УДК 621.923.1

М.Э.Иткин, Ж.А.Юсупов

ИССЛЕДОВАНИЕ ПРОЦЕССА ТОРЦОВОГО ВРЕЗНОГО ШЛИФОВАНИЯ С ПРИМЕНЕНИЕМ МЕТОДА ПЛАНИРОВАНИЯ ЭКСПЕРИМЕНТА

В статье излагаются результаты исследования удельного съема металла См, , износа круга Ск, , сил резания Рг и Ру , а также контактных температур Тк при торцовом врезном шлифовании. Исследование проводилось с применением метода многофакторного планирования эксперимента [1, 2, 3]. Был реализован композиционьний плам, ядром которого являяся линейный ортогомальный плам. После выполнения опытов согласно линейному плану и анализа их результатов производилась оценка приемлемости гипотезы динейности. При необходимости план достраивался до плана второго порядка и проводились дополнительные опыть.

В таблице I приведены варъируемые значения осевой подачи t скорости круга \mathcal{V}_{κ} и скорости изделия \mathcal{V}_{u} при реализации линейного плана.

Таблица I

		Режимы п	лифования		
Уровень	lg t=x,	VK, M/cek.	lg V _K = X ₂	1 Vu , M/MUH	lg Vu = x3
Нижний (-1) 0,18	1,2553	15	1,1761	30	I,477I
Верхний(+I) 0,57	I,7559	35	I,544I	80	1,9031

В таблице 2 приводится план эксперимента, представляющий линейный план (выделен жирной линией), достроенный согласно рекомендациям [2] до плана второго порядка.

Аппроксимирующая функция после реализации линейного плана отыскивалась в следующем виде:

$$y_a = b_0 + b_1 z_1 + b_2 z_2 + b_3 z_3 + b_{12} z_1 z_2 + b_{20} z_2 z_3 + b_{31} z_3 z_1 , \qquad (I)$$

где β_j и β_j к — коэффициенты, подлежещие определению; z_j — безразмерные переменные.

Если выявлялась недостаточность линейной аппроисимации, производились дополнительные опыты и оценивались также квадратичные эффекты (коэффициенты β_{ij}).

Опыты проводились на круглошлифовальном станке модели ЗБ153У, оснащенном механизмсм автоматической продольной микроподачи и вариатором для бесступенчатого изменения скорости круга. Использовался шлифовальный круг ПП400х50х203 3925СМ,К6, на рабочем торце которого была выполнена площадка шириной 5 мм; обрабатываемый материал — ЭИ437БУ, ширина шлифуемого торца детали — 14 мм.

Линейные съем металла и износ круга замерялись соответственно микрометром и скобой с ценой деления 0,002 мм. Силы шлифования ρ_z и ρ_y измерялись двужкомпонентным динамометрическим центром с использованием тензометрического усилителя 8 \pm H4-M. Контактные температуры определялись с помещью полуискусственной термопары и фиксировались на пленке осцилютрафом H700.

Для определения функциональной зависимости Q_M , P_Z , P_Y и T_K от режимов илифования оказалось достаточным ограничиться линейной аппроксимацией, так как расчетные значения \mathcal{E}_{Q_X}

1 yi															
91. 32.1 19n.															
EVE F	+0,270	+0,270	+0,270	+0,270	+0,270	+0,270	+0.270	+0,270	-0,730	-0,730	-0,730	-0,730	-0,730	+0,746	+0.746
7 - 12 - 17 - 17 - 17 - 17 - 17 - 17 - 1	+0,270	+0,270	+0,270	+0,270	+0,270	+0,270	+0,270	+0,270	-0,730	-0,730	-0,730	942.0+	+0,746	-0,730	-0.730
m 1/2 - 2/2	+0,270	40,270	+0,270	+0,270	+0,270	+0,270	+0,270	+0,270	-0,730	942*0+	+0,746	-0,730	-0,730	6 -0,730	6 -0,730
24 00 m	I+	7	<u>+</u>	1+	14	+1	T+	17+	0	0	0	0 94 t 1+	1,476 0	4I,476	4I,476
27.	Ţ	7	Į+	7	17	1-1	+I	Ţ	0	0	0	H-	+H+	0	0
72	14	1	<u>I</u> +	+	1+	H	I+	7+	0	+I,476	+I 476	0	0	0	0
31Zii	<u>I</u> +	1	Ŧ	H	H	H	¥	I,	0	0	0	0	0	0	0
Z1, Z2, Z2, Z3, Z3, Z1,	Į+	T	7	+J.	T	H	T	I+	0	0	0	0	0	0	0
11. × 21.	Ţ.	Ħ	7	Ή	7	17	H	1	0	0	0	a	0	a	0
73i 7	벅	⊣	<u></u>	7	T.		1	I.	0	0	0	0	0	+1,215	-I.215
22i 1	7	Į+		17	1+	J+	I	H	0	0	0	+1,215	-I,2I5	a	0
(+)	H	H	7	1	1	÷)	Ŧ	0	+1,215	-1,215	0	0	0	0
EH.	7	7	7+	+	1	7	1	1	1	+	1	I,	I+	7	I+
	I.	2.	3	4.4	5.	9	7	89	6	TO.	II.	12.	13,	**	15

х) Среднее значение N опытных дакных

G q nou de	Tenusaemne		GRPUT				μ				-		- Lond	
0,24	моследуемые показателя	5	0=5%	0,0	+-	u a	+ + + + + + + + + + + + + + + + + + + +	+12	t 23		RPUT.	1	7-2.5%	Аппроксимирующие Уравнения
N	g _m	0,24	OHOB	72,2	59,3		2,0	1,75	0,50	1000			3,38 npm 1, =4	9x-15502 0.95 Vn., met /mun.
2, 0,20 -n- 245 43,4 27,2 4,53 1,90 0,00 0 -n- 1,42 1,88 p. 1,8 p. 1	g _x	45,0		498	7.64	PI,IS	12,2		5,44		± 1	(1)	t.	i
β ₃ 10.25 -"- 229 36.6 7.50 3.29 1.57 0.36 1.57 -"- 1.48 -"- β ₃ - T _R 0.29 μ _μ μ 810 31.1 15.2 25.9 1.18 1.25 1.04 μμ 2.93 μμ 4 Γκ- T _R 0.29 μμ 2.0 μ 2.0 μ 2.0 μ 2.0 μ 2.0 μ 2.0 μ 2.2 μ 2.0 μ	4	0,30		545	43,4	27,2	4,53	1,90	0,20	a			3,38 nps l, =4 l/ =24	V. 0.62
Tr. 10,29 npr	o ⁿ	0,25		229	36,6	7,50	3,29					84°I		82 V.
12804mins 12 to	F.	0,29	BEHO	810	31,1	15,2	25,9		1,25		2,04 npn 0 = 52	2,93	5,25 upn U, =4 Us =32	N X
to t													Taour	T8 4
to t					4							FRPL	F	,
	V.,0							+ 22	1. t. s.	£ kpu npu q=2.5		9-1	7 6	Аппроисимарующие уравнения

Š

Исследуемые поквая t_{42}^c , t_{23}^c и t_{24}^c не превывали соответствующих допустимих значений t_{23}^c крит. (табл. 3). Чтобы определить аппроксимирующее уравнение для Q_K пришлось произвести дополнительные опыты, достроив линейный план до плана второго порядка (табл. 2), так как для износа круга значения критериев t_{jK}^c , характеризующих взаимное влияние исследуемых режимов шлифования, значительно превышают t_{jK}^c крит. (табл. 3). Это, повидимому, связано с различным характером износа круга при изменении t_{jK}^c и V_K^c (при больших значениях t_{jK}^c и малых значениях t_{jK}^c наблюдался весьма интенсивный износ круга). Значения оцениваемых критериев для t_{jK}^c вычисленных с учетом основных и дополнительных опытов, приведены в табл. 4.

В таблицах 3 и 4 приведены также аппроксимирующие уравнения для исследуемых показателей. Полученные уравнения могут быть использованы для навначения режимов торцового врезного шлифования.

Литература

- I. Надимов В.В., Чернова Н.А. Статистические методы планирования экстремальных экспериментов. М., Изд-во ™Наука™. 1965.
- 2. Ординцев В.И. Математическое описание объектов автоматизации, М., "Маниностроение", 1965.
- 3. Кацаев П.Г. Оптимизация процессов обработки резанием. М, Госинти, № 2/56-70.
- 4. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. Вычислительный центр АН СССР, М., 1968.