 6$	0,626 0,56269 0,186014 0,10041	5,640 5,64407 5,6448 5,6448	12,609 12,608 12,2727 12,12375	$\begin{array}{c}1\\0,999\\0,97402\\0,9622\end{array}$	$\begin{array}{c}1\\0,8988\\0,297\\0,1604\end{array}$
.5	12	50	10^{-5}	-2,5	0,604007 0,12136	12,49976 12,49999	$\frac{41}{41}, 7$	1 0,99462	1 0,2009

Как известно, для максвелловской жидкости

$$\tau + t_p \frac{\partial \tau}{\partial t} = \mu \frac{\partial u}{\partial y} \tag{24}$$

Если принять численно совпадающие значения t_d и t_p , то получим аналогичные выражения и возможность формального перехода от максвелловской модели к запаздывающей.

Как мы указывали в [6], неньютоновское поведение жидкости, определяемое временем релаксации, включает в себя как собственно релаксационные явления для касательных напряжений, так и запаздывание вязкости при быстром росте давления. Поэтому нет особой нужды в разработке новой запаздывающей модели для жидкости. Анализируя работу [3], заметим, что несоответствие между экспериментальными результатами и их теоретическим расчетом при Ри-Эйринговском поведении жидкости можно объяснить двумя причинами.

Прежде всего очевидна весьма ориентировочная оценка величин времени релаксации, произведенная Беллом и Кеннелом, и значительное занижение возможного неньютоновского эффекта, особенно при больших нагрузках. Фактически они приняли, что время релаксации у них не зависит от давления. Таким образом, при более корректном учете неньютоновских свойств толщина слоя сильно снизится при больших давлениях и мало изменится при малых. Отсюда и получится более резкая теоретическая зависимость между толщиной слоя и нагрузкой.

Вторым, более важным фактором, является то, что Белл и Кеннел, по-видимому, не строили эпюры давления и формы зазоров для Ри-Эйринговской жидкости и поэтому по аналогии с пьютоновской жидкостью предположим, что и для Ри-Эйринговской жидкости H_m = $\frac{h_m}{h_0}$ близко к 0,8 (или 0,7).

Для ньютоновских жидкостей это справедливо с точностью $\pm 10-15\%$. Однако, как мы показали (см. таблицу и рис. 2-3), для Ри-Эйринговской жидкости это отношение часто снижается до 0,1 и даже 0,07. Таким образом, оно может быть на порядок меньше. Следовательно, при сравнении экспериментальных результатов, полученных для неньютоновских жидкостей рентгеновским методом, с теоретическими (полученными для ньютоновских жидкостей или для неньютоновских, но без учета указанного явления), даже если толщина слоя смазки в точках экстремума давления h_0 совпадает, то наименьшая толщина слоя h_m , экспериментально замеренная, может быть даже в 7—10 раз меньше теоретически рассчитанной. С ростом давления резко растет время релаксации и эффект запаздывания вязкости, поэтому происходит относительное уменьшение h_m .

В работе [7] также экспериментально найдено, что для неньютоновских жидкостей $H_{\rm m} = \frac{h_m}{h_0}$ может снизиться до 0,12.

Таким образом, имеется качественное и количественное экспериментальное подтверждение приведенных в данном докладе теоретических расчетов. Для получения количественного сравнения необходимо знать действительное время релаксации американских масел.

В данной работе предложена приближенная контактно-гидродинамическая теория смазки для жидкостей, находящихся в неньютоновском состоянии, предложены алгоритмы решения, приведены результаты численных расчетов и показано качественное соответствие экспериментальных и теоретических результатов.

ЛИТЕРАТУРА

1. Bell I. C. Lubrication of Rolling Surfaces by a Ree-Eyring Fluid. ASLE Transactions, v. 5, 1962.

2. Коднир Д. С. Контактная гидродинамика деталей машин. Куйбышевский авиационный институт, 1970.

3. Белл И. Ц. Кенелл И. В. Интерпретация данных о толщине масляной пленки при качении. Ч. II. Влияние реологических факторов. Проблемы трения и смазки, № 4, 1971. 4. Hsu I. C. Non-Newtonian Flow in Infinite-Length Full journal Bearing.

Journal of Lubrication Technology, N 3, 1967.

5. Kuhn W. Relaxationszeitspektrum bei systemen, mit beliebig Vielen, teils in Serie, teils parallel wirkenden, mit Reibung belasteten elastischen zusammen-haltsmechanismen. Helvetica Chimia Acta, 1947, v. 30, N 2.

6. Коднир Д. С. Современное состояние контактно-гидродинамической теории смазки и краткий обзор работ Куйбышевского авиационного института им. С. П. Королева по этой проблеме. Настоящий сборник докладов.

7. Сэнборн Д. М., Винер В. О. Влияние реологических свойств жид-кости на упругогидродинамический точечный контакт при скольжении в условиях переменной нагрузки. Проблемы трения и смазки, № 2, 1971.

Д. С. КОДНИР

НЕИЗОТЕРМИЧЕСКАЯ СТАЦИОНАРНАЯ ЗАДАЧА ДЛЯ НЕНЬЮТОНОВСКОЙ ЖИДКОСТИ

Выполненные расчеты показывают, что для определения коэффициента трения необходимо учитывать неньютоновское поведение смазки, возникающее на всей или на части зоны контакта.

В настоящем докладе приведено решение приближенной неизотермической стационарной контактно-гидродинамической задачи для вязко-упругой неньютоновской смазки, когда градиент скорости является произвольной нелинейной функцией касательного напряжения. Одним из частных случаев полученного общего решения является максвелловское поведение жидкости, другим -- ньютоновское повеление.

При решении неизотермической задачи следует учесть наличие двух тепловых потоков — конвективного в направлении движения и теплопроводности поперек смазочного слоя (в направлении, пер-