Dynamic rotational effect in reaction of SiO⁺ super rotors with H₂

<u>Ivan Antonov</u>^{1,2}, Sruthi Venkataramanababu², James Dragan², Anyang Li^{3,4}, Hua Guo³, Brian Odom²

¹ Lebedev Physical Institute, Samara Branch, 221 Novo-Sadovaya str., Samara, Russia, 443011 ² Northwestern University, Evanston, IL, USA ³ The University of New Mexico, Albuquerque, NM, USA ⁴Northwest University, Xian, PRC pfizeke@gmail.com

Super rotors are molecules rotating at very high speed, whose rotational energy may approach or exceed electronic bonding energy. Steady-state silicon monoxide cation (SiO^+) super rotors with rotational quantum numbers N up to 170 were prepared in a linear quadrupole trap by means of optical pumping. Our measurements showed that the rate of reaction of SiO^+ super rotors with molecular hydrogen increased by a factor of 3 compared to thermal SiO^+ molecules. Quasiclassical trajectory (QCT) calculations explained the observed rate increase by a dynamic effect via coupling of SiO^+ rotational motion to a reaction coordinate of the intermediate reaction complex.