Л. М. ЛОГВИНОВ, А. Ф. ВОРОНОВ

УНИВЕРСАЛЬНЫЙ ИСТОЧНИК ПИТАНИЯ ДЛЯ ЭЛЕКТРОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ

При проведении электрофизических экспериментов как правило требуется большое количество стабилизированных и нестабилизированных источников питания с различными выходными параметрами. Применение для этой цели промышленных источников питания приводит к загромождению рабочего места экспериментатора, а также к возникновению трудностей с комплектацией экспериментальной установки. Обычно проведение электрофизических экспериментов связано с применением высокочувствительных электрометрических, зарядочувствительных и малошумящих усилителей. Обработка получаемой информации производится импульсными устройствами. Все они предъявляют очень жесткие требования к источникам питания (коэффициент стабилизации 10^4 -:- 10^5 , коэффициент пульсаций 10^{-4} -:- 10^{-6} , выходное сопротивление 10^{-2} : 10^{-3} ома). Как показала практика проведения электрофизических исследований, универсальный источник питания должен включать четыре-пять стабилизированных регулируемых источников низкого напряжения; пять-шесть стабилизированных нерегулируемых источников низкого и высокого напряжения и один-два высоковольтных регулируемых источника. Высоковольтные источники должны допускать импульсную модуляцию от внешнего генератора.

Такой универсальный источник питания был разработан и изготовлен в научно-исследовательской группе кафедры «Радиотехника». В настоящее время источник успешно применяется при

проведении электрофизических исследований.

Кратко остановимся на построении принципиальных схем стабилизаторов. Повышения коэффициента стабилизации и снижение коэффициента пульсаций можно достичь усложнением схемы стабилизатора (например, увеличивая число каскадов усилителя в цепи обратной связи, применяя в качестве регулирующего транзистора — составной и т. п.). Однако удобнее использовать другой путь — включение нескольких стабилизаторов с умеренным коэффициентом стабилизации. В этом случае общий коэффициент стабилизации равен произведению коэффициентов стабилизации входящих в схему стабилизаторов, такой способ позволяет без особых усложнений схемы стабилизатора получить высокий коэффициент стабилизации. На рис. 1 приведена принципиальная электрическая схема стабилизированного регулируемого источника питания на 10 -:- 20 в. Предварительный стабилизатор собран на транзисторах Т1-МП42Б, Т2-П217В, оконечный — Т3-МП42Б, Т4-П217В, Т5-МП42Б, Т6-МП42Б — транзистор схемы защиты блока от коротких замыканий и перегрузок по току.

Все блоки источника питания, к которым предъявляются жесткие требования, собраны по схеме последовательного включения двух стабилизаторов. Блоки, к которым предъявляются пониженные требования, имеют один стабилизатор, или только

фильтр для сглаживания пульсаций.

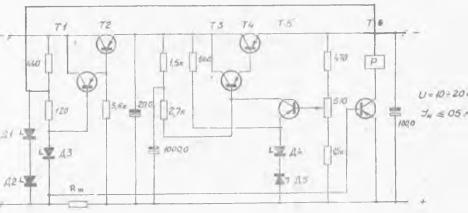


Рис. 1. Принципиальная электрическая схема блока питания 10-:-20 в

Высоковольтный блок питания (рис. 2) построен по схеме импульсного генератора с внешним возбуждением и последующим быпрямлением и умножением импульсного напряжения. Схема собрана на транзисторах Т7-МП42Б — задающий генератор. Т8-П605 — буферный усилитель и Т9-КТ803 — выходной каскад с использованием телевизнонного трансформатора строчной развертки ТВС-110. Выпрямление импульсного напряжения выполняется вакуумными кенотронами Л1; Л2-1Ц21П. Модуляция генератора осуществляется путем срыва колебаний задающего генератора. Для улучшения фронтов высоковольтных импульсов на выход включается разрядное сопротивление. Разработанный блок имеет малые габариты и к. п. д. более 50%.

Все блоки источника питания гальванически развязаны, что позволяет изменять полярность выходных напряжений и производить их последовательное включение. Во всех блоках, где это

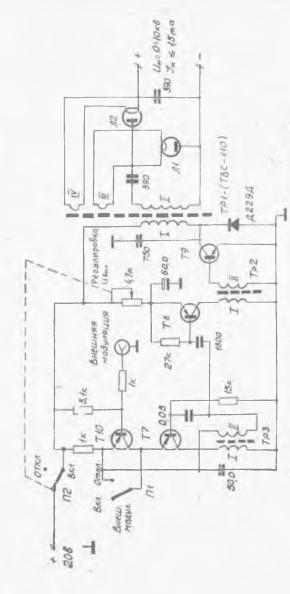


Рис. 2. Принципиальная электрическая схема блока патания 1->10 кв

требуется, введена защита от коротких замыканий и перегрузки по току. Предусмотрена также индикация тока нагрузки и сигнализация перегрузки по каждому блоку. Имеется измерительный прибор \hat{M} -2 $\hat{4}$ (100 мкА), с помощью которого можно измерять напряжение или ток регулируемых источников питания.

В таблице 1 приведены основные данные всех блоков разработанного источника питания. Конструктивно источник выполнен в виде отдельных плат, которые вставляются в дюралевый корпус $(510 \times 255 \times 140)$ мм³, соединение их осуществляется с помощью разъемов. На лицевой панели источника имеется измерительный прибор, органы управления и выходные клеммы блоков. Вес универсального источника питания составляет 12 кг.

Таблица 1 Основные характеристики блоков источника питания

№ блока	Выходное напряжение, $U_{\rm H}$, вольт	Донустимый ток, I _н , ампер	Коэффициент стабилизации, $K_{\rm cr}$	Коэффициент пульсаций, К _п
1,2	10-:-20	0,5	>1105	2 - 10-5
3	20-:-50	0,5	>105	$5 \cdot 10^{-5}$
	0-:-10	0,7	$> 10^{2}$	$5 \cdot 10^{-3}$
4 5	0-:-104	$2 \cdot 10^{-3}$	_	_
6	100	0,05	-	$2 \cdot 10^{-3}$
7	200	0,05	_	$1 \cdot 10^{-3}$
8	400	0,05		$5 \cdot 10^{-4}$
8 9	6,3	1,0	>50	$1 \cdot 10^{-2}$
10	12	1,0	>60	$3 \cdot 10^{-3}$
11	27	2,0	>100	$6 \cdot 10^{-2}$

Примечание. 1. Коэффициент стабилизации (Кст) и коэффициент пульсаций ($K_{\rm m}$) указаны для максимального тока нагрузки ($I_{\rm H}$) при максимальном выходном напряжении ($U_{\rm H}$). 2. Защита от перегрузки по току срабатывает при $I'_{\rm H}=(1,2\cdot\cdot\cdot1,4)I_{\rm H}$.