ОБШИЕ ВОПРОСЫ ОБРАБАТЫВАЕМОСТИ МАТЕРИАЛОВ РЕЗАНИЕМ

Ф.П.Урывский

ИССЛЕДОВАНИЕ ОБРАБАТЫВАЕМОСТИ, КАЧЕСТВА ПОВЕРХНОСТИ И ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ ИЗДЕЛИЙ ИЗ ЖАРОПРОЧНЫХ И ТИТАНОВЫХ СПЛАВОВ

Проблема рациональной обработки резанием современных жаропрочных и титановых сплавов довольно сложная. Одной из основных причин низкой стойкости режущих инструментов являются высокие прочностные характеристики этих сплавов, а также их вязкость, сохраняющиеся при высоких температурах. Современные сплавы, идущие на изготовление ответственных деталей, например, лопаток турбореактивных двигателей, могут сохранять жаропрочность и жаростойкость при температуре 1000°С и выше. При обработке жаропрочных и титановых сплавов в зоне контакта инструмента с изделием и стружкой имеют место высокие температуры, значение которых достигает 800-1000°С. Это объясняется низкой теплопроводностью обрабатываемых материалов и большими силами резания.

Основными видами износа режущих инструментов при обработке жаропрочных и титановых сплавов являются адгезионный и диффузионный. Материалы режущих инструментов легируются теми же элементами, что и жаропрочные и титановые сплавы. Это вызывает химическое сродство и налипание стружки на инструмент. На износ инструментов оказывает существенное влияние наличие в обрабатываемом материале интерметаллоидной фазы, относящейся к твердым растворам, и мелкодисперсных карбидов. Повышение жаропрочности сплавов, как правило, приводит к ухудшению их обрабатываемости и снижению скоростей резания. По данным профессора Н.И.Резникова [1], коэффициент обрабатываемости по скорости резания для титановых сплавов 0,4-0,2, а для жаропрочных сплавов - 0,35-0,1 по сравнению с нержавеющей сталью IXI8Н9Т /ЭЯІТ).

Основными путями повышения производительности при обработке резанием жаропрочных и титановых сплавов является применение ин-

струментов, изготовленных из материалов, обладающих высокой твердостью и красностойкостью, а также большой износостойкостью и высокой механической прочностью.

Для обработки жаропрочных сталей, жаропрочных и титановых сплавов рекомендуется применять инструментальные однокарбидные сплавы типа ВК/ВК6М, ВК8, ВК15М, ВК6ОМ, ВК10ОМ/. Высокие режущие свойства при обработке жаропрочных материалов имеют инструменты из сплавов ВК6ОМ и ВК10ОМ.

Исследования, проведенные доцентом Лепилиным В.И., показали, что при обработке точением жаропрочного литого сплава на никелевой основе ВЖЛ-14 применение сплава ВКІООМ позволяет увеличить стойкость резцов в 3-4 раза по сравнению с резцами из сплавов ВКЗ. Высокая износостойкость резцов ВКІООМ объясняется тем, что этот сплав более вязкий, чем ВК6 и ВКЗ, и при возникновении вибраций в системе "станок-деталь-инструмент" не допускает сколов режущей части инструмента, которые наблюдаются при работе резцами из ВК6ОМ. и ВКЗ. Для чистовой обработки жаропрочных и титановых сплавов можно рекомендовать резцы ВК6ОМ.

Для изготовления метчиков, сверя, протяжек, зуборезного, фасонного и других инструментов находят широкое применение быстрорежущие стали: Р9КІО, Р9Ф5, Р9Ф2, РІОК5Ф5, РІ2Ф5М и др.

По данным [2], [3], [4], [5] применение стали Р9Ф5 для изготовления метчиков, протяжек и фрез обеспечивает их стойкость по сравнению с Р18 соответственно в 1,5 - 2 раза, 3,4 и 2-2,5 раза.

При сверлении, зенкеровании и развертывании деталей из стали ВКС2IO в закаленном состоянии и труднообрабатываемого титанового сплава ВТ22 в отожженном состоянии большую стойкость показали инструменты из быстрорежущей стали Р9Ф5. Это объясняется тем, что входящий в сталь Р9Ф5 карбид вакадия обладает высокой твердостью. При прерывистем точении сплава ЭИ437Б применение быстрорежущей стали РІОК5Ф5 обеспечивает повышение стойкости резцов в I,2-I,4 раза по сравнению с РІ4Ф4 и в I,5-2,5 по сравнению с РІ8.

Стойкость и производительность режущих инструментов при обработке жаропрочных и титановых сплавов в значительной степени зависит от качества заточки режущего инструмента.

Исследования, проведенные под руководством автора, показали, что применение алмазной и эльборовой заточки инструментов, предназ-

начающихся для обработки жаропрочных сталей, позволяет повысить их стойкость. Чем выше прочность и способность обрабатываемого материала к наклепу и меньше толщина срезаемого слоя, тем выше эффективность применения алмазной заточки и доводки режущих инструментов.

Исследованиями аспиранта Солера Я.И. установлено, что замена заточки абразивными кругами заточкой и доводкой эльборовыми кругами дает повышение стойкости резцов РІ8 при обработке силава хН77Тыр в I,5-2,5 раза, протяжек в 2-4 раза.

Повышение стойкости инструментов, доведенных алмазными кругами, происходит в результате уменьшения радиуса скругления режущей кромки и ее шероховатости, уменьшения количества остаточного
аустенита по сравнению с абразивной заточкой и образования в поверхностных слоях инструментов вместо растягивающих сжимающих
остаточных напряжений.

Для заточки и доводки режущих инструментов следует применять алмазные круги ACN 100/80, ACP 100/80 на органических связках EI, EI56, T02, KI и боразоновые E08-I0-EI-I00.

Режим доводки:

 $V_{\rm KP} = 15 - 17$ м/сек (для алмазных кругов) $V_{\rm KP} = 30 - 33$ м/сек (для эльборовых) $S_{\rm RP} = 1.0 - 1.5$ м/мин; $S_{\rm non} = 0.005 - 0.01$ мм/дв.ход.

Применение электроалмазной заточки [6] позволяет увеличить съем материала инструмента в 4-5 раз и уменьшить расход алмаза до 6-8 раз.

Важным резервом повышения стойкости и производительности режущих инструментов при обработке жаропрочных сталей и сплавов является повышение жесткости и виброустойчивости системы СПИД.

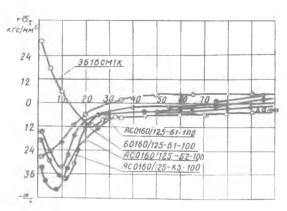
В работе [7] доцентом Жарковым И.Г. показано, что имеются такие значения амплитуд автоколебаний, при которых стойкость инструмента имеет экстремальное значение. Так, например, при работе на фрезерных станках при рабочих частотах колебаний в процессе резания $\ell=500-800$ Гц оптимальное значение амплитут $A_{\rm OHT}=10-20$ мкм. Увеличение амплитуды вибраций до I20 мкм приводит к снижению стойкости фрез в I0 раз.

Совершенствуя геометрию и конструкцию инструментов, можно добиться оптимальных условий их работы. Кандидатом технических наук половым И.Г., доцентом Волковым А.Н. разработана конструкция твердосплавных цилиндрических и концевых фрез повышенной жесткости с $\omega = 20-25^{\circ}$. Внедрение этих фрез при обработке титанового сплава ВТ2О дало повышение производительности в 2,5-3 раза по сравнению с заводскими фрезами.

Уменьшение вибраций при развертывании отверстий было получено с помощью установки специальных направляющих прокладок из винипластв, фторопласта, текстолита, выступающих относительно режущих и калибрующих зубьев на 0,06-0,15 мм. Применение разверток усовершенствованной конструкции (доц. Горячев A.C., с.н.с Жунин В.В.) позволило уменьшить разбивку отверстий и повысить производительность при обработке отверстий в высокопрочных сталях типа 30643, 3

При обработке отверстий малых диаметров в деталях из жаропрочных и титановых сплавов большое влияние на износ и стойкость сверл оказывают крутильные колебания. Они приводят к значительному изменению фактической скорости резания, толщины среза и часто обуславливают усталостное разрушение сверл. Исследования, проведенные доц.Бурмистровым Е.В. и асп. Тарасовым А.В., показали, что при обработке титанового сплава 0Т4 сверлами диаметром 3,2 мм с номинальной скоростью резания $\mathcal{V}=3.8$ м/мин действительная скорость резания изменяется в пределах от 2 до 5,5 м/мин, т.е. больше, чем в 2,5 раза. При сверлении только одного отверстия на глубину I5 мм сверло d=3.2 мм совершает I2-I8 тыс. колебаний. Уменьшение амплитуды и частоты колебаний приводит к увеличению стойкости сверл. Применение четырехкромочных сверл, у которых амплитуда колебания в 2 раза меньше, чем у двухкромочных, позволяет значительно повысить стой-кость.

Основными факторами, определяющими стойкость и прочность сверл малых диаметров являются их жесткость и виброустойчивость.


Алмазные и эльборовые круги, широко используемые для заточки и доводки режущих инструментов, при обработке высокопрочных и жаропрочных сталей и титановых сплавов, еще не нашли достаточного применения.

Проведенные нами исследования показали, что при обработке титановых сплавов и высокопрочных сталей алмазные и эльборовые круги имеют более высокие режущие свойства, которые позволяют увеличить съем металла в единицу времени по сравнению с обычными кругами на 20-50%. Особое преимущество имеют эти круги перед обычными — абразивными на чистовых и получистовых операциях, где необходимо обеспечить высокую точность размера и необходимое качество обработанной поверхности. Высокая твердость алмазных зерен, большая развитость и острота режущих кромок, малый радиус закругления вершин, малый коэффициент трения, хорошая теплопроводность обеспечивают высокие режущие характеристики кругов. Аспирантом Барвинком В.А. было установлено, что при обработке высокопрочных и легированных сталей алмазными и эльборовыми кругами динамическая и тепловая напряженность процесса в 2-4 раза ниже по сравнению с обычным шлифованием.

Теоретические и экспериментальные исследования температурных полей изделий для плоского, круглого и пазового шлифования при обработке высокопрочных сталей и титановых сплавов показали, что применение алмазных и эльборовых кругов дает при шлифовании конструкционных легированных сталей снижение максимальной температуры в зоне контакта круга с изделием в I,6-2,5 раза, при обработке высокопрочных—в I,2-I,8 раза и титановых сплавов—в I,4-I,7 раза. При этом глубина проникновения высоких температур, способствующих формированию остаточных напряжений, изменению фазового состава и структуры при обычном шлифовании значительно больше, чем при алмазном и эльборовом.

Шероховатость обработанной поверхности при шлифовании алмазным и эльборовыми кругами деталей сталей ISXPT, 30XFCHA, I2XH3A, имеющих HRC 50-60, колеблется в пределах 8-10 классов, а для деталей из высокопрочных сталей эм643, Эм347, ЭП-210, Эм712 и титановых сплавов ВТ3-1, ВТ9, ВТ14, ВТ20 соответствует 7-8 классам шероховатости. Круги АСМ 40/28 Б-100 и АСМ 40/28 БР-50 позволяют получить чистоту поверхности IO-II классов. Применение этих кругов при обработке титановых сплавов и высокопрочных сталей позволяет заменить полирование шлифованием, повысить производительность труда, точность обработки и санитарно-гигиенические условия на рабочем месте.

Исследование остаточных напряжений показало, что при обработке высокопрочных сталей Эм643, Эм347Ш, ВКС2ІО, ЗОХГСНА, ЭП2ІО обычными абразивными кругами в поверхностных слоях изделия образуются в основном растягивающие остаточные напряжения, а при обработке алмазными и эльборовыми — сжимающие. На рис. І приведены кривые остаточных напряжений, образующихся при шлифовании стали ЭМ643 кругами с различными свойствами режущих зерен и связок.

Puc.I. Тангенциальные остаточные напряжения при шлифовании стали 30643 обычными, алмазными и эльборовыми кругами.Режим шлифования:

$$V_{\text{KP}} = 26 \text{ m/cek}; \quad V_{\text{N3A}} = 46 \text{ m/mnH};$$

 $S = 0.5 \text{ m/mnH}; \quad t = 0.005 \text{ mm/npox}$

Полученный характер остаточных напряжений можно объяснить тем, что при обычном шлифовании решающим фактором в формировании остаточных напряжений является температурный, а при алмазном и эльборовом — силовой.

Рентгенографическое исследование фазового состава, тонкой структуры (размеров блоков мозаики и искажений второго рода) и наклепа показало, что при обработке стали ЭИЗ47Ш обычными и эльборовыми кругами изменения в поверхностном слое изделия могут наблюдаться при максимальной контактной температуре в зоне резания
700°С и выше. Это объясняется тем, что в поверхностном слое происходит вторичная закалка, которая приводит к увеличению остаточного

аустенита при эльборовом шлифовании до 15-20%, а при обычном абразивном - до 40-45% (рис. 2). Увеличение процентного содержания

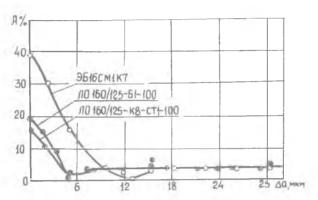


Рис.2. Изменение количества остаточного аустенита по глубине поверхностного слоя при шлифовании стали ЭИЗ47Ш обычными и эльборовыми кругами. Режим шлифования:

$$V_{\rm Kp} = 26 \text{ м/сек};$$
 $V_{\rm ИЗД} = 48 \text{ м/мин};$ $S_{\rm поп} = 0.2 \text{ мм/мин}$

аустенита повышает микротвердость деталей при работе адмазными кругами на IO-I5% (рис. 3), а при шлифовании обычными абразивнымина 20-35% (рис. 4). Из графиков изменения остаточного аустенита и микротвердости обработанной поверхности видно, что под вторично закаленным слоем расположен отпущенный слой. Поверхностный слои получается сложного строения: он состоит из двух зон — вторичной закалки и вторичного отпуска. Глубина, до которой происходит изменение процентного содержания аустенита, определяется уровнем температур в поверхностном слое. Для алмазного и эльборового шлифования толщина слоя с измененной структурой значительно меньше, чем при обычном шлифовании.

Подученный характер изменения остаточного аустенита в подповерхностных слоях изделия уменьшает объем верхних слоев металла и увеличивает объем нижних слоев. Это способствует образованию растягивающих остаточных напряжений.

Исследование характеристик тонкой структуры \mathcal{A} -фазы при шлифовании стали ЭИ437 на режиме $\mathfrak{S}_{\text{пол}} = 0.2$ мм/мин показало, что

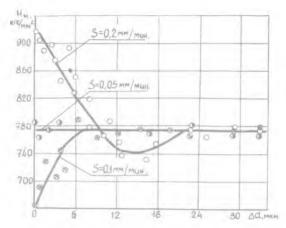


Рис. 3. Влияние поперечной подачи на микротвердость обработанной поверхности при шлифовании стали ЭМ 347 обычными кругами ЭБІ 6CM ІК?. Режим шлифования:

$$V_{\rm KD} = 26$$
 м/сек; $V_{\rm N3Д} = 48$ м/мин; $COK - IO\%$ раствор NaNO2 в воде

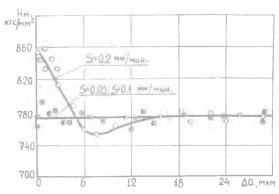


Рис.4.Влияние поперечной подачи на микротвердость обработанной поверхности при шлифованим стали ЭИЗ47 эльборовыми кругами ЛОІ60/125-К8--CTI-100. Режим шлифования:

$$V_{\rm RP} = 26 \, \text{м/сек}; \qquad V_{\rm NSA} = 48 \, \text{м/мин};$$
 $COX - IO\% \, \text{раствор NGNO}_2 \, \text{в воде}$

при работе обычными кругами ЭБ16СМІК? искажения второго рода растут от 1,26°10⁻³ до 3,92°10⁻⁸см, блоки уменьшаются от 5,4°10⁻⁶ до 2,9°10⁻⁶ см, при шлифовании эльборовыми кругами ЛО 160/125-Б1-100 ($\frac{\Delta q}{\alpha}$) увеличивается от 1,26°10⁻³ до 2,8°10⁻³ см, а ($\mathfrak D$) изменяется от 5,4°10⁻⁶ до 3,2°10⁻⁶см, при работе кругами ЛО 160/125-К8-СТ1-100 блоки измельчаются от 5,4°10⁻⁶ до 3°10⁻⁶см, а искажения второго рода растут от 1,26°10⁻³ до 2,6°10⁻³см.

При шлифовании титановых сплавов обычными абразивными кругами в поверхностных слоях образуются значительные растягивающие напряжения, достигающие 70-80 кгс/мм² и более. Это, прежде всего, объясняется низкой теплопроводностью титановых сплавов и теми физико-химическими процессами, которые происходят в поверхностных слоях под действием высоких температур. Применение алмазных и эльборовых кругов позволяет уменьшить значения растягивающих остаточных напряжений в несколько раз, а при работе с малыми глубинами шлифования получить сжимающие остаточные напряжения. Это объясняется тем, что при работе алмазными и эльборовыми кругами термическая напряженность процесса значительно ниже, чем при работе обычными кругами.

Рентгенографическими исследованиями установлено, что при шлифовании сплава ВТ9 с температурами в зоне резания порядка $1150-1250^{\circ}$ С почти полностью осуществляется переход β -фазы в α -фазу. Так как α -фаза имеет плотноупакованную гексогональную атомную решетку, а β -фаза-кубическую объемно-центрированную, происходит уменьшение объема металла, а следовательно образование растягивающих остаточных напряжений. При температурах $550-650^{\circ}$ С начинается активное поглощение титаном кислорода и азота воздуха. Так как азот и кислород являются α -стабилизаторами, поглощение указанных газов способствует переходу α -фазы в α -фазу. Проведенная нами

обработка титановых сплавов в специальной камере в среде аргона показала, что шлифование титана в нейтральной среде позволяет уменьшить остаточные напряжения при температурах свыше 800°C на 30-50%.

Исследование тонкой структуры — размеров блоков мозаики и искажений второго рода показало, что при обработке титанового сплава ВТ9 с температурами, превышающими 900-950°С, происходит уменьшение блоков мозаики примерно в 2 раза по сравнению с исходным материалом. Это приводит к уменьшению объема металла, что способствует образованию растягивающих остаточных напряжений.

ызменение микротвердости при обычном шлифовании находится в пределах 35-45%, при алмазном - I5-I8%.

влияние глубины резания при алмазном шлифовании и шлифовании электрокорундовыми кругами на предел выносливости образцов из стали 30643 показано на рис. 5. С увеличением глубины шлифования от 0,0025 до 0,01 на проход предел выносливости уменьшается в среднем на 20-30%, что можно объяснить снижением качества обработанной поверхности.

Рис. 5. Влияние глубины резания на предел выносливости при шлифовании обычными и алмазными кругами. Обрабатываемый материал — ЭИ643. Режим шлифования:

 $V_{\rm kp} = 26 \,\text{м/cek};$ $V_{\rm N3Д} = 20 \,\text{м/мин}$ $S_{\rm D0} = 0.5 \,\text{м/мин}$

Результаты испытания образцов из сталей ЗОХГСНА и ЭИ643 на -малоцикловую выносливость, обработанных кругами ЭБ25СМІК6 и алмазными кругами АСО I60/I25-Б4-I00 и АСП I60/I25-К5-I00, приведены в табл. І. Режим шлифования: $V_{\rm kp}$ = 26 м/сек; $V_{\rm изд}$ = 20 м/мин; $S_{\rm пp}$ = C,5 м/мин: t = 0,005 мм/пр; охлаждение - 3% раствор водомасляной эмульсии.

Таблица І

Результаты испытания образцов из стали ЗОХГСНА и ЭИ 643

Круги	Число циклов до разрушения			
	G max = 136	кгс/мм2	15 max = 1	17 кгс/мм ²
	30ХГСНА	3/1643	ЗихГСнА	JN643
ACO 160/125-54-100	760	00 8200	I .	14000 22211
ACN 160/125-K5-100	54	50		1
9625CM1K6	460	00 6700		640U 1600

Из табл. Двидно, что применение алмазного шлифования вместо обычного дает увеличение малоцикловой выносливости при обработке стали ЗОХГСНА кругами Б4 на 60%, а кругами на связке К5 - на 20%. для стали 34643 - соответственно на 40 и 20% по сравнению с обычными кругами.

на основании проведенных исследований для обработки высокопрочных сталей можно рекомендовать эльборовые круги на связках К8 и БІ зернистостью 12-25 и алмазные на связках БІ. КІ. Б4 зернистостью 160/125 и 200/160.

Режимы плифования:

круглое наружное шлифование
$$V_{\rm Kp} = 30-50$$
 м/сек; $V_{\rm изд} = 40-50$ м/мин; $S_{\rm пp} = 0.25-1$ м/мин; $t=0.0025-0.015$ мм/пр; охватывающее шлифование $V_{\rm Kp} = 12-15$ м/сек; $V_{\rm изд} = 10-20$ м/мин; $t=0.0025-0.01$ мм/пр; $S_{\rm np} = 0.5-1$ м/мин; при обработке колец подшипников из стали 30347 Ш $V_{\rm up} = 35-50$ м/сек; $V_{\rm up} = 50-60$ м/мин;

$$V_{\text{кр}} = 35 - 50 \text{ м/сек};$$
 $V_{\text{изд}} = 50 - 60 \text{ м/мин};$ $S_{\text{поп}} = 0.05 - 0.15 \text{ мм/мин} - при млифовании дорожек;}$

\$ поп = 0,15 - 0,3 мм/мин - при обработке оорта.

Для обработки титановых сплавов рекомендуется применять эльборовые круги на связках К8 и БІ зернистостью 16-25 и алмазные с зернами марки АСО, АСР на связках КІ и Б2 зернистостью 160/125 и 200/160.

Режим обработки: для круглого наружного шлифования — $v_{\rm kp} = 25 - 40$ м/сек; $v_{\rm мад} = 40 - 50$ м/мин; $s_{\rm np} = 0.5 - 1.5$ м/мин; t = 0.0025 - 0.015 мм/пр.

Исследования качества обработанной поверхности при алмазном выглаживании высокопрочных и жаропрочных сталей и сплавов, проведенные под руководством доц. Митряева К.Ф., показали, что алмазное выглаживание после точения и обычного шлифования обеспечивает снижение шерожоватости на 3-5 классов и позволяет получить поверхность II-I2 классов шероховатости.

В процессе выглаживания происходит упрочнение поверхностного слоя детали. Степень наклепа высокопрочных сталей составляет 25-35%, жаропрочных - 30-50%. Толщина наклепанного слоя колеблется в пределах 0,2 - 0,4 мм.

После алмазного выглаживания в поверхностных слоях всегда формируются остаточные напряжения сжатия, достигающие по величине предела текучести на сжатие упрочненного материала.

Установлено, что для высокопрочных сталей алмазное выглаживание повышает предел усталости по сравнению со шлифованными и точеными в среднем на 15-25%.

Предел выносливости шлифованных образцов при испытании в коррозионной среде снижается в 7-8 раз. Применение адмазного выглаживания исключает влияние среды, величина б, остается на уровне испытаний, проведенных в нормальных условиях. Испытания на малоцикловую
выносливость при повторном растяжении показали, что долговечность
выглаженных образцов в 5-10 раз больше шлифованных.

Из сказанного виднс, что применение алмазного выглаживания деталей из жаропрочных материалов позволяет в значительной степени повысить их усталостную прочность.

Литература

I. Резников Н.И. Исследование обрабатываемости жаропрочных и титановых сплавов. Труды всесоюзной межвузовской конференции. Куй-бышев, 1962.

- 2. Резников Н.И., Жарков И.Г., Зайцев В.М. и др. Производительная обработка нержавеющих и жаропрочных материалов. М.. Машгиз. 1960.
- 3. Кривоухов В.А., Егоров С.В., Бруштейн Б.Е. и др. Обрабатываемость резанием жаропрочных и титановых сплавов. М., Машгиз, 1961.
- 4. К р и в о у х о в В.А., Ч у б а р о в А.Д. Обработка резанием титановых сплавов. М., Машгиз, 1970.
- 5. Резание труднообрабатываемых материалов. Под редакцией проф. ПЕТРУХИ П.Г., М., Машгиз, 1972.
- 6. Урывский Ф.П., Петров Б.И., Трусов В.Н., Бороздин Б.П. Исследование процесса электроалмазной обработки быстрорежущей стали РЭК5. Межвузовский сборник № 3. Исследование обрабатываемости жаропрочных и титановых сплавов. Куйбышев, 1974.
- 7. Обработка резанием жаропрочных, высокопрочных и титановых сплавов. Под редакцией проф. РЕЗНИКОВА Н.И. М., Машгиз, 1972.

М.И.Клушин

ОБРАБАТЫВАЕМОСТЬ МЕТАЛЛОВ РЕЗАНИЕМ. СОДЕРЖАНИЕ ПОНЯТИЯ И ВОПРОСЫ МЕТОДОЛОГИИ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ

Свойство, получившее название "обрабатываемость металлов резанием" (ОМР), относится к группе технологических свойств металлов, т.е. таких, которые проявляются в особых условиях воздействия на металлы, складывающихся при выполнении различных операций технологического процесса.

I. Система резания

При обработке материалов резанием в результате локального разрушения материала, осуществляемого лезвиями (режущими кромками) инструмента и происходящего в последовательности, предопределяемой кинематической схемой резания, происходит образование новой поверхности на изделии. Оно всегда сопровождается упругой и пластической деформацией удаляемого поверхностного слоя и превращением его в стружку, упругой и пластической деформацией самой обработанной поверхности и износом рабочих граней и лезвий режущего инструмента.