Oxidation of five-member rings in combustion

G.R. Galimova¹, A.R. Ghildina,¹ A.D. Oleinikov,¹ V.N. Azyazov,^{1,2} and A.M. Mebel^{1,3}

¹ Samara National Research University, Samara, 443086, Russia

² Lebedev Physical Institute, Samara, 443011, Russia

³ Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA

Ab initio calculations of potential energy surfaces in conjunction with the RRKM-Master Equation theoretical approach have been employed to evaluate temperature- and pressure-dependent total and product specific rate constants and product branching ratios for unimolecular thermal decomposition of 2,4-cyclopentalienone C_5H_4O and for the $C_5H_4O + H$ and $C_5H_5 + O$ reactions. The formation of the cyclobutadiene + CO products via a ring contraction/CO elimination mechanism is shown to be the prevailing channel for the unimolecular decomposition of C₅H₄O. The unimolecular reaction is found to be relatively slow, but decomposition of cyclopentadienone can be greatly facilitated through bimolecular encounters with H atoms. The $C_5H_4O + H$ reaction is predicted to be fast, with rate constants ranging from 4.6×10^{-12} to 1.8×10^{-10} cm³ molecule⁻¹ s⁻¹ at T = 500-2500 K and finite pressures. Cyclic C_5H_5O intermediates formed after the initial H addition undergo ring openings by β -scissions and then decompose to either butadienyl C_4H_5 + CO or 1-oxoprop-2-enyl H_2CCHCO + C_2H_2 , which are respectively predicted as the major and the minor reaction products. The calculations predict that thermal decomposition of the ortho and meta C5H5O radicals as well as pyranyl nearly exclusively forms the $C_4H_5 + CO$ products, whereas decomposition of hydroxycyclopentadienyl C_5H_4OH predominantly produces cyclopentadienone + H. The C_5H_5 + O reaction is shown to proceed by barrierless oxygen addition to the ring followed by fast H migration, ring opening, and dissociation to C₄H₅ + CO. The C₅H₅ + O rate constant is calculated to be close to 1×10^{-10} cm³ molecule⁻¹ s⁻¹ and to be pressure-independent and nearly independent of temperature. Modified Arrhenius expressions for rate constants for all considered reactions at the high-pressure limit and at finite pressures are generated for kinetic modeling.